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the Littlewood-Richardson rule

Let V (λ, µ) be the irreducible rational U(gln)-module
attached to the pair of partitions (λ, µ).

V = V ( ,−) and V ∗ = V (−, ).

V (λ, µ)⊗ V =
⊕

(λ′,µ′) V (λ′, µ′) where the sum is taken over

all (λ′, µ′) with either λ′ is λ plus one box or µ′ is µ minus
one box, such that there are not more than n boxes in the
first row.

V (λ, µ)⊗ V ∗ =
⊕

(λ′,µ′) V (λ′, µ′) where the sum is taken

over all (λ′, µ′) with either λ′ is λ minus one box or µ′ is µ
plus one box, such that there are not more than n boxes in
the first row.
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the Littlewood-Richardson rule

Example (n ≥ 4)

V
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the Littlewood-Richardson rule

Example (n ≥ 4)

V

tt ++V⊗2

}} ## }} !!
V⊗2 ⊗ V ∗ ,−

}} ��

,

|| �� ##
,−

}} ��

,

}} �� !!
V⊗2 ⊗ V ∗

⊗2 −,− , , , , −,− , , , ,

The multiplicity of the U(gl4)-modules V (λ, µ) in V⊗2 ⊗ V ∗
⊗2

equals the number of paths to (λ, µ).
 a basis of B2,2 can be indexed by tuples of paths (λ, µ).
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the Littlewood-Richardson rule

Example (n = 2)

Cancel all paths involving pairs (λ, µ) with λ1 + µ1 > 2
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the Littlewood-Richardson rule

Example (n = 2)

Cancel all paths involving pairs (λ, µ) with λ1 + µ1 > 2

V

tt ++V⊗2

}} }} !!
V⊗2 ⊗ V ∗ ,−

}} ��

,−
}} ��

,

}} !!
V⊗2 ⊗ V ∗

⊗2 −,− , −,− , , ,

A basis of B2,2(n)/annihilator can be indexed by tuples of these
paths.
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the Littlewood-Richardson rule

Example (n = 2)

Cancel all paths involving pairs (λ, µ) with λ1 + µ1 > 2

V

tt ++V⊗2

}} }} !!
V⊗2 ⊗ V ∗ ,−

}} ��

,−
}} ��

,

}} !!
V⊗2 ⊗ V ∗

⊗2 −,− , −,− , , ,

A basis of B2,2(n)/annihilator can be indexed by tuples of these
paths.
 it SHOULD be indexed by tuples of paths!
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tableaux?

Example

A path to
(

,
)

of length 9 + 9

→ → → → → → → →

→
(

,−
)
→
(

,
)
→
(

,
)
→
(

,
)
→
(

,
)

→
(

,
)
→
(

,
)
→
(

,
)
→
(

,
)

We attach to it the following triple of tableaux 1 2 3 5

4 6 9

7 8

,
9 1

4

6

,
2 5 7

3

8
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triples of tableaux!

Standard triples

(t, u, v) is a standard triple of shape (λ, µ) if

t is a standard ν-tableau with entries {1, . . . , r}, ν a partition
of r ,

u is an anti-standard ρ-tableau, s.t. [ρ] ⊆ [ν] and
[ν] \ [ρ] = [λ],

v is a standard µ-tableau,

the entries of u and v are {1, . . . , s}.
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almost quintuples

Example

Consider the standard triple

(t, u, v) =

 1 2 3 5

4 6 9

7 8

,
9 1

4

6

,
2 5 7

3

8

 .

We need two auxiliary tableaux to define the basis elements:

o =
14 13 9 1

12 11 4

10 6

and s =
1 4 6 9

2 3 5 7 8
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basis elements, first half

t =
1 2 3 5
4 6 9
7 8

o =
14 13 9 1
12 11 4
10 6

v =
2 5 7
3
8

s = 1 4 6 9
2 3 5 7 8

y(4) y(3) y(2)

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

14 13 12 11 10
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basis elements, first half

t =
1 2 3 5
4 6 9
7 8

o =
14 13 9 1
12 11 4
10 6

v =
2 5 7
3
8

s = 1 4 6 9
2 3 5 7 8

y(4) y(3) y(2)

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

14 13 12 11 10

14 13 12 11 10 9 6 4 1
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basis elements

With this we are able to define elements in the walled Brauer
algebra

m(t′,u′,v′),(t,u,v) := c

mν′

t′,o′

mν
o,t d(s)

mµ
v′,v

d(s′)∗
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a new cellular basis

Theorem (Stoll, W)

The set{
m(t′,s′,v′),(t,u,v)

∣∣∣∣ (t′, s′, v′), (t, u, v) standard triples of
shape (λ, µ), (λ, µ) ∈ Λ(r , s)

}

is a cellular basis of the walled Brauer algebra Br ,s(x). The partial
order on Λ(r , s) is given by D.

The set{
m(t,u,v)

∣∣ (t, u, v) standard triples of shape (λ, µ)
}

is a basis for the cell module C (λ, µ) of Br ,s(x).
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properties of the new basis

Restriction of cell modules

C (λ, µ) a cell module of Br ,s(x),

Res C (λ, µ) the restriction of C (λ, µ) to Br ,s−1(x)

Res C (λ, µ) possesses a filtration of cell modules for
Br ,s−1(x), the new basis is adapted to this filtration.

the isomorphisms between factors and cell modules for the
smaller algebra can be described easily using the cell bases.
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the Restriction of cell modules

Example (Res C ( , ))

U(D ( , ))



m(
1

2
,
3
, 1 2

) + . . . 7→ m(
1

2
,−, 1 2

) }
C ( , )

U(D ( , ))



m( 1 2 , 3 , 1 2 ) + . . . 7→ m( 1 2 ,−, 1 2 )

}
C ( , )

U(D ( , ))


m(

1

2
,
2
, 1 3

) 7→ m(
1

2
,
2
, 1

) C ( , )
m(

1

2
,
1
, 2 3

) 7→ m(
1

2
,
1
, 2

)
m( 1 2 , 2 , 1 3 ) 7→ m( 1 2 , 2 , 1 )

m( 1 2 , 1 , 2 3 ) 7→ m( 1 2 , 1 , 2 )
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the annihilator

Theorem (Dipper, Doty, Stoll)

There is an isomorphism of vector spaces

FSr+s → Br ,s(n),

such that the annihilator of the tensor space is mapped to the
annihilator of the mixed tensor space (n = dim V ).
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the annihilator

Our basis is not yet adjusted to annihilators. In order to achieve
this we attach a number to each standard triple.

Let max(t, u, v) be the maximal amount of boxes in the first row of
the pairs of diagrams in the corresponding path.

Werth A cell filtration of mixed tensor space, part II



the annihilator

Our basis is not yet adjusted to annihilators. In order to achieve
this we attach a number to each standard triple.
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the annihilator

With this we are able to further adjust our basis:

z1

y(λ1+u)
danti(o)∗

d(s)

y(v)

d(v)

z2
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the annihilator

Example (The annihilator in B2,2(n), n = dim(V ))

n ≥ 4 n = 3 n = 2

( , )

( , ) ( , )

( , )

( , )

(∅, ∅)
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n ≥ 4 n = 3

n = 2

( , )
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Example (The annihilator in B2,2(n), n = dim(V ))
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the annihilator

Example (The annihilator in B2,2(n), n = dim(V ))

n ≥ 4 n = 3 n = 2 n = 1
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Filtration

Theorem (Stoll, W)

The mixed tensor space has a U(gln)-Br ,s(n)-bimodule filtration
with factors of the form

‘dual Weyl module’ ⊗ ‘cell module for Br ,s(n)/annihilator’.
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