

Break!

< 同 ▶

'문▶' ★ 문▶

э

< E

P

æ

∃ >

P

æ

⊸ ≣ ⊁

聞 と く き と く き と

< 同 ▶

æ

'문▶' ★ 문▶

< 同 ▶

(▲ 문) (▲ 문)

★ 문 ► ★ 문 ►

< 1 →

★ 문 ► ★ 문 ►

< 同 ▶

★ 문 ► ★ 문 ►

< 同 ▶

- モト - モト

17 ▶

- モト - モト

17 ▶

A cell filtration of mixed tensor space, part II

Mathias Werth

joint work with Friederike Stoll

iz Institut für Algebra und Zahlentheorie Universität Stuttgart

Stuttgart, 12 September 2014

- Let V(λ, μ) be the irreducible rational U(gl_n)-module attached to the pair of partitions (λ, μ).
- $V = V(\Box, -)$ and $V^* = V(-, \Box)$.

ゆ ト イヨ ト イヨト

- Let V(λ, μ) be the irreducible rational U(gl_n)-module attached to the pair of partitions (λ, μ).
- $V = V(\Box, -)$ and $V^* = V(-, \Box)$.
- $V(\lambda,\mu)\otimes V=\bigoplus_{(\lambda',\mu')}V(\lambda',\mu')$

- Let V(λ, μ) be the irreducible rational U(gl_n)-module attached to the pair of partitions (λ, μ).
- $V = V(\Box, -)$ and $V^* = V(-, \Box)$.
- $V(\lambda, \mu) \otimes V = \bigoplus_{(\lambda', \mu')} V(\lambda', \mu')$ where the sum is taken over all (λ', μ') with either λ' is λ plus one box or μ' is μ minus one box,

 Let V(λ, μ) be the irreducible rational U(gl_n)-module attached to the pair of partitions (λ, μ).

•
$$V = V(\Box, -)$$
 and $V^* = V(-, \Box)$.

V(λ, μ) ⊗ V = ⊕_(λ',μ') V(λ', μ') where the sum is taken over all (λ', μ') with either λ' is λ plus one box or μ' is μ minus one box, such that there are not more than n boxes in the first row.

•
$$V(\lambda,\mu) \otimes V^* = \bigoplus_{(\lambda',\mu')} V(\lambda',\mu')$$

- Let V(λ, μ) be the irreducible rational U(gl_n)-module attached to the pair of partitions (λ, μ).
- $V = V(\Box, -)$ and $V^* = V(-, \Box)$.
- $V(\lambda, \mu) \otimes V = \bigoplus_{(\lambda', \mu')} V(\lambda', \mu')$ where the sum is taken over all (λ', μ') with either λ' is λ plus one box or μ' is μ minus one box, such that there are not more than *n* boxes in the first row.
- V(λ, μ) ⊗ V* = ⊕_(λ',μ') V(λ', μ') where the sum is taken over all (λ', μ') with either λ' is λ minus one box or μ' is μ plus one box, such that there are not more than n boxes in the first row.

A ►

- ▲ 문 ▶ - ▲ 문 ▶

э

э

Example $(n \ge 4)$

The multiplicity of the $U(\mathfrak{gl}_4)$ -modules $V(\lambda, \mu)$ in $V^{\otimes 2} \otimes V^{*^{\otimes 2}}$ equals the number of paths to (λ, μ) . \rightsquigarrow a basis of $B_{2,2}$ can be indexed by tuples of paths (λ, μ) .

Example (n = 2)

Cancel all paths involving pairs (λ, μ) with $\lambda_1 + \mu_1 > 2$

ゆ ト イヨ ト イヨト

- ● ● ●

æ

We attach to it the following triple of tableaux

We attach to it the following triple of tableaux

We attach to it the following triple of tableaux

Standard triples

 $(\mathfrak{t},\mathfrak{u},\mathfrak{v})$ is a standard triple of shape (λ,μ) if

∃ → < ∃ →</p>

э

Standard triples

 $(\mathfrak{t},\mathfrak{u},\mathfrak{v})$ is a standard triple of shape (λ,μ) if

t is a standard ν-tableau with entries {1,...,r}, ν a partition of r,

Standard triples

 $(\mathfrak{t},\mathfrak{u},\mathfrak{v})$ is a standard triple of shape (λ,μ) if

- t is a standard ν -tableau with entries $\{1, \ldots, r\}$, ν a partition of r,
- \mathfrak{u} is an anti-standard ρ -tableau, s.t. $[\rho] \subseteq [\nu]$ and $[\nu] \setminus [\rho] = [\lambda]$,

Standard triples

 $(\mathfrak{t},\mathfrak{u},\mathfrak{v})$ is a standard triple of shape (λ,μ) if

- t is a standard ν -tableau with entries $\{1, \ldots, r\}$, ν a partition of r,
- \mathfrak{u} is an anti-standard ρ -tableau, s.t. $[\rho] \subseteq [\nu]$ and $[\nu] \setminus [\rho] = [\lambda]$,
- v is a standard μ -tableau,

Standard triples

 $(\mathfrak{t},\mathfrak{u},\mathfrak{v})$ is a standard triple of shape (λ,μ) if

- t is a standard ν -tableau with entries $\{1, \ldots, r\}$, ν a partition of r,
- \mathfrak{u} is an anti-standard ρ -tableau, s.t. $[\rho] \subseteq [\nu]$ and $[\nu] \setminus [\rho] = [\lambda]$,
- v is a standard μ -tableau,
- the entries of \mathfrak{u} and \mathfrak{v} are $\{1, \ldots, s\}$.

Consider the standard triple

Consider the standard triple

We need two auxiliary tableaux to define the basis elements:

Consider the standard triple

We need two auxiliary tableaux to define the basis elements:

$$\mathfrak{o} = \boxed{\begin{array}{c|cccc} 14 & 13 & 9 & 1 \\ 12 & 11 & 4 \\ 10 & 6 \end{array}}$$

Consider the standard triple

We need two auxiliary tableaux to define the basis elements:

$$\mathfrak{o} = \begin{bmatrix} 14 & 13 & 9 & 1 \\ 12 & 11 & 4 \\ 10 & 6 \end{bmatrix} \quad \text{and} \quad \mathfrak{s} = \begin{bmatrix} 1 & 4 & 6 & 9 \\ 2 & 3 & 5 & 7 & 8 \end{bmatrix}$$

æ

3 N 3

With this we are able to define elements in the walled Brauer algebra

With this we are able to define elements in the walled Brauer algebra

The set

$$\left\{ m_{(\mathfrak{t}',\mathfrak{s}',\mathfrak{v}'),(\mathfrak{t},\mathfrak{u},\mathfrak{v})} \middle| \begin{array}{c} (\mathfrak{t}',\mathfrak{s}',\mathfrak{v}'),(\mathfrak{t},\mathfrak{u},\mathfrak{v}) \text{ standard triples of} \\ \text{ shape } (\lambda,\mu),(\lambda,\mu) \in \Lambda(r,s) \end{array} \right\}$$

-

The set

$$\left\{ \begin{array}{l} m_{(\mathfrak{t}',\mathfrak{s}',\mathfrak{v}'),(\mathfrak{t},\mathfrak{u},\mathfrak{v})} & \left| \begin{array}{c} (\mathfrak{t}',\mathfrak{s}',\mathfrak{v}'),(\mathfrak{t},\mathfrak{u},\mathfrak{v}) \text{ standard triples of} \\ \text{ shape } (\lambda,\mu),(\lambda,\mu) \in \Lambda(r,s) \end{array} \right\}$$

is a cellular basis of the walled Brauer algebra $B_{r,s}(x)$. The partial order on $\Lambda(r, s)$ is given by \succeq .

The set

$$\left\{ \begin{array}{l} m_{(\mathfrak{t}',\mathfrak{s}',\mathfrak{v}'),(\mathfrak{t},\mathfrak{u},\mathfrak{v})} & \left| \begin{array}{c} (\mathfrak{t}',\mathfrak{s}',\mathfrak{v}'),(\mathfrak{t},\mathfrak{u},\mathfrak{v}) \text{ standard triples of} \\ \text{ shape } (\lambda,\mu),(\lambda,\mu) \in \Lambda(r,s) \end{array} \right\}$$

is a cellular basis of the walled Brauer algebra $B_{r,s}(x)$. The partial order on $\Lambda(r, s)$ is given by \geq .

The set

$$\left\{m_{(\mathfrak{t},\mathfrak{u},\mathfrak{v})} \mid (\mathfrak{t},\mathfrak{u},\mathfrak{v}) \text{ standard triples of shape } (\lambda,\mu)\right\}$$

The set

$$\left\{ \begin{array}{l} m_{(\mathfrak{t}',\mathfrak{s}',\mathfrak{v}'),(\mathfrak{t},\mathfrak{u},\mathfrak{v})} & \left| \begin{array}{c} (\mathfrak{t}',\mathfrak{s}',\mathfrak{v}'),(\mathfrak{t},\mathfrak{u},\mathfrak{v}) \text{ standard triples of} \\ \text{ shape } (\lambda,\mu),(\lambda,\mu) \in \Lambda(r,s) \end{array} \right\}$$

is a cellular basis of the walled Brauer algebra $B_{r,s}(x)$. The partial order on $\Lambda(r, s)$ is given by \geq .

The set

$$\{m_{(\mathfrak{t},\mathfrak{u},\mathfrak{v})} \mid (\mathfrak{t},\mathfrak{u},\mathfrak{v}) \text{ standard triples of shape } (\lambda,\mu)\}$$

is a basis for the cell module $C(\lambda, \mu)$ of $B_{r,s}(x)$.

• $C(\lambda, \mu)$ a cell module of $B_{r,s}(x)$,

∃ >

 C(λ, μ) a cell module of B_{r,s}(x), Res C(λ, μ) the restriction of C(λ, μ) to B_{r,s-1}(x)

- C(λ, μ) a cell module of B_{r,s}(x), Res C(λ, μ) the restriction of C(λ, μ) to B_{r,s-1}(x)
- Res C(λ, μ) possesses a filtration of cell modules for B_{r,s-1}(x), the new basis is adapted to this filtration.

- C(λ, μ) a cell module of B_{r,s}(x), Res C(λ, μ) the restriction of C(λ, μ) to B_{r,s-1}(x)
- Res C(λ, μ) possesses a filtration of cell modules for B_{r,s-1}(x), the new basis is adapted to this filtration.
- the isomorphisms between factors and cell modules for the smaller algebra can be described easily using the cell bases.

Example (Res $C(\Box,\Box\Box)$)

글 🖌 🖌 글 🕨

Theorem (DIPPER, DOTY, STOLL)

There is an isomorphism of vector spaces

$$\mathbb{F}\mathfrak{S}_{r+s}\to B_{r,s}(n),$$

Theorem (DIPPER, DOTY, STOLL)

There is an isomorphism of vector spaces

$$\mathbb{F}\mathfrak{S}_{r+s}\to B_{r,s}(n),$$

such that the annihilator of the tensor space is mapped to the annihilator of the mixed tensor space $(n = \dim V)$.

Our basis is not yet adjusted to annihilators. In order to achieve this we attach a number to each standard triple.

Our basis is not yet adjusted to annihilators. In order to achieve this we attach a number to each standard triple. Let $\max(\mathfrak{t},\mathfrak{u},\mathfrak{v})$ be the maximal amount of boxes in the first row of the pairs of diagrams in the corresponding path.

With this we are able to further adjust our basis:

With this we are able to further adjust our basis:

< 1 →

3

 (\Box,\Box)

 (\emptyset, \emptyset)

- ₹ 🖬 🕨

æ

The mixed tensor space has a $U(\mathfrak{gl}_n)$ - $B_{r,s}(n)$ -bimodule filtration with factors of the form

'dual Weyl module' \otimes 'cell module for $B_{r,s}(n)$ /annihilator'.