A KLR grading of the Brauer algebras

Ge Li
geli@maths.usyd.edu.au

September 9, 2014

University of Sydney
School of Mathematics and Statistics

- Recently, Brundan and Kleshchev showed that cyclotomic Hecke algebras of type $G(\ell, 1, n)$ are isomorphic to the cyclotomic Khovanov-Lauda-Rouquier algebras \mathscr{R}_{n}^{\wedge} introduced by Khovanov and Lauda, and Rouquier, where a connection between the representation theory of Hecke algebras and Lusztig's canonical bases was established. In this way, cyclotomic Hecke algebras inherit a \mathbb{Z}-grading.
- Recently, Brundan and Kleshchev showed that cyclotomic Hecke algebras of type $G(\ell, 1, n)$ are isomorphic to the cyclotomic Khovanov-Lauda-Rouquier algebras \mathscr{R}_{n}^{\wedge} introduced by Khovanov and Lauda, and Rouquier, where a connection between the representation theory of Hecke algebras and Lusztig's canonical bases was established. In this way, cyclotomic Hecke algebras inherit a \mathbb{Z}-grading.
- Hu and Mathas proved that \mathscr{R}_{n}^{\wedge} is graded cellular over a field, or an integral domain with certain properties, by constructing a graded cellular basis $\left\{\psi_{\text {st }} \mid \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda), \lambda \vdash n\right\}$.
- Recently, Brundan and Kleshchev showed that cyclotomic Hecke algebras of type $G(\ell, 1, n)$ are isomorphic to the cyclotomic Khovanov-Lauda-Rouquier algebras \mathscr{R}_{n}^{\wedge} introduced by Khovanov and Lauda, and Rouquier, where a connection between the representation theory of Hecke algebras and Lusztig's canonical bases was established. In this way, cyclotomic Hecke algebras inherit a \mathbb{Z}-grading.
- Hu and Mathas proved that \mathscr{R}_{n}^{\wedge} is graded cellular over a field, or an integral domain with certain properties, by constructing a graded cellular basis $\left\{\psi_{\text {st }} \mid \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda), \lambda \vdash n\right\}$.
- As a speical case of cyclotomic Hecke algebras, the symmetric group algebras $R \mathfrak{S}_{n}$ inherit the above properties.
- Recently, Brundan and Kleshchev showed that cyclotomic Hecke algebras of type $G(\ell, 1, n)$ are isomorphic to the cyclotomic Khovanov-Lauda-Rouquier algebras \mathscr{R}_{n}^{\wedge} introduced by Khovanov and Lauda, and Rouquier, where a connection between the representation theory of Hecke algebras and Lusztig's canonical bases was established. In this way, cyclotomic Hecke algebras inherit a \mathbb{Z}-grading.
- Hu and Mathas proved that \mathscr{R}_{n}^{\wedge} is graded cellular over a field, or an integral domain with certain properties, by constructing a graded cellular basis $\left\{\psi_{\text {st }} \mid \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda), \lambda \vdash n\right\}$.
- As a speical case of cyclotomic Hecke algebras, the symmetric group algebras $R \mathfrak{S}_{n}$ inherit the above properties.
- The goal of this talk is to study the \mathbb{Z}-grading of the Brauer algebra $\mathscr{B}_{n}(\delta)$ over a field R of characteristic $p=0$, and as a byproduct, show the Brauer algebras $\mathscr{B}_{n}(\delta)$ are graded cellular algebras.

The Brauer algebras

Let R be a commutative ring with identity 1 and $\delta \in R$.

Let R be a commutative ring with identity 1 and $\delta \in R$.
The Brauer algebras $\mathscr{B}_{n}(\delta)$ is a unital associative R-algebra with generators

$$
\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\} \cup\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}
$$

Let R be a commutative ring with identity 1 and $\delta \in R$.
The Brauer algebras $\mathscr{B}_{n}(\delta)$ is a unital associative R-algebra with generators

$$
\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\} \cup\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}
$$

associated with relations
(1) (Inverses) $s_{k}^{2}=1$.
(2) (Essential idempotent relation) $e_{k}^{2}=\delta e_{k}$.
(3) (Braid relations) $s_{k} s_{k+1} s_{k}=s_{k+1} s_{k} s_{k+1}$ and $s_{k} s_{r}=s_{r} s_{k}$ if $|k-r|>1$.
(9) (Commutation relations) $s_{k} e_{l}=e_{l} s_{k}$ and $e_{k} e_{r}=e_{r} e_{k}$ if $|k-r|>1$.
(5) (Tangle relations) $e_{k} e_{k+1} e_{k}=e_{k}, e_{k+1} e_{k} e_{k+1}=e_{k+1}, s_{k} e_{k+1} e_{k}=s_{k+1} e_{k}$ and $e_{k} e_{k+1} s_{k}=e_{k} s_{k+1}$.
(0) (Untwisting relations) $s_{k} e_{k}=e_{k} s_{k}=e_{k}$.

The Brauer algebra $\mathscr{B}_{n}(\delta)$ has R-basis consisting of Brauer diagrams D, which consist of two rows of n dots, labelled by $\{1,2, \ldots, n\}$, with each dot joined to one other dot. See the following diagram as an example:

Two diagrams D_{1} and D_{2} can be composed to get $D_{1} \circ D_{2}$ by placing D_{1} above D_{2} and joining corresponding points and deleting all the interior loops. The multiplication of $\mathscr{B}_{n}(\delta)$ is defined by

$$
D_{1} \cdot D_{2}=\delta^{n\left(D_{1}, D_{2}\right)} D_{1} \circ D_{2}
$$

where $n\left(D_{1}, D_{2}\right)$ is the number of deleted loops. For example:

Suppose R is a field of characteristic $p=0$ and fix $\delta \in R$.

Suppose R is a field of characteristic $p=0$ and fix $\delta \in R$.
Let $P=\mathbb{Z}+\frac{\delta-1}{2}$ and Γ_{δ} be the oriented quiver with vertex set P and directed edges $i \rightarrow i+1$, for $i \in P$. Thus, Γ_{δ} is the quiver of type A_{∞}.

Suppose R is a field of characteristic $p=0$ and fix $\delta \in R$.
Let $P=\mathbb{Z}+\frac{\delta-1}{2}$ and Γ_{δ} be the oriented quiver with vertex set P and directed edges $i \rightarrow i+1$, for $i \in P$. Thus, Γ_{δ} is the quiver of type A_{∞}.

Fix a weight $\Lambda=\Lambda_{k}$ for some $k \in P$. The cyclotomic $K L R$ algebras, $\mathscr{R}_{n}^{\Lambda}$ of type Γ_{δ} is the unital associative R-algebra with generators

$$
\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{k} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k} \mid 1 \leq k \leq n-1\right\}
$$

and relations:

$$
\begin{aligned}
& y_{1}^{\delta_{i_{1}, k}} e(\mathbf{i})=0, \quad e(\mathbf{i}) e(\mathbf{j})=\delta_{\mathbf{i j}} e(\mathbf{i}), \quad \sum_{\mathbf{i} \in P^{n}} e(\mathbf{i})=1, \\
& y_{r} e(\mathbf{i})=e(\mathbf{i}) y_{r}, \quad \psi_{r} e(\mathbf{i})=e\left(s_{r} \cdot \mathbf{i}\right) \psi_{r}, \quad y_{r} y_{s}=y_{s} y_{r}, \\
& \psi_{r} y_{s}=y_{s} \psi_{r}, \\
& \text { if } s \neq r, r+1 \text {, } \\
& \psi_{r} \psi_{s}=\psi_{s} \psi_{r}, \\
& \text { if }|r-s|>1 \text {, } \\
& \psi_{r} y_{r+1} e(\mathbf{i})= \begin{cases}\left(y_{r} \psi_{r}+1\right) e(\mathbf{i}), & \text { if } i_{r}=i_{r+1}, \\
y_{r} \psi_{r} e(\mathbf{i}), & \text { if } i_{r} \neq i_{r+1}\end{cases} \\
& y_{r+1} \psi_{r} e(\mathbf{i})= \begin{cases}\left(\psi_{r} y_{r}+1\right) e(\mathbf{i}), & \text { if } i_{r}=i_{r+1}, \\
\psi_{r} y_{r} e(\mathbf{i}), & \text { if } i_{r} \neq i_{r+1}\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
\psi_{r}^{2} e(\mathbf{i})= \begin{cases}0, & \text { if } i_{r}=i_{r+1}, \\
e(\mathbf{i}), & \text { if } i_{r} \neq i_{r+1} \pm 1, \\
\left(y_{r+1}-y_{r}\right) e(\mathbf{i}), & \text { if } i_{r+1}=i_{r}+1, \\
\left(y_{r}-y_{r+1}\right) e(\mathbf{i}), & \text { if } i_{r+1}=i_{r}-1,\end{cases} \\
\psi_{r} \psi_{r+1} \psi_{r} e(\mathbf{i})= \begin{cases}\left(\psi_{r+1} \psi_{r} \psi_{r+1}+1\right) e(\mathbf{i}), & \text { if } i_{r+2}=i_{r}=i_{r+1}-1, \\
\left(\psi_{r+1} \psi_{r} \psi_{r+1}-1\right) e(\mathbf{i}), & \text { if } i_{r+2}=i_{r}=i_{r+1}+1, \\
\psi_{r+1} \psi_{r} \psi_{r+1} e(\mathbf{i}), & \text { otherwise. }\end{cases}
\end{aligned}
$$

for $\mathbf{i}, \mathbf{j} \in P^{n}$ and all admissible r and s. Moreover, \mathscr{R}_{n}^{\wedge} is naturally \mathbb{Z}-graded with degree function determined by
$\operatorname{deg} e(\mathbf{i})=0, \quad \operatorname{deg} y_{r}=2 \quad$ and $\quad \operatorname{deg} \psi_{k} e(\mathbf{i})= \begin{cases}-2, & \text { if } i_{k}=i_{k+1}, \\ 0, & \text { if } i_{k} \neq i_{k+1} \pm 1, \\ 1, & \text { if } i_{k}=i_{k+1} \pm 1 .\end{cases}$
for $1 \leq r \leq n, 1 \leq k \leq n$ and $\mathbf{i} \in P^{n}$.

The cyclotomic KLR algebras

We have an diagrammatic representation of $\mathscr{R}_{n}^{\Lambda}$.

We have an diagrammatic representation of \mathscr{R}_{n}^{\wedge}. To do this, we associate to each generator of \mathscr{R}_{n}^{\wedge} an P-labelled decorated planar diagram on $2 n$ dots in the following way:

$$
\begin{aligned}
& e(\mathbf{i})=\left.\left.\right|_{i_{1}} ^{i_{1}}\right|_{i_{2}} ^{i_{2}} \ldots \|_{i_{n}}^{i_{n}},
\end{aligned}
$$

for $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right) \in P^{n}, 1 \leq r \leq n$ and $1 \leq k \leq n-1$. The labels connected by a string have to be the same.

We have an diagrammatic representation of \mathscr{R}_{n}^{\wedge}. To do this, we associate to each generator of \mathscr{R}_{n}^{\wedge} an P-labelled decorated planar diagram on $2 n$ dots in the following way:

for $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right) \in P^{n}, 1 \leq r \leq n$ and $1 \leq k \leq n-1$. The labels connected by a string have to be the same.

Diagrams are considered up to isotopy, and multiplication of diagrams is given by concatenation, subject to the relations of \mathscr{R}_{n}^{\wedge} listed before.

Theorem (Brundan-Kleshchev)

The symmetric group algebras $R \mathfrak{S}_{n}$ are isomorphic to the cyclotomic $K L R$ algebras \mathscr{R}_{n}^{\wedge}.

Theorem (Brundan-Kleshchev)

The symmetric group algebras $R \mathfrak{S}_{n}$ are isomorphic to the cyclotomic $K L R$ algebras \mathscr{R}_{n}^{\wedge}.

Theorem (Hu-Mathas)

There exists a set of homogeneous elements of $\mathscr{R}_{n}^{\Lambda}$

$$
\left\{\psi_{\mathrm{st}} \mid \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda), \lambda \vdash n\right\}
$$

and these elements form a graded cellular basis of $\mathscr{R}_{n}^{\Lambda}$.

The graded algebra $\mathscr{G}_{n}(\delta)$

It is well-known that the symmetric group algebras $R \mathfrak{S}_{n}$ are subalgebras of the Brauer algebras $\mathscr{B}_{n}(\delta)$ by removing all Brauer diagrams with horizontal arcs. So we expect the \mathbb{Z}-grading of Brauer algebras has following properties:

It is well-known that the symmetric group algebras $R \mathfrak{S}_{n}$ are subalgebras of the Brauer algebras $\mathscr{B}_{n}(\delta)$ by removing all Brauer diagrams with horizontal arcs. So we expect the \mathbb{Z}-grading of Brauer algebras has following properties:

- The graded Brauer algebras are generated by homogeneous generators $\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{k} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k} \mid 1 \leq k \leq n-1\right\} \cup\left\{\epsilon_{k} \mid 1 \leq k \leq n-1\right\}$, with $P=\mathbb{Z}+\frac{\delta-1}{2}$.

It is well-known that the symmetric group algebras $R \mathfrak{S}_{n}$ are subalgebras of the Brauer algebras $\mathscr{B}_{n}(\delta)$ by removing all Brauer diagrams with horizontal arcs. So we expect the \mathbb{Z}-grading of Brauer algebras has following properties:

- The graded Brauer algebras are generated by homogeneous generators $\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{k} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k} \mid 1 \leq k \leq n-1\right\} \cup\left\{\epsilon_{k} \mid 1 \leq k \leq n-1\right\}$, with $P=\mathbb{Z}+\frac{\delta-1}{2}$.
- The grading is compatible to the corresponding \mathscr{R}_{n}^{\wedge} if we restrict $\mathscr{B}_{n}(\delta)$ to $R \mathfrak{S}_{n}$.

It is well-known that the symmetric group algebras $R \mathfrak{S}_{n}$ are subalgebras of the Brauer algebras $\mathscr{B}_{n}(\delta)$ by removing all Brauer diagrams with horizontal arcs. So we expect the \mathbb{Z}-grading of Brauer algebras has following properties:

- The graded Brauer algebras are generated by homogeneous generators $\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{k} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k} \mid 1 \leq k \leq n-1\right\} \cup\left\{\epsilon_{k} \mid 1 \leq k \leq n-1\right\}$, with $P=\mathbb{Z}+\frac{\delta-1}{2}$.
- The grading is compatible to the corresponding \mathscr{R}_{n}^{\wedge} if we restrict $\mathscr{B}_{n}(\delta)$ to $R \mathfrak{S}_{n}$.
- There exists a diagrammatic representation of the graded Brauer algebras as P-labelled decorated planar diagram on $2 n$ dots.

The graded algebra $\mathscr{G}_{n}(\delta)$

Before we construct the \mathbb{Z}-graded algebra $\mathscr{G}_{n}(\delta)$, we need to introduce some terminologies as preparation.

Before we construct the \mathbb{Z}-graded algebra $\mathscr{G}_{n}(\delta)$, we need to introduce some terminologies as preparation.

For $\mathbf{i} \in P^{n}$ and $1 \leq k \leq n$, we define the function $h_{k}: P^{n} \longrightarrow \mathbb{Z}$ as

$$
\begin{aligned}
h_{k}(\mathbf{i}):= & \delta_{i_{k},-\frac{\delta-1}{2}}+\#\left\{1 \leq r \leq k-1 \mid i_{r}=-i_{k} \pm 1\right\} \\
& +2 \#\left\{1 \leq r \leq k-1 \mid i_{r}=i_{k}\right\} \\
& -\delta_{i_{k}, \frac{\delta-1}{2}}-\#\left\{1 \leq r \leq k-1 \mid i_{r}=i_{k} \pm 1\right\} \\
& -2 \#\left\{1 \leq r \leq k-1 \mid i_{r}=-i_{k}\right\} .
\end{aligned}
$$

Before we construct the \mathbb{Z}-graded algebra $\mathscr{G}_{n}(\delta)$, we need to introduce some terminologies as preparation.

For $\mathbf{i} \in P^{n}$ and $1 \leq k \leq n$, we define the function $h_{k}: P^{n} \longrightarrow \mathbb{Z}$ as

$$
\begin{aligned}
h_{k}(\mathbf{i}):= & \delta_{i_{k},-\frac{\delta-1}{2}}+\#\left\{1 \leq r \leq k-1 \mid i_{r}=-i_{k} \pm 1\right\} \\
& +2 \#\left\{1 \leq r \leq k-1 \mid i_{r}=i_{k}\right\} \\
& -\delta_{i_{k}, \frac{\delta-1}{2}}-\#\left\{1 \leq r \leq k-1 \mid i_{r}=i_{k} \pm 1\right\} \\
& -2 \#\left\{1 \leq r \leq k-1 \mid i_{r}=-i_{k}\right\} .
\end{aligned}
$$

We now categorize P^{n} using h_{k}. For $1 \leq k \leq n$, define $P_{k,+}^{n}, P_{k,-}^{n}$ and $P_{k, 0}^{n}$ as subsets of P^{n} by

$$
\begin{aligned}
P_{k,+}^{n} & :=\left\{\mathbf{i} \in P^{n} \mid i_{k} \neq 0,-\frac{1}{2} \text { and } h_{k}(\mathbf{i})=0, \text { or } i_{k}=-\frac{1}{2} \text { and } h_{k}(\mathbf{i})=-1\right\} . \\
P_{k,-}^{n} & :=\left\{\mathbf{i} \in P^{n} \mid i_{k} \neq 0,-\frac{1}{2} \text { and } h_{k}(\mathbf{i})=-2, \text { or } i_{k}=-\frac{1}{2} \text { and } h_{k}(\mathbf{i})=-3\right\}, \\
P_{k, 0}^{n} & :=P^{n} \backslash\left(P_{k,+}^{n} \cup P_{k,-}^{n}\right) .
\end{aligned}
$$

Clearly we have $P^{n}=P_{k,+}^{n} \sqcup P_{k,-}^{n} \sqcup P_{k, 0}^{n}$.

The graded algebra $\mathscr{G}_{n}(\delta)$
For $\mathbf{i} \in P^{n}$ and $1 \leq k \leq n-1$, define $a_{k}(\mathbf{i}) \in \mathbb{Z}$ as

$$
a_{k}(\mathbf{i})= \begin{cases}\#\left\{1 \leq r \leq k-1 \mid i_{r} \in\{-1,1\}\right\}+1+\delta_{\frac{i_{k}-i_{k+1}}{2}, \frac{\delta-1}{2},} & \text { if } \frac{i_{k}-i_{k+1}}{2}=0 \\ \#\left\{1 \leq r \leq k-1 \mid i_{r} \in\{-1,1\}\right\}+\delta_{\frac{i_{k}-i_{k+1}}{2}, \frac{\delta-1}{2},} & \text { if } \frac{i_{k}-i_{k+1}}{2}=1 \\ \delta_{\frac{i_{k}-i_{k+1}}{2}, \frac{\delta-1}{2},} & \text { if } \frac{i_{k}-i_{k+1}}{2}=1 / 2 \\ \#\left\{1 \leq r \leq k-1 \left\lvert\, i_{r} \in\left\{ \pm \frac{i_{k}-i_{k+1}}{2}, \pm\left(\frac{i_{k}-i_{k+1}}{2}-1\right)\right\}\right.\right\} \\ \quad+\delta_{\frac{i_{k}-i_{k+1}}{2}, \frac{\delta-1}{2},} & \\ & \text { otherwise; }\end{cases}
$$

For $\mathbf{i} \in P^{n}$ and $1 \leq k \leq n-1$, define $a_{k}(\mathbf{i}) \in \mathbb{Z}$ as

$$
a_{k}(\mathbf{i})= \begin{cases}\#\left\{1 \leq r \leq k-1 \mid i_{r} \in\{-1,1\}\right\}+1+\delta_{\frac{i_{k}-i_{k+1}}{2}, \frac{\delta-1}{2},} & \text { if } \frac{i_{k}-i_{k+1}}{2}=0 \\ \#\left\{1 \leq r \leq k-1 \mid i_{r} \in\{-1,1\}\right\}+\delta_{\frac{i_{k}-i_{k+1}}{2}, \frac{\delta-1}{2},} & \text { if } \frac{i_{k}-i_{k+1}}{2}=1 \\ \delta_{\frac{i_{k}-i_{k+1}}{2}, \frac{\delta-1}{2},} & \text { if } \frac{i_{k}-i_{k+1}}{2}=1 / 2 \\ \#\left\{1 \leq r \leq k-1 \left\lvert\, i_{r} \in\left\{ \pm \frac{i_{k}-i_{k+1}}{2}, \pm\left(\frac{i_{k}-i_{k+1}}{2}-1\right)\right\}\right.\right\} & \\ \quad+\delta_{\frac{i_{k}-i_{k+1}}{2}, \frac{\delta-1}{2},} & \text { otherwise; }\end{cases}
$$

and $A_{k, 1}^{\mathbf{i}}, A_{k, 2}^{\mathbf{i}}, A_{k, 3}^{\mathrm{i}}, A_{k, 4}^{\mathrm{i}} \subset\{1,2, \ldots, k-1\}$ as
$A_{k, 1}^{\mathrm{i}}:=\left\{1 \leq r \leq k-1 \mid i_{r}=-i_{k} \pm 1\right\}, \quad A_{k, 2}^{\mathrm{i}}:=\left\{1 \leq r \leq k-1 \mid i_{r}=i_{k}\right\}$,
$A_{k, 3}^{\mathrm{i}}:=\left\{1 \leq r \leq k-1 \mid i_{r}=i_{k} \pm 1\right\}, \quad A_{k, 4}^{\mathrm{i}}:=\left\{1 \leq r \leq k-1 \mid i_{r}=-i_{k}\right\} ;$

For $\mathbf{i} \in P^{n}$ and $1 \leq k \leq n-1$, define $a_{k}(\mathbf{i}) \in \mathbb{Z}$ as

$$
a_{k}(\mathbf{i})= \begin{cases}\#\left\{1 \leq r \leq k-1 \mid i_{r} \in\{-1,1\}\right\}+1+\delta_{\frac{i_{k}-i_{k+1}}{2}, \frac{\delta-1}{2},} & \text { if } \frac{i_{k}-i_{k+1}}{2}=0 \\ \#\left\{1 \leq r \leq k-1 \mid i_{r} \in\{-1,1\}\right\}+\delta_{\frac{i_{k}-i_{k+1}}{2}, \frac{\delta-1}{2},} & \text { if } \frac{i_{k}-i_{k+1}}{2}=1 \\ \delta_{\frac{i_{k}-i_{k+1}}{2}, \frac{\delta-1}{2},} & \text { if } \frac{i_{k}-i_{k+1}}{2}=1 / 2 \\ \#\left\{1 \leq r \leq k-1 \left\lvert\, i_{r} \in\left\{ \pm \frac{i_{k}-i_{k+1}}{2}, \pm\left(\frac{i_{k}-i_{k+1}}{2}-1\right)\right\}\right.\right\} & \\ \quad+\delta_{\frac{i_{k}-i_{k+1}}{2}, \frac{\delta-1}{2},} & \text { otherwise; }\end{cases}
$$

and $A_{k, 1}^{\mathbf{i}}, A_{k, 2}^{\mathbf{i}}, A_{k, 3}^{\mathrm{i}}, A_{k, 4}^{\mathrm{i}} \subset\{1,2, \ldots, k-1\}$ as
$A_{k, 1}^{i}:=\left\{1 \leq r \leq k-1 \mid i_{r}=-i_{k} \pm 1\right\}, \quad A_{k, 2}^{i}:=\left\{1 \leq r \leq k-1 \mid i_{r}=i_{k}\right\}$,
$A_{k, 3}^{\mathrm{i}}:=\left\{1 \leq r \leq k-1 \mid i_{r}=i_{k} \pm 1\right\}, \quad A_{k, 4}^{\mathrm{i}}:=\left\{1 \leq r \leq k-1 \mid i_{r}=-i_{k}\right\} ;$
and for $\mathbf{i} \in P_{k, 0}^{n}$ and $1 \leq k \leq n-1$, define $z_{k}(\mathbf{i}) \in \mathbb{Z}$ by

$$
z_{k}(\mathbf{i})= \begin{cases}0, & \text { if } h_{k}(\mathbf{i})<-2, \text { or } h_{k}(\mathbf{i}) \geq 0 \text { and } i_{k} \neq 0 \\ (-1)^{a_{k}(\mathbf{i})}\left(1+\delta_{i_{k},-\frac{1}{2}}\right), & \text { if }-2 \leq h_{k}(\mathbf{i})<0 \\ \frac{1+(-1)^{a_{k}(i)}}{2}, & \text { if } i_{k}=0\end{cases}
$$

Let $\mathscr{G}_{n}(\delta)$ be an unital associate R-algebra with generators
$\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{k} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k} \mid 1 \leq k \leq n-1\right\} \cup\left\{\epsilon_{k} \mid 1 \leq k \leq n-1\right\}$
associated with the following relations:

Let $\mathscr{G}_{n}(\delta)$ be an unital associate R-algebra with generators
$\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{k} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k} \mid 1 \leq k \leq n-1\right\} \cup\left\{\epsilon_{k} \mid 1 \leq k \leq n-1\right\}$ associated with the following relations:
(1). Idempotent relations: Let $\mathbf{i}, \mathbf{j} \in P^{n}$ and $1 \leq k \leq n-1$. Then

$$
\begin{array}{ll}
y_{1}^{\delta_{i_{1}}, \frac{\delta-1}{2}} e(\mathbf{i})=0, & \sum_{\mathbf{i} \in P^{n}} e(\mathbf{i})=1, \\
e(\mathbf{i}) e(\mathbf{j})=\delta_{\mathbf{i}, \mathbf{j}} e(\mathbf{i}), & e(\mathbf{i}) \epsilon_{k}=\epsilon_{k} e(\mathbf{i})=0 \text { if } i_{k}+i_{k+1} \neq 0 ;
\end{array}
$$

(2). Commutation relations: Let $\mathbf{i} \in P^{n}$. Then

$$
\begin{array}{rll}
y_{k} e(\mathbf{i})=e(\mathbf{i}) y_{k}, & \psi_{k} e(\mathbf{i})=e\left(\mathbf{i} \cdot s_{k}\right) \psi_{k} & \text { and } \\
y_{k} y_{r}=y_{r} y_{k}, & y_{k} \psi_{r}=\psi_{r} y_{k}, & y_{k} \epsilon_{r}=\epsilon_{r} y_{k},
\end{array} \quad \begin{array}{lll}
\psi_{k} \psi_{r}=\psi_{r} \psi_{k}, & \psi_{k} \epsilon_{r}=\epsilon_{r} \psi_{k}, & \epsilon_{k} \epsilon_{r}=\epsilon_{r} \epsilon_{k}
\end{array} \quad \text { if }|k-r|>1 ; ~ \$
$$

(3). Essential commutation relations: Let $\mathbf{i} \in P^{n}$ and $1 \leq k \leq n-1$. Then

$$
\begin{aligned}
& \quad e(\mathbf{i}) y_{k} \psi_{k}
\end{aligned}=e(\mathbf{i}) \psi_{k} y_{k+1}+e(\mathbf{i}) \epsilon_{k} e\left(\mathbf{i} \cdot s_{k}\right)-\delta_{i_{k}, i_{k+1}} e(\mathbf{i}), ~ 子 \quad e(\mathbf{i}) \psi_{k} y_{k}=e(\mathbf{i}) y_{k+1} \psi_{k}+e(\mathbf{i}) \epsilon_{k} e\left(\mathbf{i} \cdot s_{k}\right)-\delta_{i_{k}, i_{k+1}} e(\mathbf{i}) .
$$

(4). Inverse relations: Let $\mathbf{i} \in P^{n}$ and $1 \leq k \leq n-1$. Then

$$
e(\mathbf{i}) \psi_{k}^{2}= \begin{cases}0, & \text { if } i_{k}=i_{k+1} \text { or } i_{k}+i_{k+1}=0 \text { and } h_{k}(\mathbf{i}) \neq 0 \\ \left(y_{k}-y_{k+1}\right) e(\mathbf{i}), & \text { if } i_{k}=i_{k+1}+1 \text { and } i_{k}+i_{k+1} \neq 0 \\ \left(y_{k+1}-y_{k}\right) e(\mathbf{i}), & \text { if } i_{k}=i_{k+1}-1 \text { and } i_{k}+i_{k+1} \neq 0 \\ e(\mathbf{i}), & \text { otherwise }\end{cases}
$$

(5). Essential idempotent relations: Let $\mathbf{i}, \mathbf{j}, \mathbf{k} \in P^{n}$ and $1 \leq k \leq n-1$. Then

$$
e(\mathbf{i})=(-1)^{a_{k}(\mathbf{i})} e(\mathbf{i})\left(\epsilon_{k} y_{k}+y_{k} \epsilon_{k}\right) e(\mathbf{i})
$$

$$
\text { if } \mathbf{i} \in P_{k,-}^{n} \text { and } i_{k}=-i_{k+1}
$$

$$
e(\mathbf{j}) \epsilon_{k} e(\mathbf{i}) \epsilon_{k} e(\mathbf{k})= \begin{cases}z_{k}(\mathbf{i}) e(\mathbf{j}) \epsilon_{k} e(\mathbf{k}), & \text { if } \mathbf{i} \in P_{k, 0}^{n}, \\ 0, & \text { if } \mathbf{i} \in P_{k,-,}^{n}, \\ (-1)^{a_{k}(\mathbf{i})}\left(1+\delta_{i_{k},-\frac{1}{2}}\right)\left(\sum_{r \in A_{k, 1}^{i}} y_{r}-2 \sum_{r \in A_{k, 2}^{\mathrm{i}}} y_{r},\right. & \\ \quad+\sum_{r \in A_{k, 3}^{i}} y_{r}-2 \sum_{\left.r \in A_{k, 4}^{\mathrm{i}}, y_{r}\right) e(\mathbf{j}) \epsilon_{k} e(\mathbf{k}),} \text { if } \mathbf{i} \in P_{k,+,}^{n} ;\end{cases}
$$

$$
\begin{aligned}
& e(\mathbf{i}) \epsilon_{k} e(\mathbf{i})= \begin{cases}(-1)^{a_{k}(\mathbf{i})} e(\mathbf{i}), & \text { if } \mathbf{i} \in P_{k, 0}^{n} \text { and } i_{k}=-i_{k+1} \neq \pm \frac{1}{2}, \\
(-1)^{a_{k}(\mathbf{i})+1}\left(y_{k+1}-y_{k}\right) e(\mathbf{i}), & \text { if } \mathbf{i} \in P_{k,+}^{n} ;\end{cases} \\
& y_{k+1} e(\mathbf{i})=y_{k} e(\mathbf{i})-2(-1)^{a_{k}(\mathbf{i})} y_{k} e(\mathbf{i}) \epsilon_{k} e(\mathbf{i}) \\
& =y_{k} e(\mathbf{i})-2(-1)^{a_{k}(\mathbf{i})} e(\mathbf{i}) \epsilon_{k} e(\mathbf{i}) y_{k}, \quad \text { if } \mathbf{i} \in P_{k, 0}^{n} \text { and } i_{k}=-i_{k+1}=\frac{1}{2} \text {, } \\
& e(\mathbf{i})=(-1)^{a_{k}(\mathbf{i})} e(\mathbf{i}) \epsilon_{k} e(\mathbf{i})-2(-1)^{a_{k-1}(\mathbf{i})} e(\mathbf{i}) \epsilon_{k-1} e(\mathbf{i}) \\
& +e(\mathbf{i}) \epsilon_{k-1} \epsilon_{k} e(\mathbf{i})+e(\mathbf{i}) \epsilon_{k} \epsilon_{k-1} e(\mathbf{i}), \quad \text { if } \mathbf{i} \in P_{k, 0}^{n} \\
& \text { and }-i_{k-1}=i_{k}=-i_{k+1}=-\frac{1}{2},
\end{aligned}
$$

(6). Untwist relations: Let $\mathbf{i}, \mathbf{j} \in P^{n}$ and $1 \leq k \leq n-1$. Then

$$
\begin{aligned}
& e(\mathbf{i}) \psi_{k} \epsilon_{k} e(\mathbf{j})=\left\{\begin{array}{ll}
(-1)^{a_{k}(\mathbf{i})} e(\mathbf{i}) \epsilon_{k} e(\mathbf{j}), & \text { if } \mathbf{i} \in P_{k,+}^{n} \\
0, & \text { otherwise; }
\end{array} \text { and } i_{k} \neq 0,-\frac{1}{2},\right. \\
& e\left(\mathbf{j} \epsilon_{k} \psi_{k} e(\mathbf{i})= \begin{cases}(-1)^{a_{k}(\mathbf{i})} e(\mathbf{j}) \epsilon_{k} e(\mathbf{i}), & \text { if } \mathbf{i} \in P_{k,+}^{n} \\
0, & \text { otherwise; } i_{k} \neq 0,-\frac{1}{2},\end{cases} \right.
\end{aligned}
$$

(7). Tangle relations: Let $\mathbf{i}, \mathbf{j} \in P^{n}$ and $1<k<n$. Then

$$
\begin{array}{ll}
e(\mathbf{j}) \epsilon_{k} \epsilon_{k-1} \psi_{k} e(\mathbf{i})=e(\mathbf{j}) \epsilon_{k} \psi_{k-1} e(\mathbf{i}), & e(\mathbf{i}) \psi_{k} \epsilon_{k-1} \epsilon_{k} e(\mathbf{j})=e(\mathbf{i}) \psi_{k-1} \epsilon_{k} e(\mathbf{j}), \\
e(\mathbf{i}) \epsilon_{k} \epsilon_{k-1} \epsilon_{k} e(\mathbf{j})=e\left(\mathbf{i} \epsilon_{k} e(\mathbf{j}) ;\right. & e(\mathbf{i}) \epsilon_{k-1} \epsilon_{k} \epsilon_{k-1} e(\mathbf{j})=e(\mathbf{i}) \epsilon_{k-1} e(\mathbf{j}) ; \\
e(\mathbf{i}) \epsilon_{k} e(\mathbf{j})\left(y_{k}+y_{k+1}\right)=0 ; &
\end{array}
$$

(8). Braid relations: Let $\mathcal{B}_{k}=\psi_{k} \psi_{k-1} \psi_{k}-\psi_{k-1} \psi_{k} \psi_{k-1}, \mathbf{i} \in P^{n}$ and $1<k<n$. Then

$$
e(\mathbf{i}) \mathcal{B}_{k}= \begin{cases}e(\mathbf{i}) \epsilon_{k} \epsilon_{k-1} e\left(\mathbf{i} \cdot s_{k} s_{k-1} s_{k}\right), & \text { if } i_{k}+i_{k+1}=0 \text { and } i_{k-1}= \pm\left(i_{k}-1\right), \\ -e(\mathbf{i}) \epsilon_{k} \epsilon_{k-1} e\left(\mathbf{i} \cdot s_{k} s_{k-1} s_{k}\right), & \text { if } i_{k}+i_{k+1}=0 \text { and } i_{k-1}= \pm\left(i_{k}+1\right), \\ e(\mathbf{i}) \epsilon_{k-1} \epsilon_{k} e\left(\mathbf{i} \cdot s_{k} s_{k-1} s_{k}\right), & \text { if } i_{k-1}+i_{k}=0 \text { and } i_{k+1}= \pm\left(i_{k}-1\right), \\ -e(\mathbf{i}) \epsilon_{k-1} \epsilon_{k} e\left(\mathbf{i} \cdot s_{k} s_{k-1} s_{k}\right), & \text { if } i_{k-1}+i_{k}=0 \text { and } i_{k+1}= \pm\left(i_{k}+1\right), \\ -(-1)^{a_{k-1}(\mathbf{i})} e(\mathbf{i}) \epsilon_{k-1} e\left(\mathbf{i} \cdot s_{k} s_{k-1} s_{k}\right), & \text { if } i_{k-1}=-i_{k}=i_{k+1} \neq 0, \pm \frac{1}{2} \\ & \quad \text { and } h_{k}(\mathbf{i})=0, \\ (-1)^{a_{k}(\mathbf{i})} e(\mathbf{i}) \epsilon_{k} e\left(\mathbf{i} \cdot s_{k} s_{k-1} s_{k}\right), & \text { if } i_{k-1}=-i_{k}=i_{k+1} \neq 0, \pm \frac{1}{2} \\ & \quad \text { and } h_{k-1}(\mathbf{i})=0, \\ e(\mathbf{i}), & \text { if } i_{k-1}+i_{k}, i_{k-1}+i_{k+1}, i_{k}+i_{k+1} \neq 0 \\ & \quad \text { and } i_{k-1}=i_{k+1}=i_{k}-1, \\ -e(\mathbf{i}), & \text { if } i_{k-1}+i_{k}, i_{k-1}+i_{k+1}, i_{k}+i_{k+1} \neq 0 \\ 0, & \text { and } i_{k-1}=i_{k+1}=i_{k}+1,\end{cases}
$$

The algebra is self-graded, where the degree of $e(\mathbf{i})$ is $0, y_{k}$ is 2 and

$$
\operatorname{deg} e(\mathbf{i}) \psi_{k}= \begin{cases}1, & \text { if } i_{k}=i_{k+1} \pm 1 \\ -2, & \text { if } i_{k}=i_{k+1} \\ 0, & \text { otherwise }\end{cases}
$$

The algebra is self-graded, where the degree of $e(\mathbf{i})$ is $0, y_{k}$ is 2 and

$$
\operatorname{deg} e(\mathbf{i}) \psi_{k}= \begin{cases}1, & \text { if } i_{k}=i_{k+1} \pm 1 \\ -2, & \text { if } i_{k}=i_{k+1} \\ 0, & \text { otherwise }\end{cases}
$$

and $\operatorname{deg} e(\mathbf{i}) \epsilon_{k} e(\mathbf{j})=\operatorname{deg}_{k}(\mathbf{i})+\operatorname{deg}_{k}(\mathbf{j})$, where

$$
\operatorname{deg}_{k}(\mathbf{i})= \begin{cases}1, & \text { if } \mathbf{i} \in P_{k,+}^{n}, \\ -1, & \text { if } \mathbf{i} \in P_{k,-}^{n}, \\ 0, & \text { if } \mathbf{i} \in P_{k, 0}^{n}\end{cases}
$$

The algebra is self-graded, where the degree of $e(\mathbf{i})$ is $0, y_{k}$ is 2 and

$$
\operatorname{deg} e(\mathbf{i}) \psi_{k}= \begin{cases}1, & \text { if } i_{k}=i_{k+1} \pm 1 \\ -2, & \text { if } i_{k}=i_{k+1} \\ 0, & \text { otherwise }\end{cases}
$$

and $\operatorname{deg} e(\mathbf{i}) \epsilon_{k} e(\mathbf{j})=\operatorname{deg}_{k}(\mathbf{i})+\operatorname{deg}_{k}(\mathbf{j})$, where

$$
\operatorname{deg}_{k}(\mathbf{i})= \begin{cases}1, & \text { if } \mathbf{i} \in P_{k,+}^{n} \\ -1, & \text { if } \mathbf{i} \in P_{k,-}^{n}, \\ 0, & \text { if } \mathbf{i} \in P_{k, 0}^{n}\end{cases}
$$

It is easy to verify that there exists an involution $*$ on $\mathscr{G}_{n}(\delta)$ such that $e(\mathbf{i})^{*}=e(\mathbf{i}), y_{r}^{*}=y_{r}, \psi_{k}^{*}=\psi_{k}$ and $\epsilon_{k}^{*}=\epsilon_{k}$ for $\mathbf{i} \in P^{n}, 1 \leq r \leq n$ and $1 \leq k \leq n-1$.

The graded algebra $\mathscr{G}_{n}(\delta)$

We have an diagrammatic representation of $\mathscr{G}_{n}(\delta)$.

We have an diagrammatic representation of $\mathscr{G}_{n}(\delta)$.To do this, we associate to each generator of $\mathscr{G}_{n}(\delta)$ an P-labelled decorated planar diagram on $2 n$ dots in the following way:

$$
\begin{aligned}
& e(\mathbf{i})=\left.\left.\right|_{i_{1}} ^{i_{1}}\right|_{i_{2}} ^{i_{2}} \ldots \|_{i_{n}}^{i_{n}}, \\
& e(\mathbf{i}) y_{r}=\left.\left.\left.\left.\left.\left.\right|_{i_{1}} ^{i_{1}} \ldots\right|_{i_{r-1}} ^{i_{r-1}}\right|_{i_{r}} ^{i_{r}}\right|_{i_{r+1}} ^{i_{r}}\right|_{i_{r+1}} ^{i_{n}}\right|_{i_{n}} ^{i_{n}},
\end{aligned}
$$

for $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right) \in P^{n}, \mathbf{j}=\left(j_{1}, \ldots, j_{n}\right) \in P^{n}, 1 \leq r \leq n$ and $1 \leq k \leq n-1$. The labels connected by a vertical string have to be the same, and the sum of labels connected by a horizontal string equals 0 .

We have an diagrammatic representation of $\mathscr{G}_{n}(\delta)$.To do this, we associate to each generator of $\mathscr{G}_{n}(\delta)$ an P-labelled decorated planar diagram on $2 n$ dots in the following way:

$$
e(\mathbf{i}) \psi_{k}=\underbrace{i_{1}}_{i_{1}}
$$

for $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right) \in P^{n}, \mathbf{j}=\left(j_{1}, \ldots, j_{n}\right) \in P^{n}, 1 \leq r \leq n$ and $1 \leq k \leq n-1$. The labels connected by a vertical string have to be the same, and the sum of labels connected by a horizontal string equals 0 .

Diagrams are considered up to isotopy, and multiplication of diagrams is given by concatenation, subject to the relations of $\mathscr{G}_{n}(\delta)$ listed before.

We will construct a set of homogeneous elements such that these elements $\operatorname{span} \mathscr{G}_{n}(\delta)$.

We will construct a set of homogeneous elements such that these elements $\operatorname{span} \mathscr{G}_{n}(\delta)$.

Before that, we introduce some combinatorics of up-down tableaux and define the degree of up-down tableaux.

We will construct a set of homogeneous elements such that these elements span $\mathscr{G}_{n}(\delta)$.

Before that, we introduce some combinatorics of up-down tableaux and define the degree of up-down tableaux.

Define $\widehat{B}_{n}:=\left\{(\lambda, f) \mid \lambda \vdash n-2 f\right.$, and $\left.0 \leq f \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$ and \widehat{B} to be the graph with

- vertices at level n : \widehat{B}_{n}, and
- an edge $(\lambda, f) \rightarrow(\mu, m),(\lambda, f) \in \widehat{B}_{n-1}$ and $(\mu, m) \in \widehat{B}_{n}$, if either μ is obtained by adding a node to λ, or by deleting a node from λ.

Let $(\lambda, f) \in \widehat{B}_{n}$. An up-down tableau of shape (λ, f) is a sequence

$$
\mathrm{t}=\left(\left(\lambda^{(0)}, f_{0}\right),\left(\lambda^{(1)}, f_{1}\right), \ldots,\left(\lambda^{(n)}, f_{n}\right)\right),
$$

where $\left(\lambda^{(0)}, f_{0}\right)=(\emptyset, 0),\left(\lambda^{(n)}, f_{n}\right)=(\lambda, f)$ and $\left(\lambda^{(k-1)}, f_{k-1}\right) \rightarrow\left(\lambda^{(k)}, f_{k}\right)$ is an edge in \widehat{B}, for $k=1, \ldots, n$.

Let $(\lambda, f) \in \widehat{B}_{n}$. An up-down tableau of shape (λ, f) is a sequence

$$
\mathrm{t}=\left(\left(\lambda^{(0)}, f_{0}\right),\left(\lambda^{(1)}, f_{1}\right), \ldots,\left(\lambda^{(n)}, f_{n}\right)\right),
$$

where $\left(\lambda^{(0)}, f_{0}\right)=(\emptyset, 0),\left(\lambda^{(n)}, f_{n}\right)=(\lambda, f)$ and $\left(\lambda^{(k-1)}, f_{k-1}\right) \rightarrow\left(\lambda^{(k)}, f_{k}\right)$ is an edge in \widehat{B}, for $k=1, \ldots, n$.

Suppose λ is a partition. A node $\alpha=(r, I)>0$ is addable if $\lambda \cup\{\alpha\}$ is still a partition, and it is removable if $\lambda \backslash\{\alpha\}$ is still a partition. Let $\mathscr{A}(\lambda)$ and $\mathscr{R}(\lambda)$ be the sets of addable and removable nodes of λ, respectively.

Let $(\lambda, f) \in \widehat{B}_{n}$. An up-down tableau of shape (λ, f) is a sequence

$$
\mathrm{t}=\left(\left(\lambda^{(0)}, f_{0}\right),\left(\lambda^{(1)}, f_{1}\right), \ldots,\left(\lambda^{(n)}, f_{n}\right)\right),
$$

where $\left(\lambda^{(0)}, f_{0}\right)=(\emptyset, 0),\left(\lambda^{(n)}, f_{n}\right)=(\lambda, f)$ and $\left(\lambda^{(k-1)}, f_{k-1}\right) \rightarrow\left(\lambda^{(k)}, f_{k}\right)$ is an edge in \widehat{B}, for $k=1, \ldots, n$.

Suppose λ is a partition. A node $\alpha=(r, I)>0$ is addable if $\lambda \cup\{\alpha\}$ is still a partition, and it is removable if $\lambda \backslash\{\alpha\}$ is still a partition. Let $\mathscr{A}(\lambda)$ and $\mathscr{R}(\lambda)$ be the sets of addable and removable nodes of λ, respectively.

Recall $\delta \in R$. Suppose $\alpha=(r, I)$ is a node. The residue of α is defined to be $\operatorname{res}(\alpha)=\frac{\delta-1}{2}+I-r$.

Let $(\lambda, f) \in \widehat{B}_{n}$. An up-down tableau of shape (λ, f) is a sequence

$$
\mathrm{t}=\left(\left(\lambda^{(0)}, f_{0}\right),\left(\lambda^{(1)}, f_{1}\right), \ldots,\left(\lambda^{(n)}, f_{n}\right)\right),
$$

where $\left(\lambda^{(0)}, f_{0}\right)=(\emptyset, 0),\left(\lambda^{(n)}, f_{n}\right)=(\lambda, f)$ and $\left(\lambda^{(k-1)}, f_{k-1}\right) \rightarrow\left(\lambda^{(k)}, f_{k}\right)$ is an edge in \widehat{B}, for $k=1, \ldots, n$.

Suppose λ is a partition. A node $\alpha=(r, I)>0$ is addable if $\lambda \cup\{\alpha\}$ is still a partition, and it is removable if $\lambda \backslash\{\alpha\}$ is still a partition. Let $\mathscr{A}(\lambda)$ and $\mathscr{R}(\lambda)$ be the sets of addable and removable nodes of λ, respectively.

Recall $\delta \in R$. Suppose $\alpha=(r, I)$ is a node. The residue of α is defined to be $\operatorname{res}(\alpha)=\frac{\delta-1}{2}+I-r$.

Suppose we have $(\lambda, f) \rightarrow(\mu, m)$. Write $\lambda \ominus \mu=\alpha$ if $\lambda=\mu \cup\{\alpha\}$ or $\mu=\lambda \cup\{\alpha\}$.

Degree of up-down tableaux

For any up-down tableau $\mathrm{t}=\left(\left(\lambda^{(0)}, f_{0}\right),\left(\lambda^{(1)}, f_{1}\right), \ldots,\left(\lambda^{(n)}, f_{n}\right)\right)$ and an integer k with $1 \leq k \leq n$, let $\alpha=(r, l)=\lambda^{(k-1)} \ominus \lambda^{(k)}$. Define

$$
\begin{aligned}
& \mathscr{A}_{\mathrm{t}}(k)= \begin{cases}\left\{\beta=(k, c) \in \mathscr{A}\left(\lambda^{(k-1)}\right) \mid \operatorname{res}(\beta)=\operatorname{res}(\alpha) \text { and } k>r\right\}, & \text { if } \lambda^{(k)} \supset \lambda^{(k-1)}, \\
\left\{\beta=(k, c) \in \mathscr{A}\left(\lambda^{(k)}\right) \mid \operatorname{res}(\beta)=-\operatorname{res}(\alpha) \text { and } k \neq r\right\}, & \text { if } \lambda^{(k)} \subset \lambda^{(k-1)} ;\end{cases} \\
& \mathscr{R}_{\mathrm{t}}(k)= \begin{cases}\left\{\beta=(k, c) \in \mathscr{R}\left(\lambda^{(k-1)}\right) \mid \operatorname{res}(\beta)=\operatorname{res}(\alpha) \text { and } k>r\right\}, & \text { if } \lambda^{(k)} \supset \lambda^{(k-1)}, \\
\left\{\beta=(k, c) \in \mathscr{R}\left(\lambda^{(k)}\right) \mid \operatorname{res}(\beta)=-\operatorname{res}(\alpha)\right\}, & \text { if } \lambda^{(k)} \subset \lambda^{(k-1)} .\end{cases}
\end{aligned}
$$

Degree of up-down tableaux

For any up-down tableau $\mathrm{t}=\left(\left(\lambda^{(0)}, f_{0}\right),\left(\lambda^{(1)}, f_{1}\right), \ldots,\left(\lambda^{(n)}, f_{n}\right)\right)$ and an integer k with $1 \leq k \leq n$, let $\alpha=(r, l)=\lambda^{(k-1)} \ominus \lambda^{(k)}$. Define $\mathscr{A}_{\mathrm{t}}(k)= \begin{cases}\left\{\beta=(k, c) \in \mathscr{A}\left(\lambda^{(k-1)}\right) \mid \operatorname{res}(\beta)=\operatorname{res}(\alpha) \text { and } k>r\right\}, & \text { if } \lambda^{(k)} \supset \lambda^{(k-1)}, \\ \left\{\beta=(k, c) \in \mathscr{A}\left(\lambda^{(k)}\right) \mid \operatorname{res}(\beta)=-\operatorname{res}(\alpha) \text { and } k \neq r\right\}, & \text { if } \lambda^{(k)} \subset \lambda^{(k-1)} ;\end{cases}$ $\mathscr{R}_{\mathrm{t}}(k)= \begin{cases}\left\{\beta=(k, c) \in \mathscr{R}\left(\lambda^{(k-1)}\right) \mid \operatorname{res}(\beta)=\operatorname{res}(\alpha) \text { and } k>r\right\}, & \text { if } \lambda^{(k)} \supset \lambda^{(k-1)}, \\ \left\{\beta=(k, c) \in \mathscr{R}\left(\lambda^{(k)}\right) \mid \operatorname{res}(\beta)=-\operatorname{res}(\alpha)\right\}, & \text { if } \lambda^{(k)} \subset \lambda^{(k-1)} .\end{cases}$

Definition

For any up-down tableau $\mathrm{t}=\left(\left(\lambda^{(0)}, f_{0}\right),\left(\lambda^{(1)}, f_{1}\right), \ldots,\left(\lambda^{(n)}, f_{n}\right)\right)$ and an integer k with $1 \leq k \leq n$, let $\alpha=(r, l)=\lambda^{(k-1)} \ominus \lambda^{(k)}$. Define

$$
\operatorname{deg}\left(\left.\left.\mathrm{t}\right|_{k-1} \Rightarrow \mathrm{t}\right|_{k}\right):= \begin{cases}\left|\mathscr{A}_{\mathrm{t}}(k)\right|-\left|\mathscr{R}_{\mathrm{t}}(k)\right|, & \text { if } \lambda^{(k)} \supset \lambda^{(k-1)}, \\ \left|\mathscr{A}_{\mathrm{t}}(k)\right|-\left|\mathscr{R}_{\mathrm{t}}(k)\right|+\delta_{\mathrm{res}(\alpha),-\frac{1}{2}}, & \text { if } \lambda^{(k)} \subset \lambda^{(k-1)},\end{cases}
$$

and the degree of t is

$$
\operatorname{deg} t:=\sum_{k=1}^{n} \operatorname{deg}\left(\left.\left.t\right|_{k-1} \Rightarrow t\right|_{k}\right)
$$

Theorem

There exist homogeneous elements $\left\{\psi_{\mathrm{st}} \mid(\lambda, f) \in \widehat{B}_{n}, \mathrm{~s}, \mathrm{t} \in \mathscr{T}_{n}^{u d}(\lambda)\right\}$ in $\mathscr{G}_{n}(\delta)$ with the following properties:

Theorem

There exist homogeneous elements $\left\{\psi_{\mathrm{st}} \mid(\lambda, f) \in \widehat{B}_{n}, \mathrm{~s}, \mathrm{t} \in \mathscr{T}_{n}^{\text {ud }}(\lambda)\right\}$ in $\mathscr{G}_{n}(\delta)$ with the following properties:

- $\operatorname{deg} \psi_{\mathrm{st}}=\operatorname{deg} \mathrm{s}+\operatorname{deg} \mathrm{t}$.

Theorem

There exist homogeneous elements $\left\{\psi_{\mathrm{st}} \mid(\lambda, f) \in \widehat{B}_{n}, \mathrm{~s}, \mathrm{t} \in \mathscr{T}_{n}^{u d}(\lambda)\right\}$ in $\mathscr{G}_{n}(\delta)$ with the following properties:

- $\operatorname{deg} \psi_{\mathrm{st}}=\operatorname{deg} \mathrm{s}+\operatorname{deg} \mathrm{t}$.
- For any $\mathbf{i} \in P^{n}, e(\mathbf{i})=\sum_{s, t} c_{s t} \psi_{\mathrm{st}}$ with $c_{\mathrm{st}} \in R$, and $c_{\mathrm{st}} \neq 0$ only if \mathbf{i} is the residue sequence of s and t .

Theorem

There exist homogeneous elements $\left\{\psi_{\mathbf{s t}} \mid(\lambda, f) \in \widehat{B}_{n}, \mathbf{s}, \mathrm{t} \in \mathscr{T}_{n}^{u d}(\lambda)\right\}$ in $\mathscr{G}_{n}(\delta)$ with the following properties:

- $\operatorname{deg} \psi_{\mathrm{st}}=\operatorname{deg} \mathrm{s}+\operatorname{deg} \mathrm{t}$.
- For any $\mathbf{i} \in P^{n}, e(\mathbf{i})=\sum_{s, t} c_{s t} \psi_{\mathrm{st}}$ with $c_{\mathrm{st}} \in R$, and $c_{\mathrm{st}} \neq 0$ only if \mathbf{i} is the residue sequence of s and t .
- For any $(\lambda, f) \in \widehat{B}_{n}, \mathrm{~s}, \mathrm{t} \in \mathscr{T}_{n}^{\text {ud }}(\lambda)$ and $a \in \mathscr{G}_{n}(\delta)$, we have

$$
\psi_{\mathrm{st}} a=\sum_{\mathrm{v} \in \mathscr{T}_{n}^{u d}(\lambda)} c_{\mathrm{v}} \psi_{\mathrm{sv}}+\sum_{\substack{(\mu, \ell)>(\lambda, f) \\ \mathrm{u}, \mathrm{v} \in \mathscr{T}_{n}^{u d}(\mu)}} c_{\mathrm{uv}} \psi_{\mathrm{uv}},
$$

with $c_{\mathrm{v}}, c_{\mathrm{uv}} \in R$ and $>$ is the lexicographic ordering of \widehat{B}_{n}.

Theorem

There exist homogeneous elements $\left\{\psi_{\mathrm{st}} \mid(\lambda, f) \in \widehat{B}_{n}, \mathrm{~s}, \mathrm{t} \in \mathscr{T}_{n}^{\text {ud }}(\lambda)\right\}$ in $\mathscr{G}_{n}(\delta)$ with the following properties:

- $\operatorname{deg} \psi_{\mathrm{st}}=\operatorname{deg} \mathrm{s}+\operatorname{deg} \mathrm{t}$.
- For any $\mathbf{i} \in P^{n}, e(\mathbf{i})=\sum_{s, t} c_{s t} \psi_{\mathrm{st}}$ with $c_{\mathrm{st}} \in R$, and $c_{\mathrm{st}} \neq 0$ only if \mathbf{i} is the residue sequence of s and t .
- For any $(\lambda, f) \in \widehat{B}_{n}, \mathrm{~s}, \mathrm{t} \in \mathscr{T}_{n}^{\text {ud }}(\lambda)$ and $a \in \mathscr{G}_{n}(\delta)$, we have

$$
\psi_{\mathrm{st}} a=\sum_{\mathrm{v} \in \mathscr{T}_{n}^{u d}(\lambda)} c_{\mathrm{v}} \psi_{\mathrm{sv}}+\sum_{\substack{(\mu, \ell)>(\lambda, f) \\ u, v \in \mathscr{T}_{n}^{u d}(\mu)}} c_{\mathrm{uv}} \psi_{\mathrm{uv}},
$$

with $c_{\mathrm{v}}, c_{\mathrm{uv}} \in R$ and $>$ is the lexicographic ordering of \widehat{B}_{n}.
Moreover, $\left\{\psi_{\text {st }} \mid(\lambda, f) \in \widehat{B}_{n}, \mathrm{~s}, \mathrm{t} \in \mathscr{T}_{n}^{u d}(\lambda)\right\}$ spans $\mathscr{G}_{n}(\delta)$.

The homogeneous elements of $\mathscr{G}_{n}(\delta)$

The above Theorem tells us

The above Theorem tells us

- $e(\mathbf{i})=0$ if \mathbf{i} is not the residue sequence of some up-down tableaux.

The above Theorem tells us

- $e(\mathbf{i})=0$ if \mathbf{i} is not the residue sequence of some up-down tableaux.
- the dimension of $\mathscr{G}_{n}(\delta)$ is bounded above by $(2 n-1)!!=\operatorname{dim} \mathscr{B}_{n}(\delta)$.

The above Theorem tells us

- $e(\mathbf{i})=0$ if \mathbf{i} is not the residue sequence of some up-down tableaux.
- the dimension of $\mathscr{G}_{n}(\delta)$ is bounded above by $(2 n-1)!!=\operatorname{dim} \mathscr{B}_{n}(\delta)$.
- if $\operatorname{dim} \mathscr{G}_{n}(\delta)=(2 n-1)!!=\operatorname{dim} \mathscr{B}_{n}(\delta)$, then

$$
\left\{\psi_{s t} \mid(\lambda, f) \in \widehat{B}_{n}, \mathbf{s}, \mathrm{t} \in \mathscr{T}_{n}^{u d}(\lambda)\right\}
$$

forms a graded cellular basis, which makes $\mathscr{G}_{n}(\delta)$ be a graded cellular algebra.

The above Theorem tells us

- $e(\mathbf{i})=0$ if \mathbf{i} is not the residue sequence of some up-down tableaux.
- the dimension of $\mathscr{G}_{n}(\delta)$ is bounded above by $(2 n-1)!!=\operatorname{dim} \mathscr{B}_{n}(\delta)$.
- if $\operatorname{dim} \mathscr{G}_{n}(\delta)=(2 n-1)!!=\operatorname{dim} \mathscr{B}_{n}(\delta)$, then

$$
\left\{\psi_{s t} \mid(\lambda, f) \in \widehat{B}_{n}, \mathrm{~s}, \mathrm{t} \in \mathscr{T}_{n}^{u d}(\lambda)\right\}
$$

forms a graded cellular basis, which makes $\mathscr{G}_{n}(\delta)$ be a graded cellular algebra.

- y_{k} 's are nilpotent, i.e. for $N \gg 0, y_{k}^{N}=0$, because $\max _{\mathrm{s}, \mathrm{t}} \operatorname{deg} \psi_{\mathrm{st}}<\infty$.

We focus on $\mathscr{B}_{n}(\delta)$ and construct a generating set of $\mathscr{B}_{n}(\delta)$

$$
\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{k} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k}, \epsilon_{k} \mid 1 \leq k \leq n-1\right\},
$$

We focus on $\mathscr{B}_{n}(\delta)$ and construct a generating set of $\mathscr{B}_{n}(\delta)$

$$
\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{k} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k}, \epsilon_{k} \mid 1 \leq k \leq n-1\right\}
$$

Let L_{r}, for $1 \leq r \leq n$, be Jucys-Murphy elements of $\mathscr{B}_{n}(\delta)$. For any finite dimensional $\mathscr{B}_{n}(\delta)$-module M, the eigenvalues of each L_{r} on M belongs to P. So M decomposes as the direct $\operatorname{sum} M=\bigoplus_{\mathbf{i} \in P^{n}} M_{\mathbf{i}}$ of weight spaces

$$
M_{\mathbf{i}}=\left\{v \in M \mid\left(L_{r}-i_{r}\right)^{N} v=0 \text { for all } r=1,2, \ldots, n \text { and } N \gg 0\right\}
$$

We deduce that there is a system $\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\}$ of mutually orthogonal idempotents in $\mathscr{B}_{n}(\delta)$ such that $\operatorname{Me}(\mathbf{i})=M_{\mathbf{i}}$ for each finite dimensional module M, and $e(\mathbf{i}) \neq 0$ if and only if \mathbf{i} is the residue sequence of some up-down tableaux.

We focus on $\mathscr{B}_{n}(\delta)$ and construct a generating set of $\mathscr{B}_{n}(\delta)$

$$
\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{k} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k}, \epsilon_{k} \mid 1 \leq k \leq n-1\right\}
$$

Let L_{r}, for $1 \leq r \leq n$, be Jucys-Murphy elements of $\mathscr{B}_{n}(\delta)$. For any finite dimensional $\mathscr{B}_{n}(\delta)$-module M, the eigenvalues of each L_{r} on M belongs to P. So M decomposes as the direct $\operatorname{sum} M=\bigoplus_{\mathbf{i} \in P^{n}} M_{\mathbf{i}}$ of weight spaces

$$
M_{\mathbf{i}}=\left\{v \in M \mid\left(L_{r}-i_{r}\right)^{N} v=0 \text { for all } r=1,2, \ldots, n \text { and } N \gg 0\right\}
$$

We deduce that there is a system $\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\}$ of mutually orthogonal idempotents in $\mathscr{B}_{n}(\delta)$ such that $\operatorname{Me}(\mathbf{i})=M_{\mathbf{i}}$ for each finite dimensional module M, and $e(\mathbf{i}) \neq 0$ if and only if \mathbf{i} is the residue sequence of some up-down tableaux.

Define $I^{n}=\left\{\mathbf{i} \in P^{n} \mid \mathbf{i}\right.$ is the residue sequence of some up-down tableaux $\}$.

We focus on $\mathscr{B}_{n}(\delta)$ and construct a generating set of $\mathscr{B}_{n}(\delta)$

$$
\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{k} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k}, \epsilon_{k} \mid 1 \leq k \leq n-1\right\}
$$

Let L_{r}, for $1 \leq r \leq n$, be Jucys-Murphy elements of $\mathscr{B}_{n}(\delta)$. For any finite dimensional $\mathscr{B}_{n}(\delta)$-module M, the eigenvalues of each L_{r} on M belongs to P. So M decomposes as the direct sum $M=\bigoplus_{\mathbf{i} \in P^{n}} M_{\mathbf{i}}$ of weight spaces

$$
M_{\mathbf{i}}=\left\{v \in M \mid\left(L_{r}-i_{r}\right)^{N} v=0 \text { for all } r=1,2, \ldots, n \text { and } N \gg 0\right\}
$$

We deduce that there is a system $\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\}$ of mutually orthogonal idempotents in $\mathscr{B}_{n}(\delta)$ such that $\operatorname{Me}(\mathbf{i})=M_{\mathbf{i}}$ for each finite dimensional module M, and $e(\mathbf{i}) \neq 0$ if and only if \mathbf{i} is the residue sequence of some up-down tableaux.

Define $I^{n}=\left\{\mathbf{i} \in P^{n} \mid \mathbf{i}\right.$ is the residue sequence of some up-down tableaux $\}$.For an integer r with $1 \leq r \leq n$, define

$$
y_{r}:=\sum_{\mathbf{i} \in I^{n}}\left(L_{r}-i_{r}\right) e(\mathbf{i}) \in \mathscr{B}_{n}(\delta)
$$

Generating set of $\mathscr{B}_{n}(\delta)$

For any $\mathbf{i} \in I^{n}$, define $P_{k}(\mathbf{i})^{-1}, Q_{k}(\mathbf{i})^{-1}$ and $V_{k}(\mathbf{i})$ as elements generated by L_{r} 's.

For any $\mathbf{i} \in I^{n}$, define $P_{k}(\mathbf{i})^{-1}, Q_{k}(\mathbf{i})^{-1}$ and $V_{k}(\mathbf{i})$ as elements generated by L_{r} 's. We define

$$
\begin{aligned}
& e(\mathbf{i}) \psi_{k} e(\mathbf{j}):= \begin{cases}0, & \text { if } \mathbf{j} \neq \mathbf{i} \cdot s_{k}, \\
e(\mathbf{i}) P_{k}(\mathbf{i})^{-1}\left(s_{k}-V_{k}(\mathbf{i})\right) Q_{k}(\mathbf{j})^{-1} e(\mathbf{j}), & \text { if } \mathbf{j}=\mathbf{i} \cdot s_{k}\end{cases} \\
& e(\mathbf{i}) \epsilon_{k} e(\mathbf{j}):=e(\mathbf{i}) P_{k}(\mathbf{i})^{-1} e_{k} Q_{k}(\mathbf{j})^{-1} e(\mathbf{j}) .
\end{aligned}
$$

and

$$
\psi_{k}=\sum_{\mathbf{i} \in I^{n}} \sum_{\mathbf{j} \in I^{n}} e(\mathbf{i}) \psi_{k} e(\mathbf{j}) \in \mathscr{B}_{n}(\delta), \quad \epsilon_{k}=\sum_{\mathbf{i} \in I^{n}} \sum_{\mathbf{j} \in I^{n}} e(\mathbf{i}) \epsilon_{k} e(\mathbf{j}) \in \mathscr{B}_{n}(\delta)
$$

For any $\mathbf{i} \in I^{n}$, define $P_{k}(\mathbf{i})^{-1}, Q_{k}(\mathbf{i})^{-1}$ and $V_{k}(\mathbf{i})$ as elements generated by L_{r} 's. We define

$$
\begin{aligned}
& e(\mathbf{i}) \psi_{k} e(\mathbf{j}):= \begin{cases}0, & \text { if } \mathbf{j} \neq \mathbf{i} \cdot s_{k} \\
e(\mathbf{i}) P_{k}(\mathbf{i})^{-1}\left(s_{k}-V_{k}(\mathbf{i})\right) Q_{k}(\mathbf{j})^{-1} e(\mathbf{j}), & \text { if } \mathbf{j}=\mathbf{i} \cdot s_{k}\end{cases} \\
& e(\mathbf{i}) \epsilon_{k} e(\mathbf{j}):=e(\mathbf{i}) P_{k}(\mathbf{i})^{-1} e_{k} Q_{k}(\mathbf{j})^{-1} e(\mathbf{j}) .
\end{aligned}
$$

and

$$
\psi_{k}=\sum_{\mathbf{i} \in I^{n}} \sum_{\mathbf{j} \in I^{n}} e(\mathbf{i}) \psi_{k} e(\mathbf{j}) \in \mathscr{B}_{n}(\delta), \quad \epsilon_{k}=\sum_{\mathbf{i} \in I^{n}} \sum_{\mathbf{j} \in I^{n}} e(\mathbf{i}) \epsilon_{k} e(\mathbf{j}) \in \mathscr{B}_{n}(\delta)
$$

Proposition

The elements

$$
\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{r} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k}, \epsilon_{k} \mid 1 \leq k \leq n-1\right\}
$$

generates $\mathscr{B}_{n}(\delta)$.

Theorem

The elements of $\mathscr{B}_{n}(\delta)$

$$
\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{r} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k}, \epsilon_{k} \mid 1 \leq k \leq n-1\right\}
$$

satisfy the relations of $\mathscr{G}_{n}(\delta)$.

Theorem

The elements of $\mathscr{B}_{n}(\delta)$

$$
\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{r} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k}, \epsilon_{k} \mid 1 \leq k \leq n-1\right\}
$$

satisfy the relations of $\mathscr{G}_{n}(\delta)$.

The above Theorem tells us there exists a surjective homomorphism $\mathscr{G}_{n}(\delta) \longrightarrow \mathscr{B}_{n}(\delta)$ by sending

$$
e(\mathbf{i}) \mapsto e(\mathbf{i}), \quad y_{r} \mapsto y_{r}, \quad \psi_{k} \mapsto \psi_{k}, \quad \epsilon_{k} \mapsto \epsilon_{k}
$$

So the dimension of $\mathscr{G}_{n}(\delta)$ is bounded below by $(2 n-1)!!=\operatorname{dim} \mathscr{B}_{n}(\delta)$, which forces $\operatorname{dim} \mathscr{G}_{n}(\delta)=(2 n-1)!!=\operatorname{dim} \mathscr{B}_{n}(\delta)$ and the surjective homomorphism $\mathscr{G}_{n}(\delta) \longrightarrow \mathscr{B}_{n}(\delta)$ is actually an isomorphism.

Theorem

Suppose R is a field of characteristic 0 and $\delta \in R$. Then $\mathscr{B}_{n}(\delta) \cong \mathscr{G}_{n}(\delta)$. Moreover, $\mathscr{B}_{n}(\delta)$ is a graded cellular algebra with a graded cellular basis

$$
\left\{\psi_{\mathrm{st}} \mid(\lambda, f) \in \widehat{B}_{n}, \mathbf{s}, \mathrm{t} \in \mathscr{T}_{n}^{u d}(\lambda)\right\}
$$

Up to now we only consider $\mathscr{B}_{n}(\delta)$ over a field R of characteristic $p=0$.

Up to now we only consider $\mathscr{B}_{n}(\delta)$ over a field R of characteristic $p=0$.
For $\mathscr{B}_{n}(\delta)$ over a field with positive characteristic, or more generally, for cyclotomic Nazarov-Wenzl algebras $\mathscr{W}_{r, n}(\mathbf{u})$ over arbitrary field, we should be able to construct a \mathbb{Z}-graded algebra similar to $\mathscr{G}_{n}(\delta)$ isomorphic to $\mathscr{W}_{r, n}(\mathbf{u})$.

Up to now we only consider $\mathscr{B}_{n}(\delta)$ over a field R of characteristic $p=0$.
For $\mathscr{B}_{n}(\delta)$ over a field with positive characteristic, or more generally, for cyclotomic Nazarov-Wenzl algebras $\mathscr{W}_{r, n}(\mathbf{u})$ over arbitrary field, we should be able to construct a \mathbb{Z}-graded algebra similar to $\mathscr{G}_{n}(\delta)$ isomorphic to $\mathscr{W}_{r, n}(\mathbf{u})$.

The algebras are generated with elements

$$
\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{r} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k}, \epsilon_{k} \mid 1 \leq k \leq n-1\right\}
$$

with grading similar to $\mathscr{G}_{n}(\delta)$.

Up to now we only consider $\mathscr{B}_{n}(\delta)$ over a field R of characteristic $p=0$.
For $\mathscr{B}_{n}(\delta)$ over a field with positive characteristic, or more generally, for cyclotomic Nazarov-Wenzl algebras $\mathscr{W}_{r, n}(\mathbf{u})$ over arbitrary field, we should be able to construct a \mathbb{Z}-graded algebra similar to $\mathscr{G}_{n}(\delta)$ isomorphic to $\mathscr{W}_{r, n}(\mathbf{u})$.

The algebras are generated with elements

$$
\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{r} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k}, \epsilon_{k} \mid 1 \leq k \leq n-1\right\}
$$

with grading similar to $\mathscr{G}_{n}(\delta)$.
We are also able to construct a set of homogeneous elements

$$
\left\{\psi_{\mathrm{st}} \mid(\lambda, f) \in \widehat{B}_{n}, \mathbf{s}, \mathrm{t} \in \mathscr{T}_{n}^{u d}(\lambda)\right\}
$$

which forms a graded cellular basis of $\mathscr{W}_{r, n}(\mathbf{u})$.

Up to now we only consider $\mathscr{B}_{n}(\delta)$ over a field R of characteristic $p=0$.
For $\mathscr{B}_{n}(\delta)$ over a field with positive characteristic, or more generally, for cyclotomic Nazarov-Wenzl algebras $\mathscr{W}_{r, n}(\mathbf{u})$ over arbitrary field, we should be able to construct a \mathbb{Z}-graded algebra similar to $\mathscr{G}_{n}(\delta)$ isomorphic to $\mathscr{W}_{r, n}(\mathbf{u})$.

The algebras are generated with elements

$$
\left\{e(\mathbf{i}) \mid \mathbf{i} \in P^{n}\right\} \cup\left\{y_{r} \mid 1 \leq k \leq n\right\} \cup\left\{\psi_{k}, \epsilon_{k} \mid 1 \leq k \leq n-1\right\}
$$

with grading similar to $\mathscr{G}_{n}(\delta)$.
We are also able to construct a set of homogeneous elements

$$
\left\{\psi_{\mathrm{st}} \mid(\lambda, f) \in \widehat{B}_{n}, \mathbf{s}, \mathrm{t} \in \mathscr{T}_{n}^{u d}(\lambda)\right\}
$$

which forms a graded cellular basis of $\mathscr{W}_{r, n}(\mathbf{u})$.
Moreover, we are able to construct an affine version of the algebra and a weight such that the cyclotomic quotient of the affine algebra is isomorphic to $\mathscr{W}_{r, n}(\mathbf{u})$. The details are still in preparation.

Thank you!

