A cell filtration of mixed tensor space, part I

Friederike Stoll
joint work with Mathias Werth
i/Az Institut für Algebra und Zahlentheorie
Universität Stuttgart

Stuttgart, September 12, 2014

Motivation: $R \mathfrak{S}_{m}$ and tensor space

- R commutative ring with one
- $V=R^{n}$
- $V^{\otimes m}$ tensor space
- $R \mathfrak{S}_{m}$ acts on the tensor space by permuting components.
- $R \mathfrak{S}_{m}$ is a cellular algebra in the sense of Graham and Lehrer.
- $R \mathfrak{S}_{m}$ is a cellular algebra in the sense of Graham and Lehrer.
- λ partition of $m, \mathfrak{s}, \mathfrak{t}$ standard λ-tableaux.

the Murphy basis of $R \mathfrak{S}_{m}$

- $R \mathfrak{S}_{m}$ is a cellular algebra in the sense of Graham and Lehrer.
- λ partition of $m, \mathfrak{s}, \mathfrak{t}$ standard λ-tableaux.

$$
y_{\lambda}=\sum_{w \in \mathfrak{S}_{\lambda}} \operatorname{sign}(w) w
$$

- $R \mathfrak{S}_{m}$ is a cellular algebra in the sense of Graham and Lehrer.
- λ partition of $m, \mathfrak{s}, \mathfrak{t}$ standard λ-tableaux.

$$
\begin{aligned}
& y_{\lambda}=\sum_{w \in \mathfrak{S}_{\lambda}} \operatorname{sign}(w) w \\
& m_{\mathfrak{s}, \mathfrak{t}}=d(\mathfrak{s})^{-1} y_{\lambda} d(\mathfrak{t})
\end{aligned}
$$

- $R \mathfrak{S}_{m}$ is a cellular algebra in the sense of Graham and Lehrer.
- λ partition of $m, \mathfrak{s}, \mathfrak{t}$ standard λ-tableaux.

$$
\begin{aligned}
& y_{\lambda}=\sum_{w \in \mathfrak{S}_{\lambda}} \operatorname{sign}(w) w \\
& m_{\mathfrak{s}, \mathfrak{t}}=d(\mathfrak{s})^{-1} y_{\lambda} d(\mathfrak{t})
\end{aligned}
$$

- The $m_{\mathfrak{s}, \mathrm{t}}$ form a cellular basis, the Murphy basis of $R \mathfrak{S}_{m}$.

Example

$m=7, \lambda=(3,2,1,1), \mathfrak{s}=$| 1 | 3 | 6 |
| :--- | :--- | :--- |
| 2 | 5 | |
| 4 | | , |
| 7 | | $t=$1 2 7
 3 6
 4
 5 |.

Example

$m=7, \lambda=(3,2,1,1), \mathfrak{s}=$| 1 | 3 | 6 |
| :--- | :--- | :--- |
| 2 | 5 | |
| 4 | | |
| 7 | | , |\quad| 1 | 2 | 7 |
| :--- | :--- | :--- |
| 3 | 6 | |
| 4 | | |
| 5 | | |$. \quad . \quad$ Then

$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Example

$m=7, \lambda=(3,2,1,1), \mathfrak{s}=$| 1 | 3 | 6 |
| :--- | :--- | :--- |
| 2 | 5 | |
| 4 | | |
| 7 | | , |\quad| 1 | 2 | 7 |
| :--- | :--- | :--- |
| 3 | 6 | |
| 4 | | |
| 5 | | |$. \quad . \quad$ Then

$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Example

$m=7, \lambda=(3,2,1,1), \mathfrak{s}=$| 1 | 3 | 6 |
| :--- | :--- | :--- |
| 2 | 5 | |
| 4 | | |
| 7 | | , |\quad| 1 | 2 | 7 |
| :--- | :--- | :--- |
| 3 | 6 | |
| 4 | | |
| 5 | | |$. \quad . \quad$ Then

$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Example

$m=7, \lambda=(3,2,1,1), \mathfrak{s}=$| 1 | 3 | 6 |
| :--- | :--- | :--- |
| 2 | 5 | |
| 4 | | |
| 7 | | , |\quad| 1 | 2 | 7 |
| :--- | :--- | :--- |
| 3 | 6 | |
| 4 | | |
| 5 | | |$. \quad . \quad$ Then

$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Example

$m=7, \lambda=(3,2,1,1), \mathfrak{s}=$| 1 | 3 | 6 |
| :--- | :--- | :--- |
| 2 | 5 | |
| 4 | | |
| 7 | | , |\quad| 1 | 2 | 7 |
| :--- | :--- | :--- |
| 3 | 6 | |
| 4 | | |
| 5 | | |$. \quad . \quad$ Then

$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Example

$m=7, \lambda=(3,2,1,1), \mathfrak{s}=$| 1 | 3 | 6 |
| :--- | :--- | :--- |
| 2 | 5 | |
| 4 | | |
| 7 | | , |\quad| 1 | 2 | 7 |
| :--- | :--- | :--- |
| 3 | 6 | |
| 4 | | |
| 5 | | |$. \quad . \quad$ Then

Example

Example

$m=7, \lambda=(3,2,1,1), \mathfrak{s}=$| 1 | 3 | 6 |
| :--- | :--- | :--- |
| 2 | 5 | |
| 4 | | |
| 7 | | , $\mathfrak{t}=$1 2 7
 3 6
 4
 5 |. Then

Example

$m=7, \lambda=(3,2,1,1), \mathfrak{s}=$| 1 | 3 | 6 |
| :--- | :--- | :--- |
| 2 | 5 | |
| 4 | | |
| 7 | | , $\mathfrak{t}=$1 2 7
 3 6
 4
 5 |. Then

Example

$m=7, \lambda=(3,2,1,1), \mathfrak{s}=$| 1 | 3 | 6 |
| :--- | :--- | :--- |
| 2 | 5 | |
| 4 | | |
| 7 | | , |\quad| 1 | 2 | 7 |
| :--- | :--- | :--- |
| 3 | 6 | |
| 4 | | |
| 5 | | |$. \quad . \quad$ Then

(well known) Properties of the Murphy basis

The Murphy basis has quite nice properties:

(well known) Properties of the Murphy basis

The Murphy basis has quite nice properties:
Filtration of tensor space

- The tensor space posseses a filtration with cell modules with respect to the Murphy basis.

(well known) Properties of the Murphy basis

The Murphy basis has quite nice properties:
Filtration of tensor space

- The tensor space posseses a filtration with cell modules with respect to the Murphy basis.
- There exists a basis of the tensor space adapted to this filtration.

Properties of the Murphy basis

Restriction of cell modules

- λ partition, C_{λ} cell module (an $R \mathfrak{S}_{m}$-module),

Properties of the Murphy basis

Restriction of cell modules

- λ partition, C_{λ} cell module (an $R \mathfrak{S}_{m}$-module), \mathfrak{s} standard λ-tableau, $c_{\mathfrak{s}}$ basis element of C_{λ}

Properties of the Murphy basis

Restriction of cell modules

- λ partition, C_{λ} cell module (an $R \mathfrak{S}_{m}$-module), \mathfrak{s} standard λ-tableau, c_{5} basis element of C_{λ} $\operatorname{Res} C_{\lambda}$: Restriction of C_{λ} to $R \mathfrak{S}_{m-1}$

Properties of the Murphy basis

Restriction of cell modules

- λ partition, C_{λ} cell module (an $R \mathfrak{S}_{m}$-module), \mathfrak{s} standard λ-tableau, $c_{\mathfrak{s}}$ basis element of C_{λ} $\operatorname{Res} C_{\lambda}$: Restriction of C_{λ} to $R \mathfrak{S}_{m-1}$
- $\operatorname{Res} C_{\lambda}$ posseses a filtration with cell modules for $R \mathfrak{S}_{m-1}$, the basis $\left\{c_{\mathfrak{s}}\right\}$ is adapted to this filtration.

Properties of the Murphy basis

Restriction of cell modules

- λ partition, C_{λ} cell module (an $R \mathfrak{S}_{m}$-module), \mathfrak{s} standard λ-tableau, $c_{\mathfrak{s}}$ basis element of C_{λ} $\operatorname{Res} C_{\lambda}$: Restriction of C_{λ} to $R \mathfrak{S}_{m-1}$
- $\operatorname{Res} C_{\lambda}$ posseses a filtration with cell modules for $R \Im_{m-1}$, the basis $\left\{c_{\mathfrak{s}}\right\}$ is adapted to this filtration.
- the isomorphisms between subquotients and cell modules for the smaller algebra can be described easily using the cell bases.

Example (Res $\left.C_{(3,2)}, \lambda=(3,2), m=5, m-1=4\right)$

Example (Res $\left.C_{(3,2)}, \lambda=(3,2), m=5, m-1=4\right)$

Example (Res $\left.C_{(3,2)}, \lambda=(3,2), m=5, m-1=4\right)$

Example (Res $\left.C_{(3,2)}, \lambda=(3,2), m=5, m-1=4\right)$

$$
\begin{aligned}
& \text { Example }\left(\operatorname{Res} C_{(3,2)}, \lambda=(3,2), m=5, m-1=4\right) \\
& C(\unrhd(2,2)) / C(\unrhd(3,1))\left\{\begin{array}{l}
C \frac{125}{\frac{12}{314}}+C(\unrhd(3,1)) \\
C \frac{\frac{13}{244}}{}+C(\unrhd(3,1))
\end{array}\right. \\
& \text { C } \begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & 5 & \\
\hline & & \\
\hline
\end{array} \\
& \text { C } \begin{array}{|l|l|l|}
\hline 1 & 2 & 4 \\
\hline 3 & 5 & \\
\hline & & \\
\hline
\end{array} \\
& \text { C } \begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 & \\
\hline
\end{array}
\end{aligned}
$$

Example (Res $\left.C_{(3,2)}, \lambda=(3,2), m=5, m-1=4\right)$

Properties of the Murphy basis

the annihilator

- $R \mathfrak{S}_{m}$ acts faithfully iff $n=R-\operatorname{rank}(V) \geq m$

Properties of the Murphy basis

the annihilator

- $R \mathfrak{S}_{m}$ acts faithfully iff $n=R-\operatorname{rank}(V) \geq m$
- The annihilator of this action is a cell ideal.

The basis elements corresponding to partitions λ with $\lambda_{1}>n$ span the annihilator. (Haerterich)

Properties of the Murphy basis

the annihilator

- $R \mathfrak{S}_{m}$ acts faithfully iff $n=R-\operatorname{rank}(V) \geq m$
- The annihilator of this action is a cell ideal.

The basis elements corresponding to partitions λ with $\lambda_{1}>n$ span the annihilator. (Haerterich)

- $\rightsquigarrow R \mathfrak{S}_{m}$ /annihilator is again a cellular algebra.

Example (cellular basis of $R \Im_{4} /$ annihilator)

ロ10

Example (cellular basis of $R \Im_{4} /$ annihilator)

Example (cellular basis of $R \Im_{4} /$ annihilator)

Example (cellular basis of $R \Im_{4} /$ annihilator)

Example (cellular basis of $R \mathbb{S}_{4} /$ annihilator)

Another way to count the rank of $R \mathfrak{S}_{m} /$ annihilator

- for the moment let $R=\mathbb{C}$

Another way to count the rank of $R \mathfrak{S}_{m} /$ annihilator

- for the moment let $R=\mathbb{C}$
- $V^{\otimes m}$ is semisimple as $U\left(\mathfrak{g l}_{n}\right)$-module.

Another way to count the rank of $R \mathfrak{S}_{m} /$ annihilator

- for the moment let $R=\mathbb{C}$
- $V^{\otimes m}$ is semisimple as $U\left(\mathfrak{g l}_{n}\right)$-module.
- Schur-Weyl duality: End $U_{\left(\mathfrak{g l}_{n}\right)}\left(V^{\otimes m}\right)=\mathbb{C} \mathfrak{G}_{m} /$ annihilator

Another way to count the rank of $R \mathfrak{S}_{m}$ /annihilator

- for the moment let $R=\mathbb{C}$
- $V^{\otimes m}$ is semisimple as $U\left(\mathfrak{g l}_{n}\right)$-module.
- Schur-Weyl duality: End $U_{\left(\mathfrak{g r}_{n}\right)}\left(V^{\otimes m}\right)=\mathbb{C} \mathfrak{S}_{m} /$ annihilator
- $V^{\otimes m}=\oplus_{i} S_{i}^{n_{i}}$,
S_{i} pairwise non isomorphic irreducible $U\left(\mathfrak{g l}_{n}\right)$-modules, then $\operatorname{dim}_{\mathbb{C}} \mathbb{C}_{m} /$ annihilator $=\sum_{i} n_{i}^{2}$

the Littlewood-Richardson rule

- $V(\lambda)$: irreducible $U\left(\mathfrak{g l}_{n}\right)$-module attached to the partition λ $\left(\lambda_{1} \leq n\right)$

the Littlewood-Richardson rule

- $V(\lambda)$: irreducible $U\left(\mathfrak{g l}_{n}\right)$-module attached to the partition λ $\left(\lambda_{1} \leq n\right)$
- $V=V(\square)$

the Littlewood-Richardson rule

- $V(\lambda)$: irreducible $U\left(\mathfrak{g l}_{n}\right)$-module attached to the partition λ $\left(\lambda_{1} \leq n\right)$
- $V=V(\square)$
- $V(\lambda) \otimes V(\square)=\oplus V(\mu)$, the sum over all μ obtained from λ by adding a box in the first n columns.
- $V(\lambda)$: irreducible $U\left(\mathfrak{g l}_{n}\right)$-module attached to the partition λ $\left(\lambda_{1} \leq n\right)$
- $V=V(\square)$
- $V(\lambda) \otimes V(\square)=\oplus V(\mu)$, the sum over all μ obtained from λ by adding a box in the first n columns.
- $\rightsquigarrow V^{\otimes m}$ can be inductively decomposed into irreducible $U\left(\mathfrak{g l}_{n}\right)$-modules.

Example ($n \geq 4$)

$V^{\otimes 1}$
\square

Example $(n \geq 4)$

$V^{\otimes 1}$
 $V^{\otimes 2}$

Example ($n \geq 4$)

$V^{\otimes 1}$
 $V^{\otimes 2}$
 $V^{\otimes 3}$

Example $(n \geq 4)$

Example $(n \geq 4)$

Example $(n \geq 4)$

The multiplicity of $V(\lambda)$ in the $U\left(\mathfrak{g l}_{n}\right)$-modules in $V^{\otimes 4}$ is the number of standard λ-tableaux. \rightsquigarrow a basis of $\mathbb{C S}_{4}$ can be indexed by tuples of standard λ-tableaux.

Example ($n=2$)

cancel all paths involving partitions λ with $\lambda_{1}>2$

Example ($n=2$)

cancel all paths involving partitions λ with $\lambda_{1}>2$

Example ($n=2$)

cancel all paths involving partitions λ with $\lambda_{1}>2$
$V^{\otimes 1}$
$V^{\otimes 2}$
$V^{\otimes 3}$
$V^{\otimes 4}$

Example ($n=2$)

cancel all paths involving partitions λ with $\lambda_{1}>2$
$V^{\otimes 1}$
$V^{\otimes 2}$
$V^{\otimes 3}$
$V^{\otimes 4}$

\rightsquigarrow a basis of $\mathbb{C S}_{4} /$ annihilator can be indexed by tuples of standard λ-tableaux with $\lambda_{1} \leq 2$.

Definition

- A Brauer diagram with $r+s$ vertices in the top and bottom row is called a walled Brauer diagram, if
- all vertical edges do not cross the wall
- all horizontal edges cross the wall with the wall after the first r vertices in each row.

Definition

- A Brauer diagram with $r+s$ vertices in the top and bottom row is called a walled Brauer diagram, if
- all vertical edges do not cross the wall
- all horizontal edges cross the wall with the wall after the first r vertices in each row.

Definition

- A Brauer diagram with $r+s$ vertices in the top and bottom row is called a walled Brauer diagram, if
- all vertical edges do not cross the wall
- all horizontal edges cross the wall with the wall after the first r vertices in each row.

- The walled Bauer algebra $B_{r, s}(x)$ is the subalgebra of the Brauer algebra $B_{r+s}(x)$ spanned by the walled Brauer diagrams.

Definition

- A Brauer diagram with $r+s$ vertices in the top and bottom row is called a walled Brauer diagram, if
- all vertical edges do not cross the wall
- all horizontal edges cross the wall with the wall after the first r vertices in each row.

- The walled Bauer algebra $B_{r, s}(x)$ is the subalgebra of the Brauer algebra $B_{r+s}(x)$ spanned by the walled Brauer diagrams.
Multiplication: Concatenation and deleting closed cycles by multiplication with x
- $V^{*}=\operatorname{Hom}_{R}(V, R)$

the mixed tensor space

- $V^{*}=\operatorname{Hom}_{R}(V, R)$
- $V^{\otimes r} \otimes V^{* \otimes s}$ is called the mixed tensor space.
- $V^{*}=\operatorname{Hom}_{R}(V, R)$
- $V^{\otimes r} \otimes V^{* \otimes s}$ is called the mixed tensor space.
- The walled Brauer algebra $B_{r, s}(n)$ acts on the mixed tensor space.
- $V^{*}=\operatorname{Hom}_{R}(V, R)$
- $V^{\otimes r} \otimes V^{* \otimes s}$ is called the mixed tensor space.
- The walled Brauer algebra $B_{r, s}(n)$ acts on the mixed tensor space.
- $B_{r, s}(x)$ is a cellular algebra.
- $V^{*}=\operatorname{Hom}_{R}(V, R)$
- $V^{\otimes r} \otimes V^{* \otimes s}$ is called the mixed tensor space.
- The walled Brauer algebra $B_{r, s}(n)$ acts on the mixed tensor space.
- $B_{r, s}(x)$ is a cellular algebra.
- Schur-Weyl duality:
$\operatorname{End}_{U\left(\mathfrak{g l}_{n}\right)}\left(V^{\otimes r} \otimes V^{* \otimes s}\right) \cong B_{r, s}(n) /$ annhilator (Benkart et al., Koike)

Question

Is there a (generic) cellular basis of the walled Brauer algebra with properties like the Murphy basis?

Question

Is there a (generic) cellular basis of the walled Brauer algebra with properties like the Murphy basis?

Answer

- Bad news: No

Question

Is there a (generic) cellular basis of the walled Brauer algebra with properties like the Murphy basis?

Answer

- Bad news: No
$r=s=2, n=2$: the annihilator is not a cell ideal, mixed tensor space does not have a cell filtration

Question

Is there a (generic) cellular basis of the walled Brauer algebra with properties like the Murphy basis?

Answer

- Bad news: No
$r=s=2, n=2$: the annihilator is not a cell ideal, mixed tensor space does not have a cell filtration
- Good news: We have a problem!

Question

Is there a (generic) cellular basis of the walled Brauer algebra with properties like the Murphy basis?

Answer

- Bad news: No $r=s=2, n=2$: the annihilator is not a cell ideal, mixed tensor space does not have a cell filtration
- Good news: We have a problem!
- Even better: We have a solution!

A picture from a proof

Thank you for your attention!

Thank you for your attention!

Thank you for your attention!

Thank you for your attention!

It's time for a break!

