A cell filtration of mixed tensor space, part I

Friederike Stoll joint work with Mathias Werth

*i***↓***z* Institut für Algebra und Zahlentheorie Universität Stuttgart

Stuttgart, September 12, 2014

- R commutative ring with one
- $V = R^n$
- $V^{\otimes m}$ tensor space
- $R\mathfrak{S}_m$ acts on the tensor space by permuting components.

• $R\mathfrak{S}_m$ is a cellular algebra in the sense of Graham and Lehrer.

- $R\mathfrak{S}_m$ is a cellular algebra in the sense of Graham and Lehrer.
- λ partition of *m*, \mathfrak{s} , \mathfrak{t} standard λ -tableaux.

- $R\mathfrak{S}_m$ is a cellular algebra in the sense of Graham and Lehrer.
- λ partition of *m*, \mathfrak{s} , \mathfrak{t} standard λ -tableaux.

$$y_{\lambda} = \sum_{w \in \mathfrak{S}_{\lambda}} \operatorname{sign}(w)w$$

- $R\mathfrak{S}_m$ is a cellular algebra in the sense of Graham and Lehrer.
- λ partition of *m*, \mathfrak{s} , \mathfrak{t} standard λ -tableaux.

$$y_{\lambda} = \sum_{w \in \mathfrak{S}_{\lambda}} \operatorname{sign}(w) w$$

 $m_{\mathfrak{s},\mathfrak{t}} = d(\mathfrak{s})^{-1} y_{\lambda} d(\mathfrak{t})$

- $R\mathfrak{S}_m$ is a cellular algebra in the sense of Graham and Lehrer.
- λ partition of *m*, \mathfrak{s} , \mathfrak{t} standard λ -tableaux.

$$y_{\lambda} = \sum_{w \in \mathfrak{S}_{\lambda}} \operatorname{sign}(w) w$$
 $m_{\mathfrak{s},\mathfrak{t}} = d(\mathfrak{s})^{-1} y_{\lambda} d(\mathfrak{t})$

• The $m_{s,t}$ form a cellular basis, the *Murphy basis* of $R\mathfrak{S}_m$.

$$m = 7, \lambda = (3, 2, 1, 1), \mathfrak{s} = \begin{bmatrix} 1 & 3 & 6 \\ 2 & 5 \\ 4 \\ 7 \end{bmatrix}, \mathfrak{t} = \begin{bmatrix} 1 & 2 & 7 \\ 3 & 6 \\ 4 \\ 5 \end{bmatrix}$$

The Murphy basis has quite nice properties:

The Murphy basis has quite nice properties:

Filtration of tensor space

 The tensor space possesses a filtration with cell modules with respect to the Murphy basis. The Murphy basis has quite nice properties:

Filtration of tensor space

- The tensor space possesses a filtration with cell modules with respect to the Murphy basis.
- There exists a basis of the tensor space adapted to this filtration.

• λ partition, C_{λ} cell module (an $R\mathfrak{S}_m$ -module),

• λ partition, C_{λ} cell module (an $R\mathfrak{S}_m$ -module), \mathfrak{s} standard λ -tableau, $c_{\mathfrak{s}}$ basis element of C_{λ}

 λ partition, C_λ cell module (an RG_m-module), s standard λ-tableau, c_s basis element of C_λ Res C_λ: Restriction of C_λ to RG_{m-1}

- λ partition, C_λ cell module (an RG_m-module),
 s standard λ-tableau, c_s basis element of C_λ
 Res C_λ: Restriction of C_λ to RG_{m-1}
- Res C_λ possesses a filtration with cell modules for R_☉_{m-1}, the basis {c_s} is adapted to this filtration.

- λ partition, C_λ cell module (an R𝔅_m-module),
 s standard λ-tableau, c_s basis element of C_λ
 Res C_λ: Restriction of C_λ to R𝔅_{m-1}
- Res C_λ possesses a filtration with cell modules for RG_{m-1}, the basis {c_s} is adapted to this filtration.
- the isomorphisms between subquotients and cell modules for the smaller algebra can be described easily using the cell bases.

Example (Res $C_{(3,2)}$, $\lambda = (3,2)$, m = 5, m - 1 = 4)

the annihilator

• $R\mathfrak{S}_m$ acts faithfully iff n = R-rank $(V) \ge m$

the annihilator

- $R\mathfrak{S}_m$ acts faithfully iff n = R-rank $(V) \ge m$
- The annihilator of this action is a cell ideal. The basis elements corresponding to partitions λ with λ₁ > n span the annihilator. (Haerterich)

the annihilator

- $R\mathfrak{S}_m$ acts faithfully iff n = R-rank $(V) \ge m$
- The annihilator of this action is a cell ideal. The basis elements corresponding to partitions λ with λ₁ > n span the annihilator. (Haerterich)
- $\rightsquigarrow R\mathfrak{S}_m$ /annihilator is again a cellular algebra.

Example (cellular basis of $R\mathfrak{S}_4$ /annihilator) P Ħ ⊞ *n* ≥ 4 *n* = 3 n = 2

Example (cellular basis of $R\mathfrak{S}_4$ /annihilator) P Ħ ⊞ *n* ≥ 4 n = 3n=2 n=1

Another way to count the rank of $R\mathfrak{S}_m$ /annihilator

• for the moment let $R = \mathbb{C}$

Another way to count the rank of $R\mathfrak{S}_m$ /annihilator

- for the moment let $R = \mathbb{C}$
- $V^{\otimes m}$ is semisimple as $U(\mathfrak{gl}_n)$ -module.

Another way to count the rank of $R\mathfrak{S}_m$ /annihilator

- for the moment let $R = \mathbb{C}$
- $V^{\otimes m}$ is semisimple as $U(\mathfrak{gl}_n)$ -module.
- Schur-Weyl duality: $\operatorname{End}_{U(\mathfrak{gl}_n)}(V^{\otimes m}) = \mathbb{C}\mathfrak{S}_m$ /annihilator

- for the moment let $R = \mathbb{C}$
- $V^{\otimes m}$ is semisimple as $U(\mathfrak{gl}_n)$ -module.
- Schur-Weyl duality: $\operatorname{End}_{U(\mathfrak{gl}_n)}(V^{\otimes m}) = \mathbb{C}\mathfrak{S}_m$ /annihilator

•
$$V^{\otimes m} = \bigoplus_i S_i^{n_i}$$
,
 S_i pairwise non isomorphic irreducible $U(\mathfrak{gl}_n)$ -modules,
then $\dim_{\mathbb{C}} \mathbb{C}\mathfrak{S}_m$ /annihilator= $\sum_i n_i^2$

 V(λ): irreducible U(gl_n)-module attached to the partition λ (λ₁ ≤ n)

the Littlewood-Richardson rule

- V(λ): irreducible U(gl_n)-module attached to the partition λ (λ₁ ≤ n)
- $V = V(\square)$

- V(λ): irreducible U(gl_n)-module attached to the partition λ (λ₁ ≤ n)
- $V = V(\square)$
- V(λ) ⊗ V(□) = ⊕V(μ), the sum over all μ obtained from λ by adding a box in the first n columns.

- V(λ): irreducible U(gl_n)-module attached to the partition λ (λ₁ ≤ n)
- $V = V(\square)$
- V(λ) ⊗ V(□) = ⊕V(μ), the sum over all μ obtained from λ by adding a box in the first n columns.
- $\rightsquigarrow V^{\otimes m}$ can be inductively decomposed into irreducible $U(\mathfrak{gl}_n)$ -modules.

 $V^{\otimes 1}$

Example $(n \ge 4)$ $V^{\otimes 1}$ $V^{\otimes 2}$ P

cancel all paths involving partitions λ with $\lambda_1>2$

Definition

- A Brauer diagram with *r* + *s* vertices in the top and bottom row is called a *walled Brauer diagram*, if
 - all vertical edges do not cross the wall
 - all horizontal edges cross the wall

with the wall after the first r vertices in each row.

Definition

- A Brauer diagram with r + s vertices in the top and bottom row is called a *walled Brauer diagram*, if
 - all vertical edges do not cross the wall
 - all horizontal edges cross the wall

with the wall after the first r vertices in each row.

Definition

- A Brauer diagram with *r* + *s* vertices in the top and bottom row is called a *walled Brauer diagram*, if
 - all vertical edges do not cross the wall
 - all horizontal edges cross the wall

with the wall after the first r vertices in each row.

• The walled Bauer algebra $B_{r,s}(x)$ is the subalgebra of the Brauer algebra $B_{r+s}(x)$ spanned by the walled Brauer diagrams.

Definition

- A Brauer diagram with *r* + *s* vertices in the top and bottom row is called a *walled Brauer diagram*, if
 - all vertical edges do not cross the wall
 - all horizontal edges cross the wall

with the wall after the first r vertices in each row.

• The walled Bauer algebra $B_{r,s}(x)$ is the subalgebra of the Brauer algebra $B_{r+s}(x)$ spanned by the walled Brauer diagrams.

Multiplication: Concatenation and deleting closed cycles by multiplication with \boldsymbol{x}

• $V^* = \operatorname{Hom}_R(V, R)$

- $V^* = \operatorname{Hom}_R(V, R)$
- $V^{\otimes r} \otimes V^{* \otimes s}$ is called the *mixed tensor space*.

- $V^* = \operatorname{Hom}_R(V, R)$
- $V^{\otimes r} \otimes V^{* \otimes s}$ is called the *mixed tensor space*.
- The walled Brauer algebra $B_{r,s}(n)$ acts on the mixed tensor space.

- $V^* = \operatorname{Hom}_R(V, R)$
- $V^{\otimes r} \otimes V^{* \otimes s}$ is called the *mixed tensor space*.
- The walled Brauer algebra $B_{r,s}(n)$ acts on the mixed tensor space.
- $B_{r,s}(x)$ is a cellular algebra.

- $V^* = \operatorname{Hom}_R(V, R)$
- $V^{\otimes r} \otimes V^{* \otimes s}$ is called the *mixed tensor space*.
- The walled Brauer algebra $B_{r,s}(n)$ acts on the mixed tensor space.
- $B_{r,s}(x)$ is a cellular algebra.
- Schur-Weyl duality: End_{U(gl_n)}(V^{⊗r} ⊗ V^{*⊗s}) ≅ B_{r,s}(n)/annhilator (Benkart et al., Koike)

Is there a (generic) cellular basis of the walled Brauer algebra with properties like the Murphy basis?

Is there a (generic) cellular basis of the walled Brauer algebra with properties like the Murphy basis?

Answer

• Bad news: No

Is there a (generic) cellular basis of the walled Brauer algebra with properties like the Murphy basis?

Answer

• Bad news: No

r = s = 2, n = 2: the annihilator is not a cell ideal, mixed tensor space does not have a cell filtration

Is there a (generic) cellular basis of the walled Brauer algebra with properties like the Murphy basis?

Answer

• Bad news: No

r = s = 2, n = 2: the annihilator is not a cell ideal, mixed tensor space does not have a cell filtration

• Good news: We have a problem!

Is there a (generic) cellular basis of the walled Brauer algebra with properties like the Murphy basis?

Answer

• Bad news: No

r = s = 2, n = 2: the annihilator is not a cell ideal, mixed tensor space does not have a cell filtration

- Good news: We have a problem!
- Even better: We have a solution!

A picture from a proof

It's time for a break!