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Basic Notations

Let
= s0(2n) Lie algebra of type D,

parabolic subalgebra of type A,_1

Borel subalgebra

o C oCwv Ca

Cartan subalgebra

We are then interested in OP(g), the category of g-modules M
such that

@ M is finitely generated as a g-module,
@ p acts locally nilpotent on M,

@ b acts semi-simple on M with integral weights.
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Category O: Weights

Integral weights of g are

~ 1\"
X,,:Z”U<Z+> .
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Category O: Weights

Integral weights of g are
~ 1\"
X, =72"U <Z+2> .
The irreducible modules in OP(g) are labelled by p-dominant

weights B B
X,? = {)\ € X, | Ai— i1 € Z>0}.
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Category O: Weights

Integral weights of g are
~ 1\"
X, =7Z"U <Z+2> .

The irreducible modules in OP(g) are labelled by p-dominant
weights B B
X,? = {)\ € X, | Ai— i1 € Z>0}.

We have classes of modules indexed by A € X}
@ M()) the parabolic Verma module with highest weight A — p,
e L(A) the irreducible quotient of M(X),
@ P()\) the projective cover of L(\).
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For simplicity we consider the subcategory OP(g,7Z") consisting of
those modules with weights in Z".
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For simplicity we consider the subcategory OP(g,7Z") consisting of
those modules with weights in Z".

Xop=27" and X ={ e X, | M1 <X<...<A\p}
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For simplicity we consider the subcategory OP(g,7Z") consisting of
those modules with weights in Z".

Xop=27" and X ={ e X, | M1 <X<...<A\p}

Let

P= PW.

AEXP
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For simplicity we consider the subcategory OP(g,7Z") consisting of
those modules with weights in Z".

Xop=27" and X ={ e X, | M1 <X<...<A\p}

Let

P= PW.

xext

Want to define an algebra D, such that
e D, = Endy(P),
@ D, has a basis given by diagrams,

@ D, has an explicit combinatorial multiplication,

M. Ehrig Diagram algebra of type (Dp, Ap—1)



For simplicity we consider the subcategory OP(g,7Z") consisting of
those modules with weights in Z".

Xop=27" and X ={ e X, | M1 <X<...<A\p}

Let

P= PW.

xext

Want to define an algebra D, such that
e D, = Endy(P),
@ D, has a basis given by diagrams,
@ D, has an explicit combinatorial multiplication,

@ D, can be equipped with a grading.

M. Ehrig Diagram algebra of type (Dp, Ap—1)



Category O: Diagrammatic weights |
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Category O: Diagrammatic weights |

For A € X}, we define four subsets of Z>o:
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For A € X}, we define four subsets of Z>o:
o Ph(N)={a€Zso|3je{l,...,n} st )\ =a},

M. Ehrig Diagram algebra of type (Dp, Ap—1)



Category O: Diagrammatic weights |

For A € X}, we define four subsets of Z>o:
o Ph(N)={a€Zso|3je{l,...,n} st )\ =a},
o Px(\)={a€Zso|3Fje{l,...,n}st. \j =—a},
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Category O: Diagrammatic weights |

For A € X}, we define four subsets of Z>o:
o Py(\)={a€Z>o|3je{l,...,n}st. \j = a},
o P\(A\)={a€Zso|3je{l,...,n} st \j = —a},
o Py(A) = PA(A) N Pu(A),
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Category O: Diagrammatic weights |

For A € X}, we define four subsets of Z>o:
o Py(\)={a€Z>o|3je{l,...,n}st. \j = a},
e Pr(N\) = {a €Zso|3j€{1,...,n}st. \j = —a},
° Px(A) = Pr(N) N PU(N),

© Po(A) = Zz0 \ (PA(A) U Py(N))-
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Category O: Diagrammatic weights |

For A € X}, we define four subsets of Z>o:
o Py(\)={a€Z>o|3je{l,...,n}st. \j = a},
e Pr(N\) = {a €Zso|3j€{1,...,n}st. \j = —a},
° Px(A) = Pr(N) N PU(N),
© Po(A) = Zz0 \ (PA(A) U Py(N))-

To A we then associate the sequence a()\) = (a());)iez., as follows

i€ Py(A)\ Px(X),
i€ PA(N)\ Px(N),
i€ Py (M),
i€ Py(N).

a()\),- =

o X > <
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Category O: Example

Let A = (—4,-1,0,3,4,5,7) € Z7, then
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Category O: Example

Let A = (—4,-1,0,3,4,5,7) € Z7, then
° PV()‘) = {07 3,4,577}v
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Category O: Example

Let A = (—4,-1,0,3,4,5,7) € Z7, then
e Py()\) =1{0,3,4,57},
o Pr(X) ={1,4},
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Category O: Example

Let A = (—4,-1,0,3,4,5,7) € Z7, then
o Py,(\) =1{0,3,4,5,7},
o Py()\) = {1,4},
o Px(A) = {4},
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Category O: Example

Let A = (—4,-1,0,3,4,5,7) € Z7, then
o Py,(\) =1{0,3,4,5,7},
o Py()\) = {1,4},
o Px(A) = {4},
o P,(\)=7Zx0\{0,1,3,4,5,7}.
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Category O: Example

Let A = (—4,-1,0,3,4,5,7) € Z7, then

e Py(\) ={0,3,4,57},
o Pr(A) ={1,4},
o P (\) = {4},

(] Po()\) == ZZO \ {0, 1, 3,4, 57 7}.

The corresponding sequence is

alA\)=VAoVXVoVoo---.
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Category O: Diagrammatic weights Il

Let A} be the set of diagrammatic weights, i.e.,
A ={a(\) | X e XP}.

M. Ehrig Diagram algebra of type (Dp, Ap—1)



Category O: Diagrammatic weights Il

Let A} be the set of diagrammatic weights, i.e.,
A ={a(\) | X e XP}.

The set AP, should be viewed as the combinatorial analogue of
Verma modules with the identification

M) +— a()).
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Category O: Blocks |

We say that two sequences a(\) and a(u) are linked if a(u) can be
obtained from a(\) by a finite composition of either
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Category O: Blocks |

We say that two sequences a(\) and a(u) are linked if a(u) can be
obtained from a(\) by a finite composition of either

@ swapping two labels A and V in the sequence, or
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Category O: Blocks |

We say that two sequences a(\) and a(u) are linked if a(u) can be
obtained from a(\) by a finite composition of either

@ swapping two labels A and V in the sequence, or

@ changing two A's into two V's or vice versa.
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Category O: Blocks |

We say that two sequences a(\) and a(u) are linked if a(u) can be
obtained from a(\) by a finite composition of either

@ swapping two labels A and V in the sequence, or

@ changing two A's into two V's or vice versa.

Two sequences a(\) and a(u) are linked iff M(\) and M(u) are in
the same block of OP(g).
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obtained from a(\) by a finite composition of either

@ swapping two labels A and V in the sequence, or
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the same block of OP(g).
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Category O: Blocks |

We say that two sequences a(\) and a(u) are linked if a(u) can be
obtained from a(\) by a finite composition of either

@ swapping two labels A and V in the sequence, or

@ changing two A's into two V's or vice versa.

Two sequences a(\) and a(u) are linked iff M(\) and M(u) are in
the same block of OP(g).

al\) = VAoVxXxVoVoo:--
is linkedto a(A\1) = AVoVXxVoVoo:--
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Category O: Blocks |

We say that two sequences a(\) and a(u) are linked if a(u) can be
obtained from a(\) by a finite composition of either

@ swapping two labels A and V in the sequence, or

@ changing two A's into two V's or vice versa.

Two sequences a(\) and a(u) are linked iff M(\) and M(u) are in
the same block of OP(g).

al\) = VAoVXxVoVoo:--
is linkedto a(A\1) = AVoVXxVoVoo:--
is linkedto  a(Xd2) = AAoOAXVoVoo:---
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Category O: Blocks |

We say that two sequences a(\) and a(u) are linked if a(u) can be
obtained from a(\) by a finite composition of either

@ swapping two labels A and V in the sequence, or

@ changing two A's into two V's or vice versa.

Lemma
Two sequences a(\) and a(u) are linked iff M(\) and M(u) are in
the same block of OP(g).

al\) = VAoVXxVoVoo-
is linkedto a(A\1) = AVoVXxVoVoo:--
is linkedto  a(Xd2) = AAoOAXVoVoo:---
is linkedto  a(A\3) = AAoV X AoVoo:---
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Category O: Blocks Il

Looking at these linkage conditions one easily deduces that a block
of OP(g) is given by
e fixing the positions of all x's and o's,

o fixing the parity of the number of V's.
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Category O: Blocks Il

Looking at these linkage conditions one easily deduces that a block
of OP(g) is given by

e fixing the positions of all x's and o's,

o fixing the parity of the number of V's.
Denote by

o X} () the set of weights u such that M()\) and M(u) are in
the same block and by
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Category O: Blocks Il

Looking at these linkage conditions one easily deduces that a block
of OP(g) is given by

e fixing the positions of all x's and o's,

o fixing the parity of the number of V's.
Denote by

o X} () the set of weights u such that M()\) and M(u) are in
the same block and by

o A%()) the set of sequences a(y) that are linked to a()).
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Category O: Blocks Il

Looking at these linkage conditions one easily deduces that a block
of OP(g) is given by

e fixing the positions of all x's and o's,

o fixing the parity of the number of V's.
Denote by

o X} () the set of weights u such that M()\) and M(u) are in
the same block and by

o A%()) the set of sequences a(y) that are linked to a()).

From now on we fix such a block!
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Combinatorics: Cup Diagrams |

To each weight A we associate a cup diagram )
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Combinatorics: Cup Diagrams |

To each weight A we associate a cup diagram )

aA):v o x A AV A o A A V o
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Combinatorics: Cup Diagrams |

To each weight A we associate a cup diagram )

aA):v o x A AV A o A A V o

© Connect neighbouring pairs VA, ignoring the symbols x and o
as well as already connected symbols
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Combinatorics: Cup Diagrams |

To each weight A we associate a cup diagram )

aA):V o x A AV A o A A V o

© Connect neighbouring pairs VA, ignoring the symbols x and o
as well as already connected symbols
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Combinatorics: Cup Diagrams |

To each weight A we associate a cup diagram )

aA):V o x A AV A o A A V o
-/

© Connect neighbouring pairs VA, ignoring the symbols x and o
as well as already connected symbols
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Combinatorics: Cup Diagrams |

To each weight A we associate a cup diagram )

aA):V o x A AV A o A A V o
-/

© Connect neighbouring pairs VA, ignoring the symbols x and o
as well as already connected symbols

@ Put a ray under all leftover V's
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Combinatorics: Cup Diagrams |

To each weight A we associate a cup diagram )

aA):V o x A AV A o A AV o
-/

© Connect neighbouring pairs VA, ignoring the symbols x and o
as well as already connected symbols

@ Put a ray under all leftover V's
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Combinatorics: Cup Diagrams |

To each weight A we associate a cup diagram )

aA):V o x A AV A o A A V o
N

© Connect neighbouring pairs VA, ignoring the symbols x and o
as well as already connected symbols

@ Put a ray under all leftover V's

© Connect neighbouring pairs AA from left to right with dotted
arcs, again ignoring symbols as above
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Combinatorics: Cup Diagrams |

To each weight A we associate a cup diagram )

aA):V o x A AV A o A A V o

© Connect neighbouring pairs VA, ignoring the symbols x and o
as well as already connected symbols

@ Put a ray under all leftover V's

© Connect neighbouring pairs AA from left to right with dotted
arcs, again ignoring symbols as above
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Combinatorics: Cup Diagrams |

To each weight A we associate a cup diagram )

aA):V o x A AV A o A A V o

© Connect neighbouring pairs VA, ignoring the symbols x and o
as well as already connected symbols

@ Put a ray under all leftover V's

© Connect neighbouring pairs AA from left to right with dotted
arcs, again ignoring symbols as above

@ Put a dotted ray under all leftover A's
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Combinatorics: Cup Diagrams |

To each weight A we associate a cup diagram )

aA):V o x A AV A o A A V o
N\

© Connect neighbouring pairs VA, ignoring the symbols x and o
as well as already connected symbols

@ Put a ray under all leftover V's

© Connect neighbouring pairs AA from left to right with dotted
arcs, again ignoring symbols as above

@ Put a dotted ray under all leftover A's
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Combinatorics: Cup Diagrams |

To each weight A we associate a cup diagram )

Y P N

© Connect neighbouring pairs VA, ignoring the symbols x and o
as well as already connected symbols

@ Put a ray under all leftover V's

© Connect neighbouring pairs AA from left to right with dotted
arcs, again ignoring symbols as above

@ Put a dotted ray under all leftover A's
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Combinatorics: Cup Diagrams Il

Let CH()) be the set of all cup diagrams obtained from X} ().
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Combinatorics: Cup Diagrams |l

Let CH()) be the set of all cup diagrams obtained from X} ().

Proposition

The assignment 1 — p is injective, i.e., there is a bijection

XP(A) «— CP(N).
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Combinatorics: Cup Diagrams Il

Let CH()) be the set of all cup diagrams obtained from X} ().

Proposition
The assignment 1 — p is injective, i.e., there is a bijection

XP(A) «— CP(N).

The set C()\) should be viewed as the combinatorial analogue of
the P(x)'s in the same block as M(\) via

P(p) < p.

M. Ehrig Diagram algebra of type (Dp, Ap—1)



Combinatorics: Cup Diagrams |l

Let CH()) be the set of all cup diagrams obtained from X} ().

Proposition
The assignment 1 — p is injective, i.e., there is a bijection

XP(A) «— CP(N).

The set C()\) should be viewed as the combinatorial analogue of
the P(x)'s in the same block as M(\) via

P(p) < p.

v

What do we gain from this combinatorial description? \
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Combinatorics: Oriented Cup Diagrams

For p,n € XF(X), put a(n) on top of x to obtain nu.
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Combinatorics: Oriented Cup Diagrams

For p,n € XF(X), put a(n) on top of x to obtain nu.

Example of some npu

AV o

i
£
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Combinatorics: Oriented Cup Diagrams

For p,n € XF(X), put a(n) on top of x to obtain nu.

Example of some npu

AV o

5
£
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Combinatorics: Oriented Cup Diagrams

For i,n € X§(X), put a(n) on top of u to obtain nu. We say that
nu is oriented if locally:

Example of some npu

AV o

5
£
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Combinatorics: Oriented Cup Diagrams

For i,n € X§(X), put a(n) on top of u to obtain nu. We say that
nu is oriented if locally:

Clockwise: U w
Example of some npu

AV o

5
£
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Combinatorics: Oriented Cup Diagrams

For i,n € X§(X), put a(n) on top of u to obtain nu. We say that
nu is oriented if locally:

Clockwise: Anti-Clockwise:
J IV U Ay
Example of some npu

AV o

5
£
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Combinatorics: Oriented Cup Diagrams

For i,n € X§(X), put a(n) on top of u to obtain nu. We say that
nu is oriented if locally:
Rays: T

Clockwise: Anti-Clockwise:
J IV U Ay
Example of some npu

AV o

5
£
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Combinatorics: Oriented Cup Diagrams

For i,n € X§(X), put a(n) on top of u to obtain nu. We say that
nu is oriented if locally:
Rays: T

Clockwise: Anti-Clockwise:
J IV U Ay
Example of some npu

AV o

I
£

4

Can define a degree for such an oriented cup diagram, by assigning
a degree to each cup/ray and sum them up.
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Combinatorics: Oriented Cup Diagrams

For i,n € X§(X), put a(n) on top of u to obtain nu. We say that
nu is oriented if locally:
Rays: T

Clockwise: Anti-Clockwise:
deg=1) A (J U A
Example of some npu

vV o

B
.

4

Can define a degree for such an oriented cup diagram, by assigning
a degree to each cup/ray and sum them up.
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Combinatorics: Oriented Cup Diagrams

For i,n € X§(X), put a(n) on top of u to obtain nu. We say that
nu is oriented if locally:
Rays: T

Clockwise: Anti-Clockwise:
@eg—1) AJ ) (deg = 0) (N AN
Example of some npu

vV o

B
i |

4

Can define a degree for such an oriented cup diagram, by assigning
a degree to each cup/ray and sum them up.
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Combinatorics: Oriented Cup Diagrams

For i,n € X§(X), put a(n) on top of u to obtain nu. We say that
nu is oriented if locally:

Rays:

Clockwise: Anti-Clockwise: :
deg=1) AJ ) (deg=0) X AW ( deg:O)T¢
Example of some npu

vV o

B
i |

4

Can define a degree for such an oriented cup diagram, by assigning
a degree to each cup/ray and sum them up.
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Combinatorics: Oriented Cup Diagrams

For i,n € X§(X), put a(n) on top of u to obtain nu. We say that
nu is oriented if locally:

Rays:

Clockwise: Anti-Clockwise: :
deg=1) AJ ) (deg=0) X AW ( deg:O)T¢
Example of some npu
NV o

deg(np) = 2.

4

Can define a degree for such an oriented cup diagram, by assigning
a degree to each cup/ray and sum them up.
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Combinatorics: Diagrams and Multiplicities

Can use the diagrams to determine multiplicities in Verma flags of
indecomposable projectives.
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Combinatorics: Diagrams and Multiplicities

Can use the diagrams to determine multiplicities in Verma flags of
indecomposable projectives.

Proposition
For p,n € Xh(\) it holds

1 if pu is oriented,
0 otherwise.

(P(u) : M(n)) = {
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Combinatorics: Diagrams and Multiplicities

Can use the diagrams to determine multiplicities in Verma flags of
indecomposable projectives.

For p,n € Xh(\) it holds

1 if pu is oriented,
0 otherwise.

Can also work in the graded version of OP(g), then the degree of
the diagram will give graded multiplicity formulas.

(P(u) : M(n)) = {

A
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Combinatorics: Diagrams and Morphisms

Are interested in Homg(P (), P(n)).
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Combinatorics: Diagrams and Morphisms

Are interested in Homg(P (), P(n)).
We have the following dimension formula:

dim Homg(P(1), P(n)) = S_(P(u) : M(8)) - [M(9) : L(n)]
6
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Combinatorics: Diagrams and Morphisms

Are interested in Homg(P (), P(n)).
We have the following dimension formula:

dim Homg(P(1), P(n)) = S_(P(u) : M(8)) - [M(9) : L(n)]
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Combinatorics: Diagrams and Morphisms

Are interested in Homg(P (), P(n)).
We have the following dimension formula:

dim Homg(P(1), P(n)) = S_(P(u) : M(8)) - [M(9) : L(n)]

_ weights ¢ such that 6 and 6n
N are oriented
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Combinatorics: (Oriented) Circle Diagrams

For 1,0 € X5(\)
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Combinatorics: (Oriented) Circle Diagrams

For 11,m,60 € X5(\), we horizontally reflect the cup diagram p and
put in on top of On:
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Combinatorics: (Oriented) Circle Diagrams

For 11,m,60 € X5(\), we horizontally reflect the cup diagram p and
put in on top of On:

AN o X V V V. A o V A V o

W\ WA
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Combinatorics: (Oriented) Circle Diagrams

For 11,m,60 € X5(\), we horizontally reflect the cup diagram p and
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Combinatorics: (Oriented) Circle Diagrams

For 11,m,60 € X5(\), we horizontally reflect the cup diagram p and
put in on top of On:

Example
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We call the diagram 7if)ln) oriented if both 6 and 67 are oriented.
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Let Bh(\) denote the set of all such oriented circle diagrams
obtained from weights in X} ().
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Diagram Algebra: Definition

For two weights 11,7 € X5 ()\) define
u(Dn)y = ( oriented circle diagrams 7i6n) .

M. Ehrig Diagram algebra of type (Dp, Ap—1)



Diagram Algebra: Definition

For two weights 11,7 € X5 ()\) define
u(Dn)y = ( oriented circle diagrams 7i6n) .
If 1 and 7 are in different blocks we just put ,(ID,), = 0.
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Diagram Algebra: Definition

For two weights 11,7 € X5 ()\) define
u(Dn)y = ( oriented circle diagrams 7i6n) .
If 1 and 7 are in different blocks we just put ,(ID,), = 0.

As a vector space we define the type D generalized Khovanov

arc algebra by
Dp = @ u(Dn)n-
(sm)
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Diagram Algebra: Definition

For two weights 11,7 € X5 ()\) define
u(Dn)y = ( oriented circle diagrams 7i6n) .
If 1 and 7 are in different blocks we just put ,(ID,), = 0.

As a vector space we define the type D generalized Khovanov

arc algebra by
Dp = @ u(Dn)n-
(sm)

By setting deg(i6n) = deg(0p) + deg(fn), D, can be equipped
with a grading.
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Diagram Algebra: Definition

For two weights 11,7 € X5 ()\) define
u(Dn)y = ( oriented circle diagrams 7i6n) .
If 1 and 7 are in different blocks we just put ,(ID,), = 0.

As a vector space we define the type D generalized Khovanov

arc algebra by
Dp = @ u(Dn)n-
(1m)

By setting deg(i6n) = deg(0p) + deg(fn), D, can be equipped
with a grading.

D, can be equipped with the structure of an associative algebra. )
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Diagram Algebra: Multiplication
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Diagram Algebra: Multiplication
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Diagram Algebra: Multiplication

|
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Put diagrams on top of each other.
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Diagram Algebra: Multiplication
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Diagram Algebra: Multiplication

ACARQCS S b (8D -
AEARQTY,
SRSACS)

Connect the rays.
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Diagram Algebra: Multiplication

ACARQCS S b (8D -

KU“T o

SRSRCS)

Eliminate double dots on connected rays.
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Diagram Algebra: Multiplication

ACARQCS S b (8D -

(U“T Qo
U (0D

Color circles.




Diagram Algebra: Multiplication

ACARQCS S b (8D -

STAARTY,

SRSRCS)

Basic Idea: View circles as elements in C[x]/(x?).

anticlockwise circle <+ 1, clockwise circle <+ x.
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Diagram Algebra: Multiplication

ACARQCS S b (8D -

STAARTY,

SRSRCS)

Change symmetric cup/cap pairs into pairs of rays.
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Diagram Algebra: Multiplication

ACARQCS S b (8D -

RCARRTY,
U (0D

Two anticlockwise circles are combined into one anticlockwise circle.

ldea: 1® 1 +— 1.
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Diagram Algebra: Multiplication

ACARQCS S b (8D -
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Two anticlockwise circles are combined into one anticlockwise circle.

ldea: 1® 1 +— 1.
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Diagram Algebra: Multiplication

Ay Q) - U (0D -
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Need to change colouring if it does not match.
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Diagram Algebra: Multiplication

ACARQCS S b (8D -
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SREANS)

Changing colour of a clockwise circle gives a sign.

Idea: Substitution x — —x.
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Diagram Algebra: Multiplication

ACARQCS S b (8D -

STSEERE

SRSERSD!

Anticlockwise and clockwise circle combine to a clockwise circle.

ldea: x® 1 +— x.
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Diagram Algebra: Multiplication

ACARQCS S b (8D -
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A clockwise circle splits into two clockwise circles.

Idea: x — x ® x.
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Diagram Algebra: Multiplication

Ay Q) - U (0D -

ESESARSD)

Collapse middle part of the diagram.
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Diagram Algebra: Results

M. Ehrig Diagram algebra of type (Dp, Ap—1)



Diagram Algebra: Results
Can use combinatorics to show that D, is cellular. l
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Diagram Algebra: Results
Can use combinatorics to show that D, is cellular. l

It holds

D, 2 Endy(P).

With the graded version of OP(g) and the standard graded lift of P
this is even true as graded algebras
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Diagram Algebra: Results

Can use combinatorics to show that D, is cellular.

It holds

D, 2 Endy(P).

With the graded version of OP(g) and the standard graded lift of P
this is even true as graded algebras

v
Corollary

D, — mod & O(g, Z")
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