Idempotent generation in partition monoids

James East
University of Western Sydney

Workshop on Diagram Algebras 8-12 Sept 2014
Universität Stuttgart
James East

Joint work with Bob Gray (and others)

Shona says Hi . . .

Partition Monoids

Partition Monoids

- Let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.

Partition Monoids

- Let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.

$$
\begin{aligned}
& \text { •••••• } \mathbf{n n}^{\prime}
\end{aligned}
$$

Partition Monoids

- Let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- The partition monoid on \mathbf{n} is

$$
\mathcal{P}_{n}=\left\{\text { set partitions of } \mathbf{n} \cup \mathbf{n}^{\prime}\right\}
$$

$$
\left.\begin{array}{lcccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \mathbf{\bullet} \\
\mathbf{n} \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
1^{\prime} & 2^{\prime} & 3^{\prime} & 4^{\prime} & 5^{\prime} & 6^{\prime}
\end{array}\right\} \mathbf{n}^{\prime},
$$

Partition Monoids

- Let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- The partition monoid on \mathbf{n} is

$$
\mathcal{P}_{n}=\left\{\text { set partitions of } \mathbf{n} \cup \mathbf{n}^{\prime}\right\}
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

$$
\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \mathbf{n}
\end{array}
$$

$$
\underset{1^{\prime}}{\bullet} \quad \stackrel{\bullet}{2^{\prime}} \quad \underset{3^{\prime}}{\bullet} \quad \underset{4^{\prime}}{\bullet} \quad \underset{5^{\prime}}{\bullet} \underset{6^{\prime}}{\bullet} \quad \mathbf{n}^{\prime}
$$

- Let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- The partition monoid on \mathbf{n} is

$$
\begin{aligned}
\mathcal{P}_{n} & =\left\{\text { set partitions of } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} \\
& \equiv\left\{\text { graphs on vertex set } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} .
\end{aligned}
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

$$
\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \mathbf{n}
\end{array}
$$

$$
\left.\underset{1^{\prime}}{\bullet} \quad \stackrel{2^{\prime}}{\bullet} \quad \underset{3^{\prime}}{\bullet} \quad \underset{4^{\prime}}{\bullet} \quad \underset{5^{\prime}}{\bullet} \underset{6^{\prime}}{\bullet} \quad\right\} \mathbf{n}^{\prime}
$$

Partition Monoids

- Let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- The partition monoid on \mathbf{n} is

$$
\begin{aligned}
\mathcal{P}_{n} & =\left\{\text { set partitions of } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} \\
& \equiv\left\{\text { graphs on vertex set } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} .
\end{aligned}
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

Partition Monoids

- Let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- The partition monoid on \mathbf{n} is

$$
\begin{aligned}
\mathcal{P}_{n} & =\left\{\text { set partitions of } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} \\
& \equiv\left\{\text { graphs on vertex set } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} .
\end{aligned}
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

Partition Monoids

- Let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- The partition monoid on \mathbf{n} is

$$
\begin{aligned}
\mathcal{P}_{n} & =\left\{\text { set partitions of } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} \\
& \equiv\left\{\text { graphs on vertex set } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} .
\end{aligned}
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

Partition Monoids

- Let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- The partition monoid on \mathbf{n} is

$$
\begin{aligned}
\mathcal{P}_{n} & =\left\{\text { set partitions of } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} \\
& \equiv\left\{\text { graphs on vertex set } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} .
\end{aligned}
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

Partition Monoids

- Let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- The partition monoid on \mathbf{n} is

$$
\begin{aligned}
\mathcal{P}_{n} & =\left\{\text { set partitions of } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} \\
& \equiv\left\{\text { graphs on vertex set } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} .
\end{aligned}
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

Partition Monoids

- Let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- The partition monoid on \mathbf{n} is

$$
\mathcal{P}_{n}=\left\{\text { set partitions of } \mathbf{n} \cup \mathbf{n}^{\prime}\right\}
$$

$$
\left.\equiv\{\text { (equiv. classes of }) \text { graphs on vertex set } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} .
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

Partition Monoids

- Let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- The partition monoid on \mathbf{n} is

$$
\mathcal{P}_{n}=\left\{\text { set partitions of } \mathbf{n} \cup \mathbf{n}^{\prime}\right\}
$$

$$
\left.\equiv\{\text { (equiv. classes of }) \text { graphs on vertex set } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} .
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

Partition Monoids

- Let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- The partition monoid on \mathbf{n} is

$$
\mathcal{P}_{n}=\left\{\text { set partitions of } \mathbf{n} \cup \mathbf{n}^{\prime}\right\}
$$

$$
\equiv\left\{\text { (equiv. classes of) graphs on vertex set } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} .
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

Partition Monoids

- Let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- The partition monoid on \mathbf{n} is

$$
\mathcal{P}_{n}=\left\{\text { set partitions of } \mathbf{n} \cup \mathbf{n}^{\prime}\right\}
$$

$$
\equiv\left\{\text { (equiv. classes of) graphs on vertex set } \mathbf{n} \cup \mathbf{n}^{\prime}\right\} .
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

- Note: \mathcal{P}_{n} is the basis of the partition algebra \mathcal{P}_{n}^{δ}.

Product in \mathcal{P}_{n}

Product in \mathcal{P}_{n}

Let $\alpha, \beta \in \mathcal{P}_{n}$.

Product in \mathcal{P}_{n}

Let $\alpha, \beta \in \mathcal{P}_{n}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,

Product in \mathcal{P}_{n}

Let $\alpha, \beta \in \mathcal{P}_{n}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,

Product in \mathcal{P}_{n}

Let $\alpha, \beta \in \mathcal{P}_{n}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,
(3) smooth out resulting graph to obtain $\alpha \beta$.

Product in \mathcal{P}_{n}

Let $\alpha, \beta \in \mathcal{P}_{n}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,
(3) smooth out resulting graph to obtain $\alpha \beta$.

The operation is associative, so \mathcal{P}_{n} is a semigroup (monoid, etc).

Product in \mathcal{P}_{n}

Let $\alpha, \beta \in \mathcal{P}_{n}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,
(3) smooth out resulting graph to obtain $\alpha \beta$.

The operation is associative, so \mathcal{P}_{n} is a semigroup (monoid, etc).

- Note: usual multiplication in partition algebra \mathcal{P}_{n}^{δ} with $\delta=1$.

Submonoids of \mathcal{P}_{n}

Submonoids of \mathcal{P}_{n}

- $\mathcal{B}_{n}=\left\{\alpha \in \mathcal{P}_{n}:|A|=2(\forall A \in \alpha)\right\}$

- Brauer monoid

Submonoids of \mathcal{P}_{n}

- $\mathcal{B}_{n}=\left\{\alpha \in \mathcal{P}_{n}:|A|=2(\forall A \in \alpha)\right\}$

- $\mathcal{T}_{n}=\left\{\alpha \in \mathcal{B}_{n}: \alpha\right.$ is planar $\} \quad$ - Temperley-Lieb monoid (aka Jones or Kauffman monoid)

Submonoids of \mathcal{P}_{n}

- $\mathcal{B}_{n}=\left\{\alpha \in \mathcal{P}_{n}:|A|=2(\forall A \in \alpha)\right\}$
- $\mathcal{T} \mathcal{L}_{n}=\left\{\alpha \in \mathcal{B}_{n}: \alpha\right.$ is planar $\}$ - Temperley-Lieb monoid (aka Jones or Kauffman monoid)

- $\mathcal{S}_{n}=\left\{\alpha \in \mathcal{B}_{n}:|A \cap \mathbf{n}|=\left|A \cap \mathbf{n}^{\prime}\right|=1(\forall A \in \alpha)\right\}$
- symmetric group

Submonoids of \mathcal{P}_{n}

- $\mathcal{T}_{n}=\left\{\alpha \in \mathcal{P}_{n}:\left|A \cap \mathbf{n}^{\prime}\right|=1(\forall A \in \alpha)\right\}$
- full transformation semigroup

承 $\in \mathcal{T}_{5}$

Submonoids of \mathcal{P}_{n}

- $\mathcal{T}_{n}=\left\{\alpha \in \mathcal{P}_{n}:\left|A \cap \mathbf{n}^{\prime}\right|=1(\forall A \in \alpha)\right\}$
- full transformation semigroup

- $\mathcal{T}_{n}^{*}=\left\{\alpha \in \mathcal{P}_{n}:|A \cap \mathbf{n}|=1(\forall A \in \alpha)\right\} \quad$ - $\mathcal{T}_{n}^{*} \cong$ op \mathcal{T}_{n}

Submonoids of \mathcal{P}_{n}

- $\mathcal{T}_{n}=\left\{\alpha \in \mathcal{P}_{n}:\left|A \cap \mathbf{n}^{\prime}\right|=1(\forall A \in \alpha)\right\}$
- full transformation semigroup

- $\mathcal{T}_{n}^{*}=\left\{\alpha \in \mathcal{P}_{n}:|A \cap \mathbf{n}|=1(\forall A \in \alpha)\right\} \quad$ - $\mathcal{T}_{n}^{*} \cong{ }^{\text {op }} \mathcal{T}_{n}$
- $\mathcal{I}_{n}=\left\{\alpha \in \mathcal{P}_{n}:\left|A \cap \mathbf{n}^{\prime}\right| \leq 1\right.$ and $\left.|A \cap \mathbf{n}| \leq 1(\forall A \in \alpha)\right\}$
- symmetric inverse monoid (aka rook monoid)

Submonoids of \mathcal{P}_{n}

- $\mathcal{T}_{n}=\left\{\alpha \in \mathcal{P}_{n}:\left|A \cap \mathbf{n}^{\prime}\right|=1(\forall A \in \alpha)\right\}$
- full transformation semigroup

- $\mathcal{T}_{n}^{*}=\left\{\alpha \in \mathcal{P}_{n}:|A \cap \mathbf{n}|=1(\forall A \in \alpha)\right\} \quad-\mathcal{T}_{n}^{*} \cong{ }^{\text {op }} \mathcal{T}_{n}$
- $\mathcal{I}_{n}=\left\{\alpha \in \mathcal{P}_{n}:\left|A \cap \mathbf{n}^{\prime}\right| \leq 1\right.$ and $\left.|A \cap \mathbf{n}| \leq 1(\forall A \in \alpha)\right\}$
- symmetric inverse monoid (aka rook monoid)

- In many ways, \mathcal{P}_{n} is just like a transformation semigroup.

Generators

Proposition

There is a factorization $\mathcal{P}_{n}=\mathcal{T}_{n} \mathcal{I}_{n} \mathcal{T}_{n}^{*}$. Consequently,

$$
\mathcal{P}_{n}=\left\langle s_{1}, \ldots, s_{n-1}, e_{1}, \ldots, e_{n}, t_{1}, \ldots, t_{n-1}\right\rangle .
$$

$e_{i}={ }^{1}$

Presentations

Theorem (Halverson and Ram, 2005; E, 2011)

The partition monoid \mathcal{P}_{n} has presentation

$$
\mathcal{P}_{n} \cong\left\langle s_{1}, \ldots, s_{n-1}, e_{1}, \ldots, e_{n}, t_{1}, \ldots, t_{n-1}:(\mathrm{R} 1-\mathrm{R} 16)\right\rangle
$$

where
(R1) $s_{i}^{2}=1$
(R9) $t_{i}^{2}=t_{i}$
(R2) $s_{i} s_{j}=s_{j} s_{i}$
(R10) $t_{i} t_{j}=t_{j} t_{i}$
(R3) $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$
(R11) $s_{i} t_{j}=t_{j} s_{i}$
(R4) $e_{i}^{2}=e_{i}$
(R12) $s_{i} s_{j} t_{i}=t_{j} s_{i} s_{j}$
(R5) $e_{i} e_{j}=e_{j} e_{i}$
(R13) $t_{i} s_{i}=s_{i} t_{i}=t_{i}$
(R6) $s_{i} e_{j}=e_{j} s_{i}$
(R14) $t_{i} e_{j}=e_{j} t_{i}$
(R7) $s_{i} e_{i}=e_{i+1} s_{i}$
(R15) $t_{i} e_{j} t_{i}=t_{i}$
(R8) $e_{i} e_{i+1} s_{i}=e_{i} e_{i+1}$
(R16) $e_{j} t_{i} e_{j}=e_{j}$.

Presentations

Theorem (Halverson and Ram, 2005; E, 2011)

The partition algebra \mathcal{P}_{n}^{δ} has presentation

$$
\mathcal{P}_{n}^{\delta} \cong\left\langle s_{1}, \ldots, s_{n-1}, e_{1}, \ldots, e_{n}, t_{1}, \ldots, t_{n-1}:(\mathrm{R} 1-\mathrm{R} 16)\right\rangle,
$$

where
(R1) $s_{i}^{2}=1$
(R9) $t_{i}^{2}=t_{i}$
(R2) $s_{i} s_{j}=s_{j} s_{i}$
(R10) $t_{i} t_{j}=t_{j} t_{i}$
(R3) $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$
(R11) $s_{i} t_{j}=t_{j} s_{i}$
(R4) $e_{i}^{2}=\delta e_{i}$
(R12) $s_{i} s_{j} t_{i}=t_{j} s_{i} s_{j}$
(R5) $e_{i} e_{j}=e_{j} e_{i}$
(R13) $t_{i} s_{i}=s_{i} t_{i}=t_{i}$
(R6) $s_{i} e_{j}=e_{j} s_{i}$
(R14) $t_{i} e_{j}=e_{j} t_{i}$
(R7) $s_{i} e_{i}=e_{i+1} s_{i}$
(R15) $t_{i} e_{j} t_{i}=t_{i}$
(R8) $e_{i} e_{i+1} s_{i}=e_{i} e_{i+1}$
(R16) $e_{j} t_{i} e_{j}=e_{j}$.

Presentations

Theorem (E, 2011)

The singular partition monoid $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ has presentation

$$
\mathcal{P}_{n} \backslash \mathcal{S}_{n} \cong\left\langle e_{1}, \ldots, e_{n}, t_{i j}(1 \leq i<j \leq n):(\mathrm{R} 1-\mathrm{R} 10)\right\rangle
$$

where
(R1) $e_{i}^{2}=e_{i}$
(R6) $e_{k} t_{i j} e_{k}=e_{k}$
(R2) $e_{i} e_{j}=e_{j} e_{i}$
(R7) $t_{i j} e_{k}=e_{k} t_{i j}$
(R3) $t_{i j}^{2}=t_{i j}$
(R8) $t_{i j} t_{j k}=t_{j k} t_{k i}=t_{k i} t_{i j}$
(R4) $t_{i j} t_{k l}=t_{k l} t_{i j}$
(R9) $e_{k} t_{k i} e_{i} t_{i j} e_{j} t_{j k} e_{k}=e_{k} t_{k j} e_{j} t_{j i} e_{i} t_{i k} e_{k}$
(R5) $t_{i j} e_{k} t_{i j}=t_{i j}$
(R10) $e_{k} t_{k i} e_{i} t_{i j} e_{j} t_{j l} e_{l} t_{l k} e_{k}=e_{k} t_{k l} e_{l} t_{l i} e_{i} t_{i j} e_{j} t_{j k} e_{k}$.

Presentations

Theorem (Kudryavtseva and Mazorchuk, 2006; see also Birman-Wenzl and Barcelo-Ram)

The Brauer monoid \mathcal{B}_{n} has presentation

$$
\mathcal{B}_{n} \cong\left\langle s_{1}, \ldots, s_{n-1}, u_{1}, \ldots, u_{n-1}:(\mathrm{R} 1-\mathrm{R} 10)\right\rangle
$$

where
(R1) $s_{i}^{2}=1$
(R5) $u_{i} u_{j}=u_{j} u_{i}$
(R9) $s_{i} u_{j} u_{i}=s_{j} u_{i}$
(R2) $s_{i} s_{j}=s_{j} s_{i}$
(R6) $s_{i} u_{j}=u_{j} s_{i}$
(R10) $u_{i} u_{j} s_{i}=u_{i} s_{j}$.
(R3) $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$
(R7) $s_{i} u_{i}=u_{i} s_{i}=u_{i}$
(R4) $u_{i}^{2}=u_{i}$
(R8) $u_{i} u_{j} u_{i}=u_{i}$

Presentations

Theorem (Maltcev and Mazorchuk, 2007)

The singular Brauer monoid $\mathcal{B}_{n} \backslash \mathcal{S}_{n}$ has presentation

$$
\mathcal{B}_{n} \backslash \mathcal{S}_{n} \cong\left\langle u_{i j}(1 \leq i<j \leq n):(\mathrm{R} 1 — \mathrm{R} 6)\right\rangle,
$$

where
(R1) $u_{i j}^{2}=u_{i j}$
(R4) $u_{i j} u_{i k} u_{j k}=u_{i j} u_{j k}$
(R2) $u_{i j} u_{k l}=u_{k l} u_{i j}$
(R5) $u_{i j} u_{j k} u_{k l}=u_{i j} u_{i l} u_{k l}$
(R3) $u_{i j} u_{j k} u_{i j}=u_{i j}$
(R6) $u_{i j} u_{k l} u_{i k}=u_{i j} u_{j l} u_{i k}$.

Presentations

Theorem (Borisavljević, Došen, Petrić, 2002; see also Jones, Kauffman, etc)

The (singular) Temperley-Lieb monoid $\mathcal{T} \mathcal{L}_{n}$ has presentation

$$
\mathcal{T} \mathcal{L}_{n} \cong\left\langle u_{1}, \ldots, u_{n-1}:(\mathrm{R} 1-\mathrm{R} 3)\right\rangle
$$

where
(R1) $u_{i}^{2}=u_{i}$
$(\mathrm{R} 2) u_{i} u_{j}=u_{j} u_{i}$
(R3) $u_{i} u_{j} u_{i}=u_{i}$.

Idempotent generation - questions

So the singular parts of $\mathcal{P}_{n}, \mathcal{B}_{n}, \mathcal{T} \mathcal{L}_{n}$ are idempotent generated \ldots

Idempotent generation - questions

So the singular parts of $\mathcal{P}_{n}, \mathcal{B}_{n}, \mathcal{T} \mathcal{L}_{n}$ are idempotent generated \ldots

- What is the smallest number of (idempotent) partitions required to generate $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$?

Idempotent generation - questions

So the singular parts of $\mathcal{P}_{n}, \mathcal{B}_{n}, \mathcal{T} \mathcal{L}_{n}$ are idempotent generated \ldots

- What is the smallest number of (idempotent) partitions required to generate $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$?
- i.e., What is the rank and idempotent $\operatorname{rank}, \operatorname{rank}\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$ and idrank $\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$?

Idempotent generation - questions

So the singular parts of $\mathcal{P}_{n}, \mathcal{B}_{n}, \mathcal{T} \mathcal{L}_{n}$ are idempotent generated \ldots

- What is the smallest number of (idempotent) partitions required to generate $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$?
- i.e., What is the rank and idempotent rank, $\operatorname{rank}\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$ and idrank $\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$?
- How many (idempotent) generating sets of minimal size are there?

Idempotent generation - questions

So the singular parts of $\mathcal{P}_{n}, \mathcal{B}_{n}, \mathcal{T} \mathcal{L}_{n}$ are idempotent generated \ldots

- What is the smallest number of (idempotent) partitions required to generate $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$?
- i.e., What is the rank and idempotent rank, $\operatorname{rank}\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$ and idrank $\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$?
- How many (idempotent) generating sets of minimal size are there?
- What about other ideals of \mathcal{P}_{n} ?

Idempotent generation - questions

So the singular parts of $\mathcal{P}_{n}, \mathcal{B}_{n}, \mathcal{T} \mathcal{L}_{n}$ are idempotent generated \ldots

- What is the smallest number of (idempotent) partitions required to generate $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$?
- i.e., What is the rank and idempotent rank, $\operatorname{rank}\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$ and idrank $\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$?
- How many (idempotent) generating sets of minimal size are there?
- What about other ideals of \mathcal{P}_{n} ?
- How many idempotents does \mathcal{P}_{n} contain?

Idempotent generation - questions

So the singular parts of $\mathcal{P}_{n}, \mathcal{B}_{n}, \mathcal{T} \mathcal{L}_{n}$ are idempotent generated \ldots

- What is the smallest number of (idempotent) partitions required to generate $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$?
- i.e., What is the rank and idempotent rank, $\operatorname{rank}\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$ and idrank $\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$?
- How many (idempotent) generating sets of minimal size are there?
- What about other ideals of \mathcal{P}_{n} ?
- How many idempotents does \mathcal{P}_{n} contain?
- What about infinite partition monoids \mathcal{P}_{X} ?

Idempotent generation - questions

So the singular parts of $\mathcal{P}_{n}, \mathcal{B}_{n}, \mathcal{T} \mathcal{L}_{n}$ are idempotent generated \ldots

- What is the smallest number of (idempotent) partitions required to generate $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$?
- i.e., What is the rank and idempotent rank, $\operatorname{rank}\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$ and idrank $\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$?
- How many (idempotent) generating sets of minimal size are there?
- What about other ideals of \mathcal{P}_{n} ?
- How many idempotents does \mathcal{P}_{n} contain?
- What about infinite partition monoids \mathcal{P}_{X} ?
- Same questions for \mathcal{B}_{n} and $\mathcal{T} \mathcal{L}_{n} \ldots$

Number of idempotents $-\mathcal{B}_{n}$

Theorem (Dolinka, E, Evangelou, FitzGerald, Ham, Hyde, Loughlin, 2014)
The number of idempotents in the Brauer monoid \mathcal{B}_{n} is equal to

$$
e_{n}=\sum_{\mu \vdash n} \frac{n!}{\mu_{1}!\cdots \mu_{n}!\cdot 2^{\mu_{2}} \cdots(2 k)^{\mu_{2 k}}}
$$

where $k=\lfloor n / 2\rfloor$ - i.e., $n=2 k$ or $2 k+1$.

Number of idempotents $-\mathcal{B}_{n}$

Theorem (Dolinka, E, Evangelou, FitzGerald, Ham, Hyde, Loughlin, 2014)

The number of idempotents in the Brauer monoid \mathcal{B}_{n} is equal to

$$
e_{n}=\sum_{\mu \vdash n} \frac{n!}{\mu_{1}!\cdots \mu_{n}!\cdot 2^{\mu_{2}} \cdots(2 k)^{\mu_{2 k}}}
$$

where $k=\lfloor n / 2\rfloor$ - i.e., $n=2 k$ or $2 k+1$. The numbers e_{n} satisfy the recurrence

- $e_{0}=1$,
- $e_{n}=a_{1} e_{n-1}+a_{2} e_{n-2}+\cdots+a_{n} e_{0}$

$$
\text { where } a_{2 i}=\binom{n-1}{2 i-1}(2 i-1)!\text { and } a_{2 i+1}=\binom{n-1}{2 i}(2 i+1)!\text {. }
$$

Number of idempotents - \mathcal{B}_{n}^{δ}

Theorem (DEEFHHL, 2014)

The number of idempotent basis elements in the Brauer algebra \mathcal{B}_{n}^{δ} is equal to

$$
\sum_{\mu} \frac{n!}{\mu_{1}!\mu_{3}!\cdots \mu_{2 k+1}!}
$$

where

- $k=\left\lfloor\frac{n-1}{2}\right\rfloor$,
- the sum is over all integer partitions $\mu \vdash n$ with only odd parts,
- δ is not a root of unity.

Number of idempotents $-\mathcal{P}_{n}$

Theorem (DEEFHHL, 2014)

The number of idempotents in the partition monoid \mathcal{P}_{n} is equal to

$$
n!\cdot \sum_{\mu \vdash n} \frac{c(1)^{\mu_{1}} \cdots c(n)^{\mu_{n}}}{\mu_{1}!\cdots \mu_{n}!\cdot(1!)^{\mu_{1}} \cdots(n!)^{\mu_{n}}}
$$

where

$$
c(k)=\sum_{r, s=1}^{k}(1+r s) c(k, r, s), \text { and }
$$

- $c(k, r, 1)=S(k, r)$
$c(k, 1, s)=S(k, s)$

$$
c(k, r, s)=s \cdot c(k-1, r-1, s)+r \cdot c(k-1, r, s-1)+r s \cdot c(k-1, r, s)
$$

$$
+\sum_{m=1}^{k-2}\binom{k-2}{m} \sum_{a=1}^{r-1} \sum_{b=1}^{s-1}(a(s-b)+b(r-a)) c(m, a, b) c(k-m-1, r-a, s-b)
$$

$$
\text { if } r, s \geq 2
$$

Number of idempotents

Theorem (DEEFHHL, 2014)

The number of idempotent basis elements in the partition algebra \mathcal{P}_{n}^{δ} is equal to

$$
n!\cdot \sum_{\mu \vdash n} \frac{c^{\prime}(1)^{\mu_{1}} \cdots c^{\prime}(n)^{\mu_{n}}}{\mu_{1}!\cdots \mu_{n}!\cdot(1!)^{\mu_{1}} \cdots(n!)^{\mu_{n}}},
$$

where

- $c^{\prime}(k)=\sum_{r, s=1}^{k} r s \cdot c(k, r, s)$, and
- δ is not a root of unity.

Less algebra, more diagrams...

Number of idempotents $-\mathcal{T}_{1}-\mathcal{T} \mathcal{L}_{7}$ (GAP)

The number of idempotents in $\mathcal{T} \mathcal{L}_{n}$ is currently unknown.

Number of idempotents $-\mathcal{T}_{\mathcal{8}}-\mathcal{T} \mathcal{L}_{11}$ (GAP)

The number of idempotents in $\mathcal{T} \mathcal{L}_{n}$ is currently unknown.

Number of idempotents - inside $\mathcal{T} \mathcal{L}_{15}-\mathcal{T} \mathcal{L}_{17}$ (GAP)

The number of idempotents in $\mathcal{T} \mathcal{L}_{n}$ is currently unknown.

Thanks to Attila Egri-Nagy for these ...

Rank and idempotent rank $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

Rank and idempotent rank $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

Theorem (E, 2011)

- $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ is idempotent generated.
- $\mathcal{P}_{n} \backslash \mathcal{S}_{n}=\left\langle e_{1}, \ldots, e_{n}, t_{i j}(1 \leq i<j \leq n)\right\rangle$.

Rank and idempotent rank $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

Theorem (E, 2011)

- $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ is idempotent generated.
- $\mathcal{P}_{n} \backslash \mathcal{S}_{n}=\left\langle e_{1}, \ldots, e_{n}, t_{i j}(1 \leq i<j \leq n)\right\rangle$.

- $\operatorname{rank}\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)=\operatorname{idrank}\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)=n+\binom{n}{2}=\binom{n+1}{2}=\frac{n(n+1)}{2}$.

Minimal idempotent generating sets

Any minimal idempotent generating set for $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ is a subset of

$$
\begin{array}{ll}
\left\{e_{r}, ~\right.
\end{array}<
$$

Minimal idempotent generating sets

Any minimal idempotent generating set for $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ is a subset of

To see which subsets generate $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$, we create a graph...

Minimal idempotent generating sets $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

Let Γ_{n} be the di-graph with vertex set

$$
V\left(\Gamma_{n}\right)=\{A \subseteq \mathbf{n}:|A|=1 \text { or }|A|=2\}
$$

and edge set

$$
E\left(\Gamma_{n}\right)=\{(A, B): A \subseteq B \text { or } B \subseteq A\} .
$$

Γ_{5} (with loops omitted)

Minimal idempotent generating sets $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

For only \$59.95...

Minimal idempotent generating sets $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

Let Γ_{n} be the di-graph with vertex set

$$
V\left(\Gamma_{n}\right)=\{A \subseteq \mathbf{n}:|A|=1 \text { or }|A|=2\}
$$

and edge set

$$
E\left(\Gamma_{n}\right)=\{(A, B): A \subseteq B \text { or } B \subseteq A\} .
$$

Γ_{5} (with loops omitted)

Minimal idempotent generating sets $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

Let Γ_{n} be the di-graph with vertex set

$$
V\left(\Gamma_{n}\right)=\{A \subseteq \mathbf{n}:|A|=1 \text { or }|A|=2\}
$$

and edge set

$$
E\left(\Gamma_{n}\right)=\{(A, B): A \subseteq B \text { or } B \subseteq A\} .
$$

Γ_{5} (with loops omitted)

Minimal idempotent generating sets $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

Let Γ_{n} be the di-graph with vertex set

$$
V\left(\Gamma_{n}\right)=\{A \subseteq \mathbf{n}:|A|=1 \text { or }|A|=2\}
$$

and edge set

$$
E\left(\Gamma_{n}\right)=\{(A, B): A \subseteq B \text { or } B \subseteq A\}
$$

Γ_{5} (with loops omitted)

Minimal idempotent generating sets $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

Let Γ_{n} be the di-graph with vertex set

$$
V\left(\Gamma_{n}\right)=\{A \subseteq \mathbf{n}:|A|=1 \text { or }|A|=2\}
$$

and edge set

$$
E\left(\Gamma_{n}\right)=\{(A, B): A \subseteq B \text { or } B \subseteq A\} .
$$

Γ_{5} (with loops omitted)

Minimal idempotent generating sets $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

Let Γ_{n} be the di-graph with vertex set

$$
V\left(\Gamma_{n}\right)=\{A \subseteq \mathbf{n}:|A|=1 \text { or }|A|=2\}
$$

and edge set

$$
E\left(\Gamma_{n}\right)=\{(A, B): A \subseteq B \text { or } B \subseteq A\} .
$$

Γ_{5} (with loops omitted)

Minimal idempotent generating sets $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

Minimal idempotent generating sets

A subgraph H of a di-graph G is a permutation subgraph if $V(H)=V(G)$ and the edges of H induce a permutation of $V(G)$.

A permutation subgraph of Γ_{n} is determined by:

- a permutation of a subset A of \mathbf{n} with no fixed points or 2-cycles $(A=\{2,3,5\}, 2 \mapsto 3 \mapsto 5 \mapsto 2)$, and
- a function $\mathbf{n} \backslash A \rightarrow \mathbf{n}$ with no 2-cycles $(1 \mapsto 4,4 \mapsto 4)$.

Minimal idempotent generating sets

Theorem (E+Gray, 2014)

The minimal idempotent generating sets of $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ are in one-one correspondence with the permutation subgraphs of Γ_{n}.

The number of minimal idempotent generating sets of $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ is equal to

$$
\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n, n-k}
$$

where $a_{0}=1, a_{1}=a_{2}=0, a_{k+1}=k a_{k}+k(k-1) a_{k-2}$, and

$$
b_{n, k}=\sum_{i=0}^{\left\lfloor\frac{k}{2}\right\rfloor}(-1)^{i}\binom{k}{2 i}(2 i-1)!!n^{k-2 i}
$$

n	0	1	2	3	4	5	6	7	\cdots
	1	1	3	20	201	2604	40915	754368	\cdots

Ideals $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

Ideals $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

The ideals of \mathcal{P}_{n} are

$$
I_{r}=\left\{\alpha \in \mathcal{P}_{n}: \alpha \text { has } \leq r \text { transverse blocks }\right\}
$$

for $0 \leq r \leq n$.

Ideals $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

The ideals of \mathcal{P}_{n} are

$$
I_{r}=\left\{\alpha \in \mathcal{P}_{n}: \alpha \text { has } \leq r \text { transverse blocks }\right\}
$$

for $0 \leq r \leq n$.

Theorem (E+Gray, 2014)

If $0 \leq r \leq n-1$, then I_{r} is idempotent generated, and

$$
\operatorname{rank}\left(I_{r}\right)=\operatorname{idrank}\left(I_{r}\right)=\sum_{j=r}^{n} S(n, j)\binom{j}{r}
$$

Ideals $-\mathcal{P}_{n} \backslash \mathcal{S}_{n}$

The ideals of \mathcal{P}_{n} are

$$
I_{r}=\left\{\alpha \in \mathcal{P}_{n}: \alpha \text { has } \leq r \text { transverse blocks }\right\}
$$

for $0 \leq r \leq n$.

Theorem (E+Gray, 2014)

If $0 \leq r \leq n-1$, then I_{r} is idempotent generated, and

$$
\operatorname{rank}\left(I_{r}\right)=\operatorname{idrank}\left(I_{r}\right)=\sum_{j=r}^{n} S(n, j)\binom{j}{r}
$$

The idempotent generating sets of this size have not been classified/enumerated (for $1 \leq r \leq n-2$).

Rank and idempotent rank $-\mathcal{B}_{n} \backslash \mathcal{S}_{n}$

Rank and idempotent rank $-\mathcal{B}_{n} \backslash \mathcal{S}_{n}$

Theorem (Maltcev and Mazorchuk, 2007)

- $\mathcal{B}_{n} \backslash \mathcal{S}_{n}$ is idempotent generated.
- $\mathcal{B}_{n} \backslash \mathcal{S}_{n}=\left\langle u_{i j}(1 \leq i<j \leq n)\right\rangle$.

Rank and idempotent rank $-\mathcal{B}_{n} \backslash \mathcal{S}_{n}$

Theorem (Maltcev and Mazorchuk, 2007)

- $\mathcal{B}_{n} \backslash \mathcal{S}_{n}$ is idempotent generated.
- $\mathcal{B}_{n} \backslash \mathcal{S}_{n}=\left\langle u_{i j}(1 \leq i<j \leq n)\right\rangle$.

- $\operatorname{rank}\left(\mathcal{B}_{n} \backslash \mathcal{S}_{n}\right)=\operatorname{idrank}\left(\mathcal{B}_{n} \backslash \mathcal{S}_{n}\right)=\binom{n}{2}=\frac{n(n-1)}{2}$.

Minimal idempotent generating sets $-\mathcal{B}_{n} \backslash \mathcal{S}_{n}$

Let Λ_{n} be the di-graph with vertex set

$$
V\left(\Lambda_{n}\right)=\{A \subseteq \mathbf{n}:|A|=2\}
$$

and edge set

$$
E\left(\Lambda_{n}\right)=\{(A, B): A \cap B \neq \emptyset\} .
$$

Minimal idempotent generating sets $-\mathcal{B}_{n} \backslash \mathcal{S}_{n}$

Theorem (E+Gray, 2014)

The minimal idempotent generating sets of $\mathcal{B}_{n} \backslash \mathcal{S}_{n}$ are in one-one correspondence with the permutation subgraphs of Λ_{n}.

No formula is known for the number of minimal idempotent generating sets of $\mathcal{B}_{n} \backslash \mathcal{S}_{n}$ (yet). Very hard!

n	0	1	2	3	4	5	6	7
	1	1	1	6	265	126,140	$855,966,441$	$? ? ? ?$
	1	1	1	2	12	288	34,560	$24,883,200$

There are (way) more than $(n-1)$! $\cdot(n-2)!\cdots 3$! $\cdot 2$! $\cdot 1$!.

- Thanks to James Mitchell for $n=5,6$ (GAP).

Ideals $-\mathcal{B}_{n} \backslash \mathcal{S}_{n}$

The ideals of \mathcal{B}_{n} are

$$
I_{r}=\left\{\alpha \in \mathcal{B}_{n}: \alpha \text { has } \leq r \text { transverse blocks }\right\}
$$

for $0 \leq r=n-2 k \leq n$.

Theorem (E+Gray, 2014)

If $0 \leq r=n-2 k \leq n-2$, then I_{r} is idempotent generated and

$$
\operatorname{rank}\left(I_{r}\right)=\operatorname{idrank}\left(I_{r}\right)=\binom{n}{2 k}(2 k-1)!!=\frac{n!}{2^{k} k!r!}
$$

Rank and idempotent rank $-\mathcal{T} \mathcal{L}_{n}$

Theorem (Borisavljević, Došen, Petrić, 2002, etc)

- $\mathcal{T} \mathcal{L}_{n}$ is idempotent generated.
- $\mathcal{T} \mathcal{L}_{n}=\left\langle u_{1}, \ldots, u_{n-1}\right\rangle$.

- $\operatorname{rank}\left(\mathcal{T} \mathcal{L}_{n}\right)=\operatorname{idrank}\left(\mathcal{T} \mathcal{L}_{n}\right)=n-1$.

Minimal idempotent generating sets $-\mathcal{T} \mathcal{L}_{n}$

Let $\bar{\Xi}_{n}$ be the di-graph with vertex set

$$
V\left(\bar{\Xi}_{n}\right)=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}
$$

and edge set

$$
E\left(\Xi_{n}\right)=\{(A, B): A \cap B \neq \emptyset\} .
$$

Minimal idempotent generating sets $-\mathcal{T} \mathcal{L}_{n}$

Theorem (E+Gray, 2014)

The minimal idempotent generating sets of $\mathcal{T} \mathcal{L}_{n}$ are in one-one correspondence with the permutation subgraphs of $\bar{\Xi}_{n}$.

The number of minimal idempotent generating sets of $\mathcal{T} \mathcal{L}_{n}$ is F_{n}, the nth Fibonacci number.

$$
\begin{array}{c|ccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
\hline & 1 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & \cdots
\end{array}
$$

Ideals $-\mathcal{T} \mathcal{L}_{n}$

The ideals of $\mathcal{T} \mathcal{L}_{n}$ are

$$
I_{r}=\left\{\alpha \in \mathcal{T}_{\boldsymbol{n}}: \alpha \text { has } \leq r \text { transverse blocks }\right\}
$$

for $0 \leq r=n-2 k \leq n$.
Theorem (E+Gray, 2014)
If $0 \leq r=n-2 k \leq n-2$, then I_{r} is idempotent generated and

$$
\operatorname{rank}\left(I_{r}\right)=\operatorname{idrank}\left(I_{r}\right)=\frac{r+1}{n+1}\binom{n+1}{k}
$$

Ideals $-\mathcal{T} \mathcal{L}_{n}$

Values of $\operatorname{rank}\left(I_{r}\right)=\operatorname{idrank}\left(I_{r}\right)$:

$n \backslash r$	0	1	2	3	4	5	6	7	8	9	10
0	1										
1		1									
2	1		1								
3		2		1							
4	2		3		1						
5		5		4		1					
6	5		9		5		1				
7		14		14		6		1			
8	14		28		20		7		1		
9		42		48		27		8		1	
10	42		90		75		35		9		1

... unless I have a few minutes to spare. . .

Infinite partition monoids $-\mathcal{P}_{X}$

Infinite partition monoids $-\mathcal{P}_{X}$

Theorem

$$
\mathcal{P}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle \text { where }
$$

Infinite partition monoids $-\mathcal{P}_{X}$

Proof: Let $\gamma \in \mathcal{P}_{X}$.

Infinite partition monoids $-\mathcal{P}_{X}$

Proof: Let $\gamma \in \mathcal{P}_{X}$.

Infinite partition monoids $-\mathcal{P}_{X}$

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

Infinite partition monoids $-\mathcal{P}_{X}$

Proof: Let $\gamma \in \mathcal{P}_{\boldsymbol{X}}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

Infinite partition monoids $-\mathcal{P}_{X}$

Proof: Let $\gamma \in \mathcal{P}_{\boldsymbol{X}}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

Infinite partition monoids $-\mathcal{P}_{X}$

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

Infinite partition monoids $-\mathcal{P}_{X}$

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

Infinite partition monoids $-\mathcal{P}_{X}$

Proof: Let $\gamma \in \mathcal{P}_{\boldsymbol{X}}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

Infinite partition monoids $-\mathcal{P}_{X}$

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

Infinite partition monoids $-\mathcal{P}_{X}$

Proof: Let $\gamma \in \mathcal{P}_{\boldsymbol{X}}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

Infinite partition monoids $-\mathcal{P}_{X}$

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

Infinite partition monoids $-\mathcal{P}_{X}$

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

Infinite partition monoids

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

Infinite partition monoids

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

Infinite partition monoids

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

Infinite partition monoids $-\mathcal{P}_{X}$

Infinite partition monoids $-\mathcal{P}_{X}$

Infinite partition monoids $-\mathcal{P}_{X}$

- Write $\alpha=\left(\begin{array}{c|c}A_{i} & C_{j} \\\right.$\cline { 2 - 2 }$\left.B_{i} & D_{k}\end{array}\right)_{i \in I, j \in J, k \in K}$.

Infinite partition monoids $-\mathcal{P}_{X}$

- Write $\alpha=\left(\begin{array}{c|c}A_{i} & C_{j} \\\right.$\cline { 2 - 2 }$\left.B_{i} & D_{k}\end{array}\right)_{i \in I, j \in J, k \in K}$.
- Define:
- $\operatorname{def}(\alpha)=\sum_{j \in J}\left|C_{j}\right|$

Infinite partition monoids $-\mathcal{P}_{X}$

- Write $\alpha=\left(\begin{array}{c|c}A_{i} & C_{j} \\\right.$\cline { 2 - 2 }$\left.B_{i} & D_{k}\end{array}\right)_{i \in I, j \in J, k \in K}$.
- Define:
- $\operatorname{def}(\alpha)=\sum_{j \in J}\left|C_{j}\right|, \quad \operatorname{codef}(\alpha)=\sum_{k \in K}\left|D_{k}\right|$,

Infinite partition monoids $-\mathcal{P}_{X}$

- Write $\alpha=\left(\begin{array}{c|c}A_{i} & C_{j} \\\right.$\cline { 2 - 2 }$\left.B_{i} & D_{k}\end{array}\right)_{i \in I, j \in J, k \in K}$.
- Define:
- $\operatorname{def}(\alpha)=\sum_{j \in J}\left|C_{j}\right|, \quad \operatorname{codef}(\alpha)=\sum_{k \in K}\left|D_{k}\right|$,
- $\operatorname{col}(\alpha)=\sum_{i \in I}\left(\left|A_{i}\right|-1\right)$

Infinite partition monoids $-\mathcal{P}_{X}$

- Write $\alpha=\left(\begin{array}{c|c}A_{i} & C_{j} \\ B_{i} & D_{k}\end{array}\right)_{i \in I, j \in J, k \in K}$.
- Define:
- $\operatorname{def}(\alpha)=\sum_{j \in J}\left|C_{j}\right|, \quad \operatorname{codef}(\alpha)=\sum_{k \in K}\left|D_{k}\right|$,
- $\operatorname{col}(\alpha)=\sum_{i \in I}\left(\left|A_{i}\right|-1\right), \quad \operatorname{cocol}(\alpha)=\sum_{i \in I}\left(\left|B_{i}\right|-1\right)$,

Infinite partition monoids $-\mathcal{P}_{X}$

- Write $\alpha=\left(\begin{array}{c|c}A_{i} & C_{j} \\ B_{i} & D_{k}\end{array}\right)_{i \in I, j \in J, k \in K}$.
- Define:
- $\operatorname{def}(\alpha)=\sum_{j \in J}\left|C_{j}\right|, \quad \operatorname{codef}(\alpha)=\sum_{k \in K}\left|D_{k}\right|$,
- $\operatorname{col}(\alpha)=\sum_{i \in I}\left(\left|A_{i}\right|-1\right), \quad \operatorname{cocol}(\alpha)=\sum_{i \in I}\left(\left|B_{i}\right|-1\right)$,
- $\operatorname{sh}(\alpha)=\#\left\{i \in I: A_{i} \cap B_{i}=\emptyset\right\}$.

Infinite partition monoids $-\mathcal{P}_{X}$

Theorem (E+FitzGerald, 2012)

If X is infinite, then

$$
\begin{aligned}
& \left\langle E\left(\mathcal{P}_{X}\right)\right\rangle=\{1\} \cup\left(\mathcal{P}_{X}^{\text {fin }} \backslash \mathcal{S}_{X}^{\text {fin }}\right) \\
& \cup\left\{\alpha \in \mathcal{P}_{X}: \begin{array}{c}
\operatorname{col}(\alpha)+\operatorname{def}(\alpha)=\operatorname{cocol}(\alpha)+\operatorname{codef}(\alpha) \\
\geq \max \left(\operatorname{sh}(\alpha), \aleph_{0}\right)
\end{array}\right\} .
\end{aligned}
$$

Infinite partition monoids $-\mathcal{P}_{X}$

Theorem (E+FitzGerald, 2012)

If X is infinite, then

$$
\begin{aligned}
& \left\langle E\left(\mathcal{P}_{X}\right)\right\rangle=\{1\} \cup\left(\mathcal{P}_{X}^{\text {fin }} \backslash \mathcal{S}_{X}^{\text {fin }}\right) \\
& \cup\left\{\alpha \in \mathcal{P}_{X}: \begin{array}{c}
\operatorname{col}(\alpha)+\operatorname{def}(\alpha)=\operatorname{cocol}(\alpha)+\operatorname{codef}(\alpha) \\
\geq \max \left(\operatorname{sh}(\alpha), \aleph_{0}\right)
\end{array}\right\} .
\end{aligned}
$$

Theorem (E+FitzGerald, 2012)

For any X (finite or infinite),
$\left\langle\mathcal{S}_{X} \cup E\left(\mathcal{P}_{X}\right)\right\rangle=\left\{\alpha \in \mathcal{P}_{X}: \operatorname{col}(\alpha)+\operatorname{def}(\alpha)=\operatorname{cocol}(\alpha)+\operatorname{codef}(\alpha)\right\}$.

Thanks for having me in Stuttgart!

