Representation theory of diagram algebras

September 25, 2012

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Diagram algebras and their geometries:

- Diagram algebras and Schur–Weyl dualities
- [BCD] Brauer algebras of type G(m, p, n)

Application to the symmetric group:

- [BDO] A closed formula for the decomposition of a tensor product of Specht modules
- [B] Positive characteristic

Schur-Weyl dualities

We have embeddings of the Weyl group Σ_n and the symplectic group $\operatorname{Sp}_{2n}(k)$ in the general linear group $\operatorname{GL}_n(k)$. On the other side of the Schur–Weyl dualities we get

$\begin{array}{cccc} \Sigma_r \circlearrowright & E^{\otimes r} \circlearrowright & \mathsf{GL}_n(k) \\ B_r(n) \circlearrowright & E^{\otimes r} \circlearrowright & \mathsf{Sp}_{2n}(k) \\ P_r(n) \circlearrowright & E^{\otimes r} \circlearrowright & \Sigma_n \end{array}$

the partition, classical Brauer, and symmetric group algebras. A diagram algebra can appear in several such dualities, for example

classical Brauer algebra ↔ ortho-symplectic supergroup walled Brauer algebra ↔ general linear supergroup

Schur-Weyl dualities

We have embeddings of the Weyl group Σ_n and the symplectic group $\operatorname{Sp}_{2n}(k)$ in the general linear group $\operatorname{GL}_n(k)$. On the other side of the Schur–Weyl dualities we get

 $\begin{array}{cccc} \Sigma_r \circlearrowright & E^{\otimes r} \circlearrowright & \mathsf{GL}_n(k) \\ B_r(n) \circlearrowright & E^{\otimes r} \circlearrowright & \mathsf{Sp}_{2n}(k) \\ P_r(n) \circlearrowright & E^{\otimes r} \circlearrowright & \Sigma_n \end{array}$

the partition, classical Brauer, and symmetric group algebras. A

diagram algebra can appear in several such dualities, for example

classical Brauer algebra ↔ ortho-symplectic supergroup walled Brauer algebra ↔ general linear supergroup

Schur-Weyl dualities

We have embeddings of the Weyl group Σ_n and the symplectic group $\operatorname{Sp}_{2n}(k)$ in the general linear group $\operatorname{GL}_n(k)$. On the other side of the Schur–Weyl dualities we get

$$\begin{array}{cccc} \Sigma_r \circlearrowright & E^{\otimes r} \circlearrowright & \mathsf{GL}_n(k) \\ B_r(n) \circlearrowright & E^{\otimes r} \circlearrowright & \mathsf{Sp}_{2n}(k) \\ P_r(n) \circlearrowright & E^{\otimes r} \circlearrowright & \Sigma_n \end{array}$$

the partition, classical Brauer, and symmetric group algebras. A diagram algebra can appear in several such dualities, for example

classical Brauer algebra ↔ ortho-symplectic supergroup walled Brauer algebra ↔ general linear supergroup

This algebra has basis given by:

$$e= {\stackrel{\circ}{\underset{\circ}{\scriptstyle \circ}}} {\stackrel{\circ}{\scriptstyle \circ}} {\stackrel{\circ}{\scriptstyle \circ}} {(12)} = {\stackrel{\circ}{\underset{\circ}{\scriptstyle \circ}}} {\stackrel{\circ}{\scriptstyle \circ}} {\stackrel{\circ}{\scriptstyle \circ}} {\alpha} = {\stackrel{\circ}{\underset{\circ}{\scriptstyle \circ}}} {\stackrel{\circ}{\scriptstyle \circ}} {\stackrel{\circ}{\scriptstyle \circ}}$$

and multiplication given by concatenation

$$\begin{array}{c|cccc} e & (12) & \alpha \\ \hline e & e & (12) & \alpha \\ (12) & (12) & e & \alpha \\ \alpha & \alpha & \alpha & n\alpha \end{array}$$

This algebra has basis given by:

$$e= {\mathop{\cup}\limits_{\circ}} {\mathop{\cup}\limits_{\circ}} {\mathop{\cup}\limits_{\circ}} {\mathop{\cup}\limits_{\circ}} {(12)} = {\mathop{\circ}\limits_{\circ}} {\mathop{\times}\limits_{\circ}} {\mathop{\circ}\limits_{\circ}} {\alpha} = {\mathop{\circ}\limits_{\circ}} {\mathop{\circ}\limits_{\circ}} {\mathop{\circ}\limits_{\circ}}$$

and multiplication given by concatenation

	е	(12)	α
е	е	(12)	α
(12)	(12)	е	α
α	α	α	nα

This algebra has basis given by:

$$e= {\mathop{\cup}\limits_{\circ}} {\mathop{\cup}\limits_{\circ}} {\mathop{\cup}\limits_{\circ}} {\mathop{\cup}\limits_{\circ}} {(12)} = {\mathop{\circ}\limits_{\circ}} {\mathop{\times}\limits_{\circ}} {\mathop{\circ}\limits_{\circ}} {\alpha} = {\mathop{\circ}\limits_{\circ}} {\mathop{\circ}\limits_{\circ}} {\mathop{\circ}\limits_{\circ}}$$

and multiplication given by concatenation

	е	(12)	α
е	е	(12)	α
(12)	(12)	е	α
α	α	α	nα

This algebra has basis given by:

$$e= {\mathop{\cup}\limits_{\circ}} {\mathop{\cup}\limits_{\circ}} {\mathop{\otimes}\limits_{\circ}} {\mathop{\otimes}\limits_{\circ}} {(12)} = {\mathop{\otimes}\limits_{\circ}} {\mathop{\times}\limits_{\circ}} {\mathop{\otimes}\limits_{\circ}} {\alpha} = {\mathop{\otimes}\limits_{\circ}} {\mathop{\otimes}\limits_{\circ}} {\mathop{\otimes}\limits_{\circ}} {\alpha}$$

and character table:

$$\begin{array}{c|cccc} e & (12) & \alpha \\ \hline \Delta(2) & 1 & 1 & 0 \\ \Delta(1^2) & 1 & -1 & 0 \\ \Delta(\emptyset) & 1 & 1 & n \end{array}$$

This algebra has basis given by:

and one non-split extension:

$$0
ightarrow \Delta({a\!\!\!\!/})
ightarrow P(2)
ightarrow \Delta(2)
ightarrow 0$$

<ロ> (四) (四) (注) (日) (三)

The cyclotomic Brauer algebra of type G(m, 1, r) is the wreath product $(\mathbb{Z}/m\mathbb{Z}) \wr B_r(n)$.

This algebra has basis given by:

and one non-split extension:

$$0
ightarrow \Delta(\phi)
ightarrow P(2)
ightarrow \Delta(2)
ightarrow 0$$

The cyclotomic Brauer algebra of type G(m, 1, r) is the wreath product $(\mathbb{Z}/m\mathbb{Z}) \wr B_r(n)$.

- A diagram algebra, $A_r(n)$,
 - has multiplication defined by concatenation of diagrams
 - this multiplication is specified by the parameter n
 - is semisimple (and stable) for large *n*
 - is cellular
 - has a stratification by smaller cellular algebras (e.g. symmetric groups, cyclotomic Hecke algebras) [KX] and [HHKP]
 - is (usually) quasi-hereditary over the complex numbers

- A diagram algebra, $A_r(n)$,
 - has multiplication defined by concatenation of diagrams
 - this multiplication is specified by the parameter n
 - is semisimple (and stable) for large *n*
 - is cellular
 - has a stratification by smaller cellular algebras (e.g. symmetric groups, cyclotomic Hecke algebras) [KX] and [HHKP]
 - is (usually) quasi-hereditary over the complex numbers

- A diagram algebra, $A_r(n)$,
 - has multiplication defined by concatenation of diagrams
 - this multiplication is specified by the parameter n
 - is semisimple (and stable) for large n
 - is cellular
 - has a stratification by smaller cellular algebras (e.g. symmetric groups, cyclotomic Hecke algebras) [KX] and [HHKP]
 - is (usually) quasi-hereditary over the complex numbers

- A diagram algebra, $A_r(n)$,
 - has multiplication defined by concatenation of diagrams
 - this multiplication is specified by the parameter n
 - is semisimple (and stable) for large n
 - is cellular
 - has a stratification by smaller cellular algebras (e.g. symmetric groups, cyclotomic Hecke algebras) [KX] and [HHKP]
 - is (usually) quasi-hereditary over the complex numbers

- A diagram algebra, $A_r(n)$,
 - has multiplication defined by concatenation of diagrams
 - this multiplication is specified by the parameter n
 - is semisimple (and stable) for large n
 - is cellular
 - has a stratification by smaller cellular algebras (e.g. symmetric groups, cyclotomic Hecke algebras) [KX] and [HHKP]
 - is (usually) quasi-hereditary over the complex numbers

- A diagram algebra, $A_r(n)$,
 - has multiplication defined by concatenation of diagrams
 - this multiplication is specified by the parameter n
 - is semisimple (and stable) for large n
 - is cellular
 - has a stratification by smaller cellular algebras (e.g. symmetric groups, cyclotomic Hecke algebras) [KX] and [HHKP]
 - is (usually) quasi-hereditary over the complex numbers

- A diagram algebra, $A_r(n)$,
 - has multiplication defined by concatenation of diagrams
 - this multiplication is specified by the parameter n
 - is semisimple (and stable) for large n
 - is cellular
 - has a stratification by smaller cellular algebras (e.g. symmetric groups, cyclotomic Hecke algebras) [KX] and [HHKP]
 - is (usually) quasi-hereditary over the complex numbers

Characteristic-zero Lie theory of diagram algebras

- These algebras often form a 'tower' with 'translation functors'
- They exhibit geometries:

$$\begin{array}{ccc} B_r(n) & \stackrel{CDM}{\longleftrightarrow} & A \subseteq D \\ WB_r(n) & \stackrel{CDDM}{\longleftrightarrow} & A \times A \subseteq A \\ P_r(n) & \stackrel{Cox}{\longleftrightarrow} & A \subseteq \widetilde{A} \end{array}$$

[CDM] give the block structure, decomposition numbers, and higher extension groups of the algebras using the internal geometry.

[BS] show that $WB_r(n)$ is Koszul and part of a larger picture involving KLR algebras, supergroups, level 2 Hecke algebras, and parabolic category

Characteristic-zero Lie theory of diagram algebras

- These algebras often form a 'tower' with 'translation functors'
- They exhibit geometries:

$$egin{array}{ccc} B_r(n) & \stackrel{CDM}{\longleftrightarrow} & A \subseteq D \ WB_r(n) & \stackrel{CDDM}{\longleftrightarrow} & A imes A \subseteq A \ P_r(n) & \stackrel{Cox}{\longleftrightarrow} & A \subseteq \widetilde{A} \end{array}$$

[CDM] give the block structure, decomposition numbers, and higher extension groups of the algebras using the internal geometry.

[BS] show that $WB_r(n)$ is Koszul and part of a larger picture involving KLR algebras, supergroups, level 2 Hecke algebras, and parabolic category

The cyclotomic Brauer algebra of type G(m, 1, r) has a geometry given by a product of those controlling the classical Brauer $(A \subset D)$ and the walled Brauer algebra $(A \times A \subset A)$. For example the geometry controlling B(6, 1, n) is as follows

$$A \xrightarrow{A} A \xrightarrow{A} A \xrightarrow{D} A \xrightarrow{A} D \xrightarrow{D} A \xrightarrow{D} D \xrightarrow{D} A \xrightarrow{D} D \xrightarrow{D}$$

where each pair of roots of unity corresponds to either an $A \times A \subset A$ if $\xi = \overline{\xi}$ or $A \subset D$ if $\xi \neq \overline{\xi}$.

Therefore the decomposition numbers for the algebra are given by the KL polynomials arising from this geometry.

The cyclotomic Brauer algebra of type G(m, 1, r) has a geometry given by a product of those controlling the classical Brauer $(A \subset D)$ and the walled Brauer algebra $(A \times A \subset A)$. For example the geometry controlling B(6, 1, n) is as follows

$$A \xrightarrow{A} A \xrightarrow{A} D \xrightarrow{A} A \xrightarrow{D} U \xrightarrow{D} U \xrightarrow{D} U \xrightarrow{U} U \xrightarrow{U}$$

where each pair of roots of unity corresponds to either an $A \times A \subset A$ if $\xi = \overline{\xi}$ or $A \subset D$ if $\xi \neq \overline{\xi}$.

Therefore the decomposition numbers for the algebra are given by the KL polynomials arising from this geometry.

The cyclotomic Brauer algebra of type G(m, 1, r) has a geometry given by a product of those controlling the classical Brauer $(A \subset D)$ and the walled Brauer algebra $(A \times A \subset A)$. For example the geometry controlling B(6, 1, n) is as follows

$$A \xrightarrow{A} A \xrightarrow{A} A \xrightarrow{A} D \xrightarrow{A}$$

where each pair of roots of unity corresponds to either an $A \times A \subset A$ if $\xi = \overline{\xi}$ or $A \subset D$ if $\xi \neq \overline{\xi}$.

Therefore the decomposition numbers for the algebra are given by the KL polynomials arising from this geometry.

The cyclotomic Brauer algebra of type G(m, 1, r) has a geometry given by a product of those controlling the classical Brauer $(A \subset D)$ and the walled Brauer algebra $(A \times A \subset A)$. For example the geometry controlling B(6, 1, n) is as follows

$$A \xrightarrow{A} A \xrightarrow{A} A \xrightarrow{A} D \xrightarrow{A}$$

where each pair of roots of unity corresponds to either an $A \times A \subset A$ if $\xi = \overline{\xi}$ or $A \subset D$ if $\xi \neq \overline{\xi}$.

Therefore the decomposition numbers for the algebra are given by the KL polynomials arising from this geometry.

ヘロン ヘロン ヘビン ヘロン

Part 2

Calculating the decomposition of a tensor product of Specht modules of the symmetric group in characteristic zero.

The Littlewood–Richardson rule computes

$$\Sigma_r \circlearrowleft E^{\otimes r} \circlearrowright GL_n(k)$$

$$[\mathcal{S}(\nu){\downarrow}_{\Sigma_{r_1,r_2}}:\mathcal{S}(\lambda)\otimes\mathcal{S}(\mu)]=[\Delta(\lambda)\otimes\Delta(\mu):\Delta(\nu)]$$

the restriction of a Specht module to a Young subgroup of Σ_r and hence, through Schur–Weyl duality, the decompositions of tensor products of Weyl modules of $GL_n(k)$.

There is no such formula for decomposing the tensor products of Specht modules.

$P_r(n)$ \circlearrowleft $E^{\otimes r}$ \circlearrowright Σ_n

the image under the Schur functor is given by removing the first row of the partition and so

$$[L(\nu_{>1})\downarrow_{P_{r_1,r_2}(n)}: L(\lambda_{>1}) \otimes L(\mu_{>1})] = [S(\lambda) \otimes S(\mu): S(\nu)] = g_{\lambda,\mu}^{\nu}$$

And we know that:

• $P_r(n)$ is semisimple for large n

- *P_r(n)* has a stratification by symmetric groups
- $P_r(n)$ has a geometry of type $A\subset ilde{A}$

$P_r(n)$ \circlearrowleft $E^{\otimes r}$ \circlearrowright Σ_n

the image under the Schur functor is given by removing the first row of the partition and so

$$[L(\nu_{>1})\downarrow_{P_{r_1,r_2}(n)}: L(\lambda_{>1}) \otimes L(\mu_{>1})] = [\mathcal{S}(\lambda) \otimes \mathcal{S}(\mu): \mathcal{S}(\nu)] = g_{\lambda,\mu}^{\nu}$$

And we know that:

P_r(n) is semisimple for large n
 P_r(n) has a stratification by symmetric groups
 P_r(n) has a geometry of type A ⊂ Ã

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○

$P_r(n)$ \circlearrowleft $E^{\otimes r}$ \circlearrowright Σ_n

the image under the Schur functor is given by removing the first row of the partition and so

$$[L(\nu_{>1})\downarrow_{P_{r_1,r_2}(n)}:L(\lambda_{>1})\otimes L(\mu_{>1})]=[\mathcal{S}(\lambda)\otimes \mathcal{S}(\mu):\mathcal{S}(\nu)]=g_{\lambda,\mu}^{\nu}$$

And we know that:

$P_r(n)$ \circlearrowleft $E^{\otimes r}$ \circlearrowright Σ_n

the image under the Schur functor is given by removing the first row of the partition and so

$$[L(\nu_{>1})\downarrow_{P_{r_1,r_2}(n)}: L(\lambda_{>1}) \otimes L(\mu_{>1})] = [\mathcal{S}(\lambda) \otimes \mathcal{S}(\mu): \mathcal{S}(\nu)] = g_{\lambda,\mu}^{\nu}$$

And we know that:

P_r(n) is semisimple for large n
P_r(n) has a stratification by symmetric groups
P_r(n) has a geometry of type A ⊂ Ã

$P_r(n)$ is semisimple for large *n*. Therefore the coefficients

$$g_{\lambda,\mu}^{\nu} = [L(\nu_{>1})\downarrow_{P_{r_1,r_2}(n)}: L(\lambda_{>1}) \otimes L(\mu_{>1})]$$

stabilise for large values of *n* to be given by:

$$\overline{g}_{\lambda,\mu}^{\nu} = [\Delta(\nu_{>1}) \downarrow_{P_{r_1,r_2}(n)} : \Delta(\lambda_{>1}) \otimes \Delta(\mu_{>1})].$$

This results in a wonderful stability property in the tensor products of Specht modules.

 $P_r(n)$ is semisimple for large *n*. Therefore the coefficients

$$g_{\lambda,\mu}^{\nu} = [L(\nu_{>1}) \downarrow_{P_{r_1,r_2}(n)} : L(\lambda_{>1}) \otimes L(\mu_{>1})]$$

stabilise for large values of n to be given by:

$$\overline{g}_{\lambda,\mu}^{
u} = [\Delta(
u_{>1}){\downarrow}_{P_{r_1,r_2}(n)}: \Delta(\lambda_{>1})\otimes\Delta(\mu_{>1})].$$

This results in a wonderful stability property in the tensor products of Specht modules.

 $P_r(n)$ is semisimple for large *n*. Therefore the coefficients

$$g_{\lambda,\mu}^{\nu} = [L(\nu_{>1})\downarrow_{P_{r_1,r_2}(n)}: L(\lambda_{>1}) \otimes L(\mu_{>1})]$$

stabilise for large values of n to be given by:

$$\overline{g}_{\lambda,\mu}^{
u} = [\Delta(
u_{>1}){\downarrow}_{P_{r_1,r_2}(n)}: \Delta(\lambda_{>1})\otimes\Delta(\mu_{>1})].$$

This results in a wonderful stability property in the tensor products of Specht modules.

Theorem (BDO)

Using the stratification of the partition algebra we can show that the generic value of these coefficients for large n is given by:

$$\overline{g}_{\lambda,\mu}^{\nu} = \sum_{\nu_{>1}\vdash m - (l_{1}+2l_{2})} \sum_{\substack{\xi_{1}\vdash r - l_{1} - l_{2} \\ \xi_{2}\vdash s - l_{1} - l_{2} \\ \xi_{4}\vdash l_{2}}} \sum_{\substack{\xi_{1} - l_{1} \\ \xi_{4}\vdash l_{2}}} c_{\xi_{1},\xi_{2},\xi_{3}}^{\nu_{>1}} c_{\xi_{1},\xi_{3},\xi_{4}}^{\lambda_{>1}} c_{\xi_{2},\xi_{3},\xi_{4}}^{\mu_{>1}}$$

where $m = |\lambda_{>1}| + |\mu_{>1}|$.

This is entirely in terms of Littlewood–Richardson coefficents! In fact,

Corollary (BDO)

If $|
u_{>1}| = |\lambda_{>1}| + |\mu_{>1}|$, then

$$\overline{g}_{\lambda,\mu}^{
u}=c_{\lambda>1,\mu>1}^{
u>1}$$

Theorem (BDO)

Using the stratification of the partition algebra we can show that the generic value of these coefficients for large n is given by:

$$\overline{g}_{\lambda,\mu}^{\nu} = \sum_{\nu_{>1}\vdash m - (l_{1}+2l_{2})} \sum_{\substack{\xi_{1}\vdash r - l_{1} - l_{2} \\ \xi_{2}\vdash s - l_{1} - l_{2} \\ \xi_{4}\vdash l_{2}}} \sum_{\substack{\xi_{1} - l_{1} \\ \xi_{4}\vdash l_{2}}} c_{\xi_{1},\xi_{2},\xi_{3}}^{\nu_{>1}} c_{\xi_{1},\xi_{3},\xi_{4}}^{\lambda_{>1}} c_{\xi_{2},\xi_{3},\xi_{4}}^{\mu_{>1}}$$

where $m = |\lambda_{>1}| + |\mu_{>1}|$.

This is entirely in terms of Littlewood–Richardson coefficents! In fact,

Corollary (BDO)

If $|
u_{>1}| = |\lambda_{>1}| + |\mu_{>1}|$, then

$$\overline{g}_{\lambda,\mu}^{
u}=c_{\lambda_{>1},\mu_{>1}}^{
u_{>1}}$$

Finally, we can solve the problem for small n. Using the **geometry** of the partition algebra.

$$[L(\nu)] = \sum p_{\xi,\nu}^n (-1)[\Delta(\xi)]$$

where the $p_{\mu,\lambda}^n$ are the KL polynomials of type $A \subset \tilde{A}$ and so

$$\begin{split} [S(\lambda) \otimes S(\mu) : S(\nu)] &= [L(\nu_{>1}) \downarrow_{P_r(n) \otimes P_s(n)}; L(\lambda_{>1}) \otimes L(\mu_{>1})] \\ &= \sum_{\xi} p_{\xi,\nu}^n (-1) \overline{g}_{\lambda,\mu}^{\xi} \end{split}$$

(these are very easy to calculate and are $=\pm 1$).

Finally, we can solve the problem for small *n*. Using the **geometry** of the partition algebra.

$$[L(\nu)] = \sum p_{\xi,\nu}^n (-1)[\Delta(\xi)]$$

where the $p^n_{\mu,\lambda}$ are the KL polynomials of type $A\subset \widetilde{A}$ and so

$$egin{aligned} &[S(\lambda)\otimes S(\mu):S(
u)] = [L(
u_{>1})\downarrow_{P_r(n)\otimes P_s(n)};L(\lambda_{>1})\otimes L(\mu_{>1})] \ &= \sum_{\xi} p^n_{\xi,
u}(-1)\overline{g}^{\xi}_{\lambda,\mu} \end{aligned}$$

(these are very easy to calculate and are $= \pm 1$).

- Shown that the coefficients $g^{
 u}_{\lambda,\mu} \xrightarrow{n \to \infty} \overline{g}^{
 u}_{\lambda,\mu}$
- Given a concrete representation theoretic meaning to the limiting coefficients, $\overline{g}_{\lambda,\mu}^{\nu}$.
- Calculated the limiting coefficients, $\overline{g}_{\lambda,\mu}^{\nu}$, in terms of the Littlewood–Richardson rule
- Shown how to pass from the limiting case to small *n*

- Shown that the coefficients $g^{\nu}_{\lambda,\mu} \xrightarrow{n \to \infty} \overline{g}^{\nu}_{\lambda,\mu}$
- Given a concrete representation theoretic meaning to the limiting coefficients, $\overline{g}_{\lambda,\mu}^{\nu}$.
- Calculated the limiting coefficients, $\overline{g}^{\nu}_{\lambda,\mu}$, in terms of the Littlewood–Richardson rule
- Shown how to pass from the limiting case to small *n*

- Shown that the coefficients $g^{\nu}_{\lambda,\mu} \xrightarrow{n \to \infty} \overline{g}^{\nu}_{\lambda,\mu}$
- Given a concrete representation theoretic meaning to the limiting coefficients, $\overline{g}_{\lambda,\mu}^{\nu}$.
- Calculated the limiting coefficients, <u></u>*σ*^ν_{λ,μ}, in terms of the Littlewood–Richardson rule
- Shown how to pass from the limiting case to small *n*

- Shown that the coefficients $g^{\nu}_{\lambda,\mu} \xrightarrow{n \to \infty} \overline{g}^{\nu}_{\lambda,\mu}$
- Given a concrete representation theoretic meaning to the limiting coefficients, <u></u>*^ν*_{λ,μ}.
- Calculated the limiting coefficients, <u></u>*σ*^ν_{λ,μ}, in terms of the Littlewood–Richardson rule
- Shown how to pass from the limiting case to small *n*

Example

Generic $P_2(n)$ has simple modules $\Delta(\emptyset)$, $\Delta(1)$, $\Delta(2)$, $\Delta(1^2)$. We have for all λ that:

$$[\Delta(\lambda)\downarrow_{P_1 imes P_1}:\Delta(1)\otimes\Delta(1)]=1$$

Therefore in the limit:

Example

Generic $P_2(n)$ has simple modules $\Delta(\emptyset)$, $\Delta(1)$, $\Delta(2)$, $\Delta(1^2)$. We have for all λ that:

$$[\Delta(\lambda)\downarrow_{P_1 imes P_1}:\Delta(1)\otimes\Delta(1)]=1$$

Therefore in the limit:

In the case n = 1 we have that $\Delta(1^2) = [L(1^2), L(1)]$ and so:

 $(\Delta(2) \text{ and } \Delta(1^2) \text{ are mapped to zero under the Schur functor.})$

Example

Generic $P_2(n)$ has simple modules $\Delta(\emptyset)$, $\Delta(1)$, $\Delta(2)$, $\Delta(1^2)$. We have for all λ that:

$$[\Delta(\lambda)\downarrow_{P_1 imes P_1}:\Delta(1)\otimes\Delta(1)]=1$$

Therefore in the limit:

In the case n = 1 we have that $\Delta(1^2) = [L(1^2), L(1)]$ and so:

 $(\Delta(2) \text{ and } \Delta(1^2) \text{ are mapped to zero under the Schur functor.})$

Quasi-hereditary covers

- The symmetric group is studied via the general linear group. The cyclotomic Hecke algebras are studied via the cyclotomic q-Schur algebras.
- When and how can we directly construct a quasi-hereditary cover of a (cellular) algebra? How much Lie theory is baked-in to this construction?
- In the case of diagram algebras, the existence question was answered in [HHKP].
- In my thesis, I gave a DJM-construction of these covers (in the case of the partition algebra and the walled and classical Brauer algebras). This used a characteristic-free definition of permutation modules, and the construction of 'cellular' homomorphisms between these modules.

A semistandard basis theorem

Let A be the Brauer, walled Brauer, or partition algebra. Then the algebra S(A) has a basis:

$$\Phi = \{\varphi_{\mathsf{S}^{\sigma}\mathsf{T}^{\tau}} : \omega \vdash r - 2n, \mathsf{S}^{\sigma}, \mathsf{T}^{\tau} \in T^*_0(\omega)\},\$$

where S^{σ}, T^{τ} are ω -tableaux of type (λ, i) and (μ, j) -tableaux respectively, and we define $\varphi_{S^{\sigma}T^{\tau}}$ to be the extension of the element of $\operatorname{Hom}_{B_r}(M(\lambda, l), M(\mu, m))$ given by

$$\varphi_{\mathrm{S}^{\sigma}\mathrm{T}^{ au}}(\epsilon_{\ell}\otimes\epsilon_{\ell}\otimes x_{\lambda})=[\sigma]\otimes[au]\otimes m_{\mathrm{S}\mathrm{T}}.$$

Moreover, S(A) is cellular with respect to this basis. We have that S(A) is a quasi-hereditary cover of A, and is 1-faithful for $p \neq 2,3$ and $\delta \neq 0$.