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Motivation: RS, and tensor space

@ R commutative ring with one
o V=R"
o V@M tensor space

@ RG,, acts on the tensor space by permuting components.
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the Murphy basis of RG,,

@ RG,, is a cellular algebra in the sense of Graham and Lehrer.
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the Murphy basis of RG,,

@ RG,, is a cellular algebra in the sense of Graham and Lehrer.

@ )\ partition of m, s, t standard A-tableaux.

Y = Z sign(w)w

wes)

mg ¢ = d(s)_lyAd(t)
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the Murphy basis of RG,,

@ RG,, is a cellular algebra in the sense of Graham and Lehrer.

@ )\ partition of m, s, t standard A-tableaux.

ya= Y sign(w)w

wes)

mg ¢ = d(s)_lyAd(t)

@ The myy form a cellular basis, the Murphy basis of RG,.
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(well known) Properties of the Murphy basis

The Murphy basis has quite nice properties:
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The Murphy basis has quite nice properties:

Filtration of tensor space

@ The tensor space posseses a filtration with cell modules with
respect to the Murphy basis.
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(well known) Properties of the Murphy basis

The Murphy basis has quite nice properties:

Filtration of tensor space

@ The tensor space posseses a filtration with cell modules with
respect to the Murphy basis.

@ There exists a basis of the tensor space adapted to this
filtration.
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Properties of the Murphy basis

Restriction of cell modules

@ \ partition, Cy cell module (an R&,-module),
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Properties of the Murphy basis

Restriction of cell modules

@ A\ partition, Cy cell module (an R&p,-module),
s standard A-tableau, ¢; basis element of Cy
Res Cy: Restriction of Cy to RG,,_1
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Properties of the Murphy basis

Restriction of cell modules
@ A\ partition, Cy cell module (an R&p,-module),
s standard A-tableau, ¢; basis element of Cy
Res Cy: Restriction of Cy to RG,,_1

@ Res C)y posseses a filtration with cell modules for R&,,_1, the
basis {¢c;} is adapted to this filtration.
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Properties of the Murphy basis

Restriction of cell modules

@ A\ partition, Cy cell module (an R&p,-module),
s standard A-tableau, ¢; basis element of Cy
Res Cy: Restriction of Cy to RG,,_1

@ Res C)y posseses a filtration with cell modules for R&,,_1, the
basis {¢c;} is adapted to this filtration.

@ the isomorphisms between subquotients and cell modules for
the smaller algebra can be described easily using the cell bases.
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Example (Res C35), A =(3,2), m=5, m—1=4)
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Example (Res C35), A =(3,2), m=5, m—1=4)

C = C
C(>e) c = Ca)
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Example (Res C35), A =(3,2), m=5, m—1=4)

capep +C(zen)

C(IZ(2,2))/C(E(3,1))
C —I—C(E(3,1))
¢ = C
= Cap Ca)
= C
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Example (Res C35), A =(3,2), m=5, m—1=4)

C[i[a[5] +C(E(3,1)) = Cap
C(ze2)/C(x6n) Cloom) C22)
C135+ >(3,1) — C13 '
DEa
c = 6
= C Ca)
= c
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Properties of the Murphy basis

the annihilator

@ RG,, acts faithfully iff n = R-rank(V) > m
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Properties of the Murphy basis

the annihilator

@ RG,, acts faithfully iff n = R-rank(V) > m

@ The annihilator of this action is a cell ideal.
The basis elements corresponding to partitions A with A\; > n
span the annihilator. (Haerterich)
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Properties of the Murphy basis

the annihilator

@ RG,, acts faithfully iff n = R-rank(V) > m

@ The annihilator of this action is a cell ideal.
The basis elements corresponding to partitions A with A\; > n
span the annihilator. (Haerterich)

@ ~» RG&,,/annihilator is again a cellular algebra.
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Example (cellular basis of RG4/annihilator)
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Another way to count the rank of RS,,/annihilator

@ for the moment let R =C
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@ for the moment let R =C

@ V®m is semisimple as U(gl,)-module.
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Another way to count the rank of RS,,/annihilator

@ for the moment let R =C
@ V®m is semisimple as U(gl,)-module.
o Schur-Weyl duality: Endyg j(V®™) = C&p/annihilator
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Another way to count the rank of RS,,/annihilator

@ for the moment let R =C
@ V®m is semisimple as U(gl,)-module.
o Schur-Weyl duality: Endyg j(V®™) = C&p/annihilator
o VoM — EB;S,—"i,
S pairwise non isomorphic irreducible U(gl,)-modules,
then dim¢c C&,,,/annihilator= ", n?
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the Littlewood-Richardson rule

@ V/(A): irreducible U(gl,,)-module attached to the partition A
(A1 < n)
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the Littlewood-Richardson rule

@ V/(A): irreducible U(gl,,)-module attached to the partition A
(A1 < n)

o V=V()
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the Littlewood-Richardson rule

@ V/(A): irreducible U(gl,,)-module attached to the partition A
(A1 < n)

o V=Vv()

o V(A\)® V() =®V(u), the sum over all i obtained from A
by adding a box in the first n columns.
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the Littlewood-Richardson rule

@ V/(A): irreducible U(gl,,)-module attached to the partition A
(A1 < n)

o V=Vv()

o V(A\)® V() =®V(u), the sum over all i obtained from A
by adding a box in the first n columns.

@ ~» V®M can be inductively decomposed into irreducible
U(gl,,)-modules.
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Example (n > 4)
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Example (n > 4)
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The multiplicity of V/(\) in the U(gl,)-modules in V®* is the
number of standard A-tableaux. ~~ a basis of C&4 can be indexed

by tuples of standard A-tableaux.

[
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Example (n = 2)

cancel all paths involving partitions A with A\; > 2
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Example (n = 2)

cancel all paths involving partitions A with A\; > 2
Vel

O
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BF BPT]
~~ a basis of C&,4/annihilator can be indexed by tuples of standard
A-tableaux with \; < 2.

EEE
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the walled Brauer algebra

@ A Brauer diagram with r + s vertices in the top and bottom
row is called a walled Brauer diagram, if

@ all vertical edges do not cross the wall
@ all horizontal edges cross the wall

with the wall after the first r vertices in each row.

>
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the walled Brauer algebra

@ A Brauer diagram with r + s vertices in the top and bottom
row is called a walled Brauer diagram, if

@ all vertical edges do not cross the wall
@ all horizontal edges cross the wall

with the wall after the first rlvertices in each row.
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the walled Brauer algebra

@ A Brauer diagram with r + s vertices in the top and bottom
row is called a walled Brauer diagram, if
@ all vertical edges do not cross the wall
@ all horizontal edges cross the wall
with the wall after the first rlvertices in each row.
|

@ The walled Bauer algebra B, s(x) is the subalgebra of the
Brauer algebra B, s(x) spanned by the walled Brauer
diagrams.

o
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the walled Brauer algebra

@ A Brauer diagram with r + s vertices in the top and bottom
row is called a walled Brauer diagram, if
@ all vertical edges do not cross the wall
@ all horizontal edges cross the wall
with the wall after the first rlvertices in each row.
|

@ The walled Bauer algebra B, s(x) is the subalgebra of the
Brauer algebra B, s(x) spanned by the walled Brauer
diagrams.

Multiplication: Concatenation and deleting closed cycles by
multiplication with x

o
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the mixed tensor space

e V* =Homg(V,R)
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the mixed tensor space

e V* =Homg(V,R)

° V& ® V*®* is called the mixed tensor space.
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the mixed tensor space

e V* =Homg(V,R)
° V& ® V*®* is called the mixed tensor space.
@ The walled Brauer algebra B, s(n) acts on the mixed tensor

space.
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the mixed tensor space

e V* =Homg(V,R)

° V& ® V*®* is called the mixed tensor space.

@ The walled Brauer algebra B, s(n) acts on the mixed tensor
space.

@ B, s(x) is a cellular algebra.
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the mixed tensor space

V* = Homg(V, R)
VO @ V*®S is called the mixed tensor space.

(]

(]

The walled Brauer algebra B, s(n) acts on the mixed tensor
space.

(]

(]

B, s(x) is a cellular algebra.

Schur-Weyl duality:

End (g, )(VE" ® V*¥) = B, o(n)/annhilator
(Benkart et al., Koike)

(]
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Is there a (generic) cellular basis of the walled Brauer algebra with
properties like the Murphy basis?
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Is there a (generic) cellular basis of the walled Brauer algebra with
properties like the Murphy basis?

Answer

@ Bad news: No
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Is there a (generic) cellular basis of the walled Brauer algebra with
properties like the Murphy basis?

Answer

@ Bad news: No
r=s =2, n=2: the annihilator is not a cell ideal,
mixed tensor space does not have a cell filtration
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Is there a (generic) cellular basis of the walled Brauer algebra with
properties like the Murphy basis?

Answer

@ Bad news: No
r=s =2, n=2: the annihilator is not a cell ideal,
mixed tensor space does not have a cell filtration

@ Good news: We have a problem!
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Is there a (generic) cellular basis of the walled Brauer algebra with
properties like the Murphy basis?

Answer

@ Bad news: No
r=s =2, n=2: the annihilator is not a cell ideal,
mixed tensor space does not have a cell filtration

@ Good news: We have a problem!

@ Even better: We have a solution!
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Thank you for your attention! )

Stoll A cell filtration of mixed tensor space, part |



Thank you for your attention! )
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It's time for a break! J
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