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Diagram algebras and their geometries:

Diagram algebras and Schur–Weyl dualities

[BCD] Brauer algebras of type G (m; p; n)

Application to the symmetric group:

[BDO] A closed formula for the decomposition of a tensor

product of Specht modules

[B] Positive characteristic
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Schur–Weyl dualities

We have embeddings of the Weyl group Σn and the symplectic

group Sp2n(k) in the general linear group GLn(k). On the other

side of the Schur–Weyl dualities we get

Σr 	 E
r
� GLn(k)

Br (n) 	 E
r
� Sp2n(k)

Pr (n) 	 E
r
� Σn

the partition, classical Brauer, and symmetric group algebras. A

diagram algebra can appear in several such dualities, for example

classical Brauer algebra $ ortho-symplectic supergroup

walled Brauer algebra $ general linear supergroup
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The Brauer algebra B2(n)

This algebra has basis given by:

e =
� �

� �
(12) =

� �

�

~~
�

@@ � =
� �

� �

and multiplication given by concatenation

e (12) �

e e (12) �

(12) (12) e �

� � � n�
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The Brauer algebra B2(n)

This algebra has basis given by:

e =
� �

� �
(12) =

� �

�

~~
�

@@ � =
� �

� �

and character table:

e (12) �

∆(2) 1 1 0

∆(12) 1 �1 0

∆(ø) 1 1 n

Representation theory of diagram algebras



The Brauer algebra B2(n)

This algebra has basis given by:

e =
� �

� �
(12) =

� �

�

~~
�

@@ � =
� �

� �

and one non-split extension:

0! ∆(ø)! P(2)! ∆(2)! 0

The cyclotomic Brauer algebra of type G (m; 1; r) is the wreath

product (Z=mZ) o Br (n).
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A diagram algebra, Ar (n),

has multiplication defined by concatenation of diagrams

this multiplication is specified by the parameter n

is semisimple (and stable) for large n

is cellular

has a stratification by smaller cellular algebras (e.g. symmetric

groups, cyclotomic Hecke algebras) [KX] and [HHKP]

is (usually) quasi-hereditary over the complex numbers

Remark

The combinatorics of the diagram algebra and the smaller ‘input

algebras’ are connected.
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Characteristic-zero Lie theory of diagram algebras

These algebras often form a ‘tower’ with ‘translation functors’

They exhibit geometries:

Br (n)
CDM
 ! A � D

WBr (n)
CDDM
 ! A� A � A

Pr (n)
Cox
 ! A � fA

[CDM] give the block structure, decomposition numbers, and

higher extension groups of the algebras using the internal geometry.

[BS ] show that WBr (n) is Koszul and part of a larger picture

involving KLR algebras, supergroups, level 2 Hecke algebras, and

parabolic category
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The cyclotomic Brauer algebra [BCD]

The cyclotomic Brauer algebra of type G (m; 1; r) has a geometry

given by a product of those controlling the classical Brauer

(A � D) and the walled Brauer algebra (A� A � A). For example

the geometry controlling B(6; 1; n) is as follows

A

AA

A

A A

$
D A A D

[ [ [ [

A � (A � A) � (A � A) � A

where each pair of roots of unity corresponds to either an

A� A � A if � = � or A � D if � 6= �.

Therefore the decomposition numbers for the algebra are given by

the KL polynomials arising from this geometry.
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Part 2

Calculating the decomposition of a tensor product of Specht

modules of the symmetric group in characteristic zero.
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The Littlewood–Richardson rule computes

Σr 	 E
r
� GLn(k)

[S(�)#Σr1;r2
: S(�)
 S(�)] = [∆(�)
∆(�) : ∆(�)]

the restriction of a Specht module to a Young subgroup of Σr and

hence, through Schur–Weyl duality, the decompositions of tensor

products of Weyl modules of GLn(k).
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There is no such formula for decomposing the tensor products of

Specht modules.
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We have that

Pr (n) 	 E
r
� Σn

the image under the Schur functor is given by removing the first

row of the partition and so

[L(�>1)#Pr1;r2 (n): L(�>1)
L(�>1)] = [S(�)
S(�) : S(�)] = g�
�;�

And we know that:

Pr (n) is semisimple for large n

Pr (n) has a stratification by symmetric groups

Pr (n) has a geometry of type A � Ã
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Pr (n) is semisimple for large n. Therefore the coefficients

g�
�;� = [L(�>1)#Pr1;r2 (n): L(�>1)
 L(�>1)]

stabilise for large values of n to be given by:

g�
�;� = [∆(�>1)#Pr1;r2 (n): ∆(�>1)
∆(�>1)]:

This results in a wonderful stability property in the tensor products

of Specht modules.
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which is the stable point, and so
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Theorem (BDO)

Using the stratification of the partition algebra we can show that

the generic value of these coefficients for large n is given by:

g�
�;� =

X
�>1`m�(l1+2l2)

X
�1`r�l1�l2
�2`s�l1�l2

X
�3`l1
�4`l2

c
�>1

�1;�2;�3
c
�>1

�1;�3;�4
c
�>1

�2;�3;�4

where m = j�>1j+ j�>1j.

This is entirely in terms of Littlewood–Richardson coefficents! In

fact,

Corollary (BDO)

If j�>1j = j�>1j+ j�>1j, then

g�
�;� = c

�>1

�>1;�>1
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Finally, we can solve the problem for small n. Using the geometry

of the partition algebra.

[L(�)] =
X

pn
�;�(�1)[∆(�)]

where the pn
�;� are the KL polynomials of type A � Ã and so

[S(�)
 S(�) : S(�)] = [L(�>1)#Pr (n)
Ps(n); L(�>1)
 L(�>1)]

=
X
�

pn
�;�(�1)g

�
�;�

(these are very easy to calculate and are = �1).
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Thus we have

Shown that the coefficients g�
�;�

n!1
�����! g�

�;�

Given a concrete representation theoretic meaning to the

limiting coefficients, g�
�;�.

Calculated the limiting coefficients, g�
�;�, in terms of the

Littlewood–Richardson rule

Shown how to pass from the limiting case to small n

Using the representation theory of the partition algebra.
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Example

Generic P2(n) has simple modules ∆(ø);∆(1);∆(2);∆(12). We

have for all � that:

[∆(�)#P1�P1 : ∆(1)
∆(1)] = 1

Therefore in the limit:


 = + + +

In the case n = 1 we have that ∆(12) = [L(12); L(1)] and so:


 =

(∆(2) and ∆(12) are mapped to zero under the Schur functor.)
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Quasi-hereditary covers

The symmetric group is studied via the general linear group.

The cyclotomic Hecke algebras are studied via the cyclotomic

q-Schur algebras.

When and how can we directly construct a quasi-hereditary

cover of a (cellular) algebra? How much Lie theory is baked-in

to this construction?

In the case of diagram algebras, the existence question was

answered in [HHKP].

In my thesis, I gave a DJM-construction of these covers (in

the case of the partition algebra and the walled and classical

Brauer algebras). This used a characteristic-free definition of

permutation modules, and the construction of ‘cellular’

homomorphisms between these modules.
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A semistandard basis theorem

Let A be the Brauer, walled Brauer, or partition algebra. Then the

algebra S(A) has a basis:

Φ = f'S�T� : ! ` r � 2n;S�;T� 2 T �
0 (!)g;

where S�;T� are !-tableaux of type (�; i) and (�; j)-tableaux

respectively, and we define 'S�T� to be the extension of the

element of HomBr (M(�; l);M(�;m)) given by

'S�T� (�` 
 �` 
 x�) = [�]
 [� ]
mST:

Moreover, S(A) is cellular with respect to this basis. We have that

S(A) is a quasi-hereditary cover of A, and is 1-faithful for p 6= 2; 3

and � 6= 0.
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