

Break!

Break is over!

Break is over!

Break is over!

Break is over!

A cell filtration of mixed tensor space, part II

Mathias Werth
joint work with Friederike Stoll

$i d z$ Institut für Algebra und Zahlentheorie
Universität Stuttgart
Stuttgart, 12 September 2014

the Littlewood-Richardson rule

- Let $V(\lambda, \mu)$ be the irreducible rational $U\left(\mathfrak{g l}_{n}\right)$-module attached to the pair of partitions (λ, μ).
- $V=V(\square,-)$ and $V^{*}=V(-, \square)$.

the Littlewood-Richardson rule

- Let $V(\lambda, \mu)$ be the irreducible rational $U\left(\mathfrak{g l}_{n}\right)$-module attached to the pair of partitions (λ, μ).
- $V=V(\square,-)$ and $V^{*}=V(-, \square)$.
- $V(\lambda, \mu) \otimes V=\bigoplus_{\left(\lambda^{\prime}, \mu^{\prime}\right)} V\left(\lambda^{\prime}, \mu^{\prime}\right)$

the Littlewood-Richardson rule

- Let $V(\lambda, \mu)$ be the irreducible rational $U\left(\mathfrak{g l}_{n}\right)$-module attached to the pair of partitions (λ, μ).
- $V=V(\square,-)$ and $V^{*}=V(-, \square)$.
- $V(\lambda, \mu) \otimes V=\bigoplus_{\left(\lambda^{\prime}, \mu^{\prime}\right)} V\left(\lambda^{\prime}, \mu^{\prime}\right)$ where the sum is taken over all $\left(\lambda^{\prime}, \mu^{\prime}\right)$ with either λ^{\prime} is λ plus one box or μ^{\prime} is μ minus one box,

the Littlewood-Richardson rule

- Let $V(\lambda, \mu)$ be the irreducible rational $U\left(\mathfrak{g l}_{n}\right)$-module attached to the pair of partitions (λ, μ).
- $V=V(\square,-)$ and $V^{*}=V(-, \square)$.
- $V(\lambda, \mu) \otimes V=\bigoplus_{\left(\lambda^{\prime}, \mu^{\prime}\right)} V\left(\lambda^{\prime}, \mu^{\prime}\right)$ where the sum is taken over all $\left(\lambda^{\prime}, \mu^{\prime}\right)$ with either λ^{\prime} is λ plus one box or μ^{\prime} is μ minus one box, such that there are not more than n boxes in the first row.
- $V(\lambda, \mu) \otimes V^{*}=\bigoplus_{\left(\lambda^{\prime}, \mu^{\prime}\right)} V\left(\lambda^{\prime}, \mu^{\prime}\right)$

the Littlewood-Richardson rule

- Let $V(\lambda, \mu)$ be the irreducible rational $U\left(\mathfrak{g l}_{n}\right)$-module attached to the pair of partitions (λ, μ).
- $V=V(\square,-)$ and $V^{*}=V(-, \square)$.
- $V(\lambda, \mu) \otimes V=\bigoplus_{\left(\lambda^{\prime}, \mu^{\prime}\right)} V\left(\lambda^{\prime}, \mu^{\prime}\right)$ where the sum is taken over all $\left(\lambda^{\prime}, \mu^{\prime}\right)$ with either λ^{\prime} is λ plus one box or μ^{\prime} is μ minus one box, such that there are not more than n boxes in the first row.
- $V(\lambda, \mu) \otimes V^{*}=\bigoplus_{\left(\lambda^{\prime}, \mu^{\prime}\right)} V\left(\lambda^{\prime}, \mu^{\prime}\right)$ where the sum is taken over all $\left(\lambda^{\prime}, \mu^{\prime}\right)$ with either λ^{\prime} is λ minus one box or μ^{\prime} is μ plus one box, such that there are not more than n boxes in the first row.

the Littlewood-Richardson rule

Example $(n \geq 4)$
V

the Littlewood-Richardson rule

Example $(n \geq 4)$
V
$V^{\otimes 2}$

the Littlewood-Richardson rule

Example $(n \geq 4)$
V
$V^{\otimes 2}$
$V^{\otimes 2} \otimes V^{*}$

the Littlewood-Richardson rule

Example $(n \geq 4)$

the Littlewood-Richardson rule

The multiplicity of the $U\left(\mathfrak{g l}_{4}\right)$-modules $V(\lambda, \mu)$ in $V^{\otimes 2} \otimes V^{* \otimes 2}$ equals the number of paths to (λ, μ).
\rightsquigarrow a basis of $B_{2,2}$ can be indexed by tuples of paths (λ, μ).

the Littlewood-Richardson rule

Example ($n=2$)
Cancel all paths involving pairs (λ, μ) with $\lambda_{1}+\mu_{1}>2$

the Littlewood-Richardson rule

Example ($n=2$)
Cancel all paths involving pairs (λ, μ) with $\lambda_{1}+\mu_{1}>2$

the Littlewood-Richardson rule

Example ($n=2$)

Cancel all paths involving pairs (λ, μ) with $\lambda_{1}+\mu_{1}>2$

A basis of $B_{2,2}(n) /$ annihilator can be indexed by tuples of these paths.

the Littlewood-Richardson rule

Example ($n=2$)

Cancel all paths involving pairs (λ, μ) with $\lambda_{1}+\mu_{1}>2$

A basis of $B_{2,2}(n) /$ annihilator can be indexed by tuples of these paths.
\rightsquigarrow it SHOULD be indexed by tuples of paths!

Example

A path to $(\square, \square \square)$ of length $9+9$

tableaux?

Example

A path to $(\square, \square \square)$ of length $9+9$
$\square \rightarrow \square \rightarrow \square \square \rightarrow \square \rightarrow \square \square \square \square \rightarrow \square \rightarrow \square \square \square \square$ $\rightarrow(\square,-) \rightarrow(\square, \square) \rightarrow(\square, \boxminus) \rightarrow(\square, \boxminus) \rightarrow(\square, \square)$
$\rightarrow(\square, \square) \rightarrow(\square, \square \square) \rightarrow(\square, \square) \rightarrow(\square, \square)$

Example

A path to $(\square, \square \square)$ of length $9+9$

$$
\begin{aligned}
& \square \rightarrow \square \rightarrow \square \rightarrow \square \rightarrow \square \square \rightarrow \square \square \rightarrow \square \rightarrow \square \square \square \\
& \rightarrow(\square,-) \rightarrow(\square, \square) \rightarrow(\square, \boxminus) \rightarrow(\square, \boxminus) \rightarrow(\square, \square) \\
& \rightarrow(\square, \square) \rightarrow(\square, \square \square) \rightarrow(\square, \square \square) \rightarrow(\square, \square \square)
\end{aligned}
$$

We attach to it the following triple of tableaux

Example

A path to $(\square, \square \square)$ of length $9+9$
$\square \rightarrow \square \rightarrow \square \square \rightarrow \square \rightarrow \square \square \rightarrow \square \square \rightarrow \square \square \rightarrow \square \square \rightarrow \square$ $\rightarrow(\square,-) \rightarrow(\square, \square) \rightarrow(\square, \boxminus) \rightarrow(\square, \boxminus) \rightarrow(\square, \square)$ $\rightarrow(\square, \square) \rightarrow(\square, \square \square) \rightarrow(\square, \square \square) \rightarrow(\square, \square \square)$

We attach to it the following triple of tableaux

$$
\left(\right.
$$

Example

A path to $(\square, \square \square)$ of length $9+9$
$\square \rightarrow \square \rightarrow \square \square \rightarrow \square \rightarrow \square \square \rightarrow \square \square \rightarrow \square \square \rightarrow \square \square \rightarrow \square$ $\rightarrow(\square,-) \rightarrow(\square, \square) \rightarrow(\square, \boxminus) \rightarrow(\square, \boxminus) \rightarrow(\square, \square)$ $\rightarrow(\square, \square) \rightarrow(\square, \square \square) \rightarrow(\square, \square \square) \rightarrow(\square, \square \square)$

We attach to it the following triple of tableaux

Example

A path to $(\square, \square \square)$ of length $9+9$
$\square \rightarrow \square \rightarrow \square \square \rightarrow \square \rightarrow \square \square \rightarrow \square \square \rightarrow \square \square \rightarrow \square \square \rightarrow \square$ $\rightarrow(\square,-) \rightarrow(\square, \square) \rightarrow(\square, \boxminus) \rightarrow(\square, \boxminus) \rightarrow(\square, \square)$ $\rightarrow(\square, \square) \rightarrow(\square, \square \square) \rightarrow(\square, \square \square) \rightarrow(\square, \square \square)$

We attach to it the following triple of tableaux

triples of tableaux!

Standard triples

$(\mathfrak{t}, \mathfrak{u}, \mathfrak{v})$ is a standard triple of shape (λ, μ) if

triples of tableaux!

Standard triples

$(\mathfrak{t}, \mathfrak{u}, \mathfrak{v})$ is a standard triple of shape (λ, μ) if

- \mathfrak{t} is a standard ν-tableau with entries $\{1, \ldots, r\}, \nu$ a partition of r,

triples of tableaux!

Standard triples

$(\mathfrak{t}, \mathfrak{u}, \mathfrak{v})$ is a standard triple of shape (λ, μ) if

- \mathfrak{t} is a standard ν-tableau with entries $\{1, \ldots, r\}, \nu$ a partition of r,
- \mathfrak{u} is an anti-standard ρ-tableau, s.t. $[\rho] \subseteq[\nu]$ and $[\nu] \backslash[\rho]=[\lambda]$,

triples of tableaux!

Standard triples

$(\mathfrak{t}, \mathfrak{u}, \mathfrak{v})$ is a standard triple of shape (λ, μ) if

- \mathfrak{t} is a standard ν-tableau with entries $\{1, \ldots, r\}, \nu$ a partition of r,
- \mathfrak{u} is an anti-standard ρ-tableau, s.t. $[\rho] \subseteq[\nu]$ and $[\nu] \backslash[\rho]=[\lambda]$,
- \mathfrak{v} is a standard μ-tableau,

triples of tableaux!

Standard triples

$(\mathfrak{t}, \mathfrak{u}, \mathfrak{v})$ is a standard triple of shape (λ, μ) if

- \mathfrak{t} is a standard ν-tableau with entries $\{1, \ldots, r\}, \nu$ a partition of r,
- \mathfrak{u} is an anti-standard ρ-tableau, s.t. $[\rho] \subseteq[\nu]$ and $[\nu] \backslash[\rho]=[\lambda]$,
- \mathfrak{v} is a standard μ-tableau,
- the entries of \mathfrak{u} and \mathfrak{v} are $\{1, \ldots, s\}$.

Example

Consider the standard triple

Example

Consider the standard triple

We need two auxiliary tableaux to define the basis elements:

Example

Consider the standard triple

We need two auxiliary tableaux to define the basis elements:

$$
\mathfrak{o}=
$$

Example

Consider the standard triple

We need two auxiliary tableaux to define the basis elements:

$$
\mathfrak{o}=\begin{array}{|c|c|c|c|}
\hline 14 & 13 & 9 & 1 \\
\hline 12 & 11 & 4 & \\
\hline 10 & 6 &
\end{array} \quad \text { and } \quad \mathfrak{s}=\begin{array}{|c|c|c|c|c|}
\hline 1 & 4 & 6 & 9 & \\
\hline 2 & 3 & 5 & 7 & 8 \\
\hline
\end{array}
$$

$$
\mathfrak{t}=
$$

$$
\begin{aligned}
& \mathfrak{t}=\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 5 \\
\hline \mathbf{4} & 6 & 9 & \\
\hline 7 & 8 & & \\
\mathfrak{o}=\begin{array}{|l|l|l|l|}
\hline 14 & 13 & 9 & 1 \\
12 & 11 & 4 &
\end{array} \\
\hline 10 & 6 &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{t}=
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{t}=\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 5 \\
\hline 4 & 6 & 9 & \\
\hline 7 & 8 & & \\
\cline { 1 - 2 } & & &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{v}= \\
& \mathfrak{s}=\begin{array}{|l|l|l|l|l}
\hline 1 & 4 & 6 & 9 & \\
& 3 & 5 & 7 & 8 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{t}=\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 5 \\
\hline 4 & 6 & 9 & \\
\hline 7 & 8 & & \\
\cline { 1 - 2 } & & &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{v}= \\
& \mathfrak{s}=\begin{array}{|l|l|l|l|l}
\hline 1 & 4 & 6 & 9 & \\
\cline { 1 - 1 } & 3 & 5 & 7 & 8 \\
\hline
\end{array}
\end{aligned}
$$

basis elements

With this we are able to define elements in the walled Brauer algebra

With this we are able to define elements in the walled Brauer algebra

a new cellular basis

Theorem (Stoll, W)

The set

$$
\left\{\begin{array}{l|l}
m_{\left(\mathfrak{t}^{\prime}, \mathfrak{s}^{\prime}, \mathfrak{p}^{\prime}\right),(\mathfrak{t}, \mathfrak{u}, \mathfrak{v})} & \begin{array}{l}
\left(\mathfrak{t}^{\prime}, \mathfrak{s}^{\prime}, \mathfrak{v}^{\prime}\right),(\mathfrak{t}, \mathfrak{u}, \mathfrak{v}) \text { standard triples of } \\
\text { shape }(\lambda, \mu),(\lambda, \mu) \in \Lambda(r, s)
\end{array}
\end{array}\right\}
$$

a new cellular basis

Theorem (Stoll, W)

The set

$$
\left\{\begin{array}{l|l}
m_{\left(\mathfrak{t}^{\prime}, \mathfrak{s}^{\prime}, \mathfrak{p}^{\prime}\right),(\mathfrak{t}, \mathfrak{u}, \mathfrak{v})} & \begin{array}{l}
\left(\mathfrak{t}^{\prime}, \mathfrak{s}^{\prime}, \mathfrak{v}^{\prime}\right),(\mathfrak{t}, \mathfrak{u}, \mathfrak{v}) \text { standard triples of } \\
\text { shape }(\lambda, \mu),(\lambda, \mu) \in \Lambda(r, s)
\end{array}
\end{array}\right\}
$$

is a cellular basis of the walled Brauer algebra $B_{r, s}(x)$. The partial order on $\Lambda(r, s)$ is given by \unrhd.

a new cellular basis

Theorem (Stoll, W)

The set

$$
\left\{\begin{array}{l|l}
m_{\left(\mathfrak{t}^{\prime}, \mathfrak{s}^{\prime}, \mathfrak{p}^{\prime}\right),(\mathfrak{t}, \mathfrak{u}, \mathfrak{v})} & \begin{array}{l}
\left(\mathfrak{t}^{\prime}, \mathfrak{s}^{\prime}, \mathfrak{v}^{\prime}\right),(\mathfrak{t}, \mathfrak{u}, \mathfrak{v}) \text { standard triples of } \\
\text { shape }(\lambda, \mu),(\lambda, \mu) \in \Lambda(r, s)
\end{array}
\end{array}\right\}
$$

is a cellular basis of the walled Brauer algebra $B_{r, s}(x)$. The partial order on $\Lambda(r, s)$ is given by \unrhd.

The set

$$
\left\{m_{(\mathfrak{t}, \mathfrak{u}, \mathfrak{v})} \mid(\mathfrak{t}, \mathfrak{u}, \mathfrak{v}) \text { standard triples of shape }(\lambda, \mu)\right\}
$$

a new cellular basis

Theorem (Stoll, W)

The set

$$
\left\{\begin{array}{l|l}
m_{\left(\mathfrak{t}^{\prime}, \mathfrak{s}^{\prime}, \mathfrak{p}^{\prime}\right),(\mathfrak{t}, \mathfrak{u}, \mathfrak{v})} & \begin{array}{l}
\left(\mathfrak{t}^{\prime}, \mathfrak{s}^{\prime}, \mathfrak{v}^{\prime}\right),(\mathfrak{t}, \mathfrak{u}, \mathfrak{v}) \text { standard triples of } \\
\text { shape }(\lambda, \mu),(\lambda, \mu) \in \Lambda(r, s)
\end{array}
\end{array}\right\}
$$

is a cellular basis of the walled Brauer algebra $B_{r, s}(x)$. The partial order on $\Lambda(r, s)$ is given by \unrhd.

The set

$$
\left\{m_{(\mathfrak{t}, \mathfrak{u}, \mathfrak{v})} \mid(\mathfrak{t}, \mathfrak{u}, \mathfrak{v}) \text { standard triples of shape }(\lambda, \mu)\right\}
$$

is a basis for the cell module $C(\lambda, \mu)$ of $B_{r, s}(x)$.

properties of the new basis

Restriction of cell modules

- $C(\lambda, \mu)$ a cell module of $B_{r, s}(x)$,

properties of the new basis

Restriction of cell modules

- $C(\lambda, \mu)$ a cell module of $B_{r, s}(x)$, Res $C(\lambda, \mu)$ the restriction of $C(\lambda, \mu)$ to $B_{r, s-1}(x)$

properties of the new basis

Restriction of cell modules

- $C(\lambda, \mu)$ a cell module of $B_{r, s}(x)$, Res $C(\lambda, \mu)$ the restriction of $C(\lambda, \mu)$ to $B_{r, s-1}(x)$
- Res $C(\lambda, \mu)$ possesses a filtration of cell modules for $B_{r, s-1}(x)$, the new basis is adapted to this filtration.

properties of the new basis

Restriction of cell modules

- $C(\lambda, \mu)$ a cell module of $B_{r, s}(x)$, Res $C(\lambda, \mu)$ the restriction of $C(\lambda, \mu)$ to $B_{r, s-1}(x)$
- Res $C(\lambda, \mu)$ possesses a filtration of cell modules for $B_{r, s-1}(x)$, the new basis is adapted to this filtration.
- the isomorphisms between factors and cell modules for the smaller algebra can be described easily using the cell bases.

the Restriction of cell modules

Example (Res $C(\square, \square))$

the Restriction of cell modules

Example $(\operatorname{Res} C(\square, \square))$

the Restriction of cell modules

Example $(\operatorname{Res} C(\square, \square))$

the Restriction of cell modules

Example $(\operatorname{Res} C(\square, \square \square))$

the Restriction of cell modules

Example (Res $C(\square, \square))$

the Restriction of cell modules

Example (Res $C(\square, \square))$

the Restriction of cell modules

Example $(\operatorname{Res} C(\square, \square))$

the annihilator

Theorem (Dipper, Doty, Stoll)

There is an isomorphism of vector spaces

$$
\mathbb{F} \mathfrak{S}_{r+s} \rightarrow B_{r, s}(n),
$$

the annihilator

Theorem (Dipper, Doty, Stoll)

There is an isomorphism of vector spaces

$$
\mathbb{F} \mathfrak{S}_{r+s} \rightarrow B_{r, s}(n),
$$

such that the annihilator of the tensor space is mapped to the annihilator of the mixed tensor space ($n=\operatorname{dim} V$).

the annihilator

Our basis is not yet adjusted to annihilators. In order to achieve this we attach a number to each standard triple.

the annihilator

Our basis is not yet adjusted to annihilators. In order to achieve this we attach a number to each standard triple.
Let $\max (\mathfrak{t}, \mathfrak{u}, \mathfrak{v})$ be the maximal amount of boxes in the first row of the pairs of diagrams in the corresponding path.

the annihilator

With this we are able to further adjust our basis:

the annihilator

With this we are able to further adjust our basis:

the annihilator

Example (The annihilator in $B_{2,2}(n), n=\operatorname{dim}(V)$)

 ($\square, \square)$
 (Ø, Ø)

the annihilator

Example (The annihilator in $B_{2,2}(n), n=\operatorname{dim}(V)$)

(\square, \square)
(\emptyset, \emptyset)
$n \geq 4$

the annihilator

Example (The annihilator in $B_{2,2}(n), n=\operatorname{dim}(V)$)

(\square, \square)
(\emptyset, \emptyset)

the annihilator

Example (The annihilator in $B_{2,2}(n), n=\operatorname{dim}(V)$)

$n \geq 4$

$n=3$

$n=2$
the annihilator

Example (The annihilator in $B_{2,2}(n), n=\operatorname{dim}(V)$)

$n \geq 4$

$n=3$

$$
n=2
$$

$n=1$

Filtration

Theorem (Stoll, W)

The mixed tensor space has a $U\left(\mathfrak{g l}_{n}\right)$ - $B_{r, s}(n)$-bimodule filtration with factors of the form
'dual Weyl module' \otimes 'cell module for $B_{r, s}(n) /$ annihilator'.

