

Brauer algebras of Dynkin type

Arjeh Cohen research reported on is joint work with David Wales, Shona Yu, Dié Gijsbers, and Shoumin Liu

9 September 2013, Universität Stuttgart

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion
Outline				

Simply laced types

4 Non-simply laced Dynkin types

Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion
Outline				

- **3** Simply laced types
- 4 Non-simply laced Dynkin types

Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion
	ian			
IVIOTIVAT	lon			

Theorem

The Brauer algebra Br_n

 maps homeomorphically onto the centralizer of n-fold tensors of the natural representations of the orthogonal and symplectic groups;

	Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion
NAL STOLET					

Theorem

- maps homeomorphically onto the centralizer of n-fold tensors of the natural representations of the orthogonal and symplectic groups;
- occurs as endomorphism algebra in tensor categories for the above groups;

Theorem

- maps homeomorphically onto the centralizer of n-fold tensors of the natural representations of the orthogonal and symplectic groups;
- occurs as endomorphism algebra in tensor categories for the above groups;
- is cellular and (generically) semisimple;

violivation

Theorem

- maps homeomorphically onto the centralizer of n-fold tensors of the natural representations of the orthogonal and symplectic groups;
- occurs as endomorphism algebra in tensor categories for the above groups;
- is cellular and (generically) semisimple;
- maps homomorphically onto the group algebra of Sym_n;

Theorem

- maps homeomorphically onto the centralizer of n-fold tensors of the natural representations of the orthogonal and symplectic groups;
- occurs as endomorphism algebra in tensor categories for the above groups;
- is cellular and (generically) semisimple;
- maps homomorphically onto the group algebra of Sym_n;
- contains the Temperley-Lieb algebra TL_n as a subalgebra;

Theorem

- maps homeomorphically onto the centralizer of n-fold tensors of the natural representations of the orthogonal and symplectic groups;
- occurs as endomorphism algebra in tensor categories for the above groups;
- is cellular and (generically) semisimple;
- maps homomorphically onto the group algebra of Sym_n;
- contains the Temperley-Lieb algebra TL_n as a subalgebra;
- is a specialization of the Birman-Wenzl-Murakami algebra BMW_n;

Theorem

- maps homeomorphically onto the centralizer of n-fold tensors of the natural representations of the orthogonal and symplectic groups;
- occurs as endomorphism algebra in tensor categories for the above groups;
- is cellular and (generically) semisimple;
- maps homomorphically onto the group algebra of Sym_n;
- contains the Temperley-Lieb algebra TL_n as a subalgebra;
- is a specialization of the Birman-Wenzl-Murakami algebra BMW_n;
- has a natural definition in terms of generators and relations.

The relations can be summarized by use of the Dynkin diagram of type A_{n-1} , whose Weyl group is Sym_n .

Similary for BMW_n .

To what extent are there similar algebras for other Dynkin types?

Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion
Outline				

3 Simply laced types

5 Conclusion

< = > < = > = <> < ⊂

Br_n by diagrams, example for n = 10

As a $\mathbb{Z}[\delta]$ -module, Br_n is spanned by Brauer diagrams on 2n nodes.

A Brauer diagram with n = 10

Br_n by diagrams, example cont'd

Multiplication of two Brauer diagrams

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▶ � � � �

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Br_n by diagrams cont'd

Known pictures for Sym_n .

Extended by cups and caps.

For a diagram T and a circle C in T

 $T = \delta \cdot (T \setminus C).$

Main properties

Theorem (Brauer, 1937)

For $\delta \in \mathbb{N}$ and $V = \mathbb{C}^{\delta}$ there is a surjective homomorphism $\operatorname{Br}_n \to \operatorname{End}_{O(V)}(\otimes^n(V)).$ For $\delta \in -2\mathbb{N}$ and $V = \mathbb{C}^{-\delta}$ there is a surjective homomorphism $\operatorname{Br}_n \to \operatorname{End}_{\operatorname{Sp}(V)}(\otimes^n(V)).$

This followed a result of Schur's for $\operatorname{End}_{\operatorname{GL}(V)}(\otimes^n(V))$.

Theorem (Wenzl, Hanlon & Wales, Doran, Rui & Si)

If $\delta \notin \mathbb{Z}$ or $|\delta| < n$, then Br_n is semisimple of dimension

$$\dim(\mathrm{Br}_n) = n!! = 1 \cdot 3 \cdots (2n-1).$$

TL_n by diagrams

Definition

 TL_n is the subalgebra of Br_n spanned by the diagrams without crossings.

Lemma

 $\dim(TL_n)$ is the *n*-th Catalan number.

Theorem

 TL_n is the quotient of the Hecke algebra of type A_{n-1} by the central elements of the parabolic subalgebras of rank two.

Same diagrams as for Brauer, but with distinction of over and under crossings.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Braid relations.

Skein relations.

Simply laced types

Non-simply laced Dynkin types

Conclusion

・ロト・日本・モート モー うへぐ

The Kauffman skein relation

 $g_i + m 1 = g_i^{-1} + m e_i$

Properties of BMW_n

Theorem

The Birman-Wenzl-Murakami algebra BMW_n

 maps homeomorphically onto the centralizer of n-fold tensors of the natural representations of the orthogonal and symplectic quantum groups;

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Properties of BMW_n

Theorem

- maps homeomorphically onto the centralizer of n-fold tensors of the natural representations of the orthogonal and symplectic quantum groups;
- is cellular and (generically) semisimple;

Properties of BMW_n

Theorem

- maps homeomorphically onto the centralizer of n-fold tensors of the natural representations of the orthogonal and symplectic quantum groups;
- is cellular and (generically) semisimple;
- maps homomorphically onto the Hecke algebra of type A_{n-1} ;

Properties of BMW_n

Theorem

- maps homeomorphically onto the centralizer of n-fold tensors of the natural representations of the orthogonal and symplectic quantum groups;
- is cellular and (generically) semisimple;
- maps homomorphically onto the Hecke algebra of type A_{n-1};
- contains the Temperley-Lieb algebra TL_n as a subalgebra;

Properties of BMW_n

Theorem

- maps homeomorphically onto the centralizer of n-fold tensors of the natural representations of the orthogonal and symplectic quantum groups;
- is cellular and (generically) semisimple;
- maps homomorphically onto the Hecke algebra of type A_{n-1};
- contains the Temperley-Lieb algebra TL_n as a subalgebra;
- has a natural definition in terms of generators and relations;

Properties of BMW_n

Theorem

- maps homeomorphically onto the centralizer of n-fold tensors of the natural representations of the orthogonal and symplectic quantum groups;
- is cellular and (generically) semisimple;
- maps homomorphically onto the Hecke algebra of type A_{n-1};
- contains the Temperley-Lieb algebra TL_n as a subalgebra;
- has a natural definition in terms of generators and relations;
- has a Markov trace leading to a knot theory invariant.

Diagram
$$A_{n-1} = \underbrace{\circ}_{1} \underbrace{\circ}_{2} \cdots \underbrace{\circ}_{n-1}$$

Coefficients δ , m, l such that $m(1 - \delta) = l - l^{-1}$.

Single node *i*:

$$g_i^2 = 1 - m(g_i - l^{-1}e_i) \ e_i g_i = l^{-1}e_i \ g_i e_i = l^{-1}e_i \ e_i^2 = \delta e_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

・ロト・日本・モート モー うへぐ

BMW_n by presentation, cont'd

Two nodes *i* and *j* of A_{n-1} with $i \sim j$:

$$egin{aligned} g_i g_j &= g_j g_i \ e_i g_j &= g_j e_i \ e_i e_j &= e_j e_i \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

BMW_n by presentation, cont'd'

Two nodes *i* and *j* of A_{n-1} with $i \not\sim j$:

$$\begin{array}{l} g_{i}g_{j}g_{i} = g_{j}g_{i}g_{j} \\ g_{j}e_{i}g_{j} = g_{i}e_{j}g_{i} + m(e_{j}g_{i} - e_{i}g_{j} + g_{i}e_{j} - g_{j}e_{i}) + m^{2}(e_{j} - e_{i}) \\ g_{j}g_{i}e_{j} = e_{i}e_{j} \\ e_{i}g_{j}g_{i} = e_{i}e_{j} \\ g_{j}e_{i}e_{j} = g_{i}e_{j} + m(e_{j} - e_{i}e_{j}) \\ e_{i}g_{j}e_{i} = le_{i} \\ e_{j}e_{i}g_{j} = e_{j}g_{i} + m(e_{j} - e_{j}e_{i}) \\ e_{i}e_{j}e_{i} = e_{i} \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Presentations of the other algebras

• Br_n by specialization $m \mapsto 0$, $l \mapsto 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Presentations of the other algebras

- Br_n by specialization $m \mapsto 0$, $l \mapsto 1$.
- TL_n generated by e_1, \ldots, e_{n-1} subject to all relations given that involve only these generators.

Example for Brauer instead of BMW

æ

More examples for Brauer instead of BMW

Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion
Outline				

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion
Simply	laced diagr	rams		

Presentations for simply laced types

Let M be a graph.

Definition

The BMW algebra BMW(M) of type M has presentation

• generators g_i , e_i (*i* node of M);

• relations as for
$$M = A_{n-1}$$
.

Definition

- The Brauer algebra of type M is the specialization of BMW(M) with m → 0, l → 1;
- The *Temperley-Lieb algebra* TL(M) is the subalgebra of BMW(M) generated by e₁,..., e_{n-1} subject to all relations given that involve only these generators.

Results for simply laced Dynkin types

Theorem (C, Frenk, Gijsbers, Wales)

Let M be A_n $(n \ge 1)$, D_n $(n \ge 4)$, E_n (n = 6, 7, 8).

• The algebras BMW(M) and Br(M) are cellular with cells given by triples (X, Y, w), for X, Y certain (admissible) sets of commuting reflections of W(M) in the same W(M)-orbit and elements w of a Coxeter group in C_W(X).

Results for simply laced Dynkin types

Theorem (C, Frenk, Gijsbers, Wales)

Let M be A_n $(n \ge 1)$, D_n $(n \ge 4)$, E_n (n = 6, 7, 8).

- The algebras BMW(M) and Br(M) are cellular with cells given by triples (X, Y, w), for X, Y certain (admissible) sets of commuting reflections of W(M) in the same W(M)-orbit and elements w of a Coxeter group in C_W(X).
- The Temperley-Lieb algebras TL(M) coincide with those defined by Fan, Stembridge, and Graham.

Results for simply laced Dynkin types

Theorem (C, Frenk, Gijsbers, Wales)

Let M be A_n $(n \ge 1)$, D_n $(n \ge 4)$, E_n (n = 6, 7, 8).

- The algebras BMW(M) and Br(M) are cellular with cells given by triples (X, Y, w), for X, Y certain (admissible) sets of commuting reflections of W(M) in the same W(M)-orbit and elements w of a Coxeter group in C_W(X).
- The Temperley-Lieb algebras TL(M) coincide with those defined by Fan, Stembridge, and Graham.
- The subgroup of invertible elements generated by all g_i is the Artin group of type M (generalizing Krammer, Bigelow, Zinno).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reinterpretation of Brauer diagram as a triple

$$n = 10$$

diagram A₉
$$X = \{\epsilon_1 - \epsilon_2, \epsilon_5 - \epsilon_6, \epsilon_9 - \epsilon_{10}\}$$

$$Y = \{\epsilon_3 - \epsilon_6, \epsilon_4 - \epsilon_5, \epsilon_9 - \epsilon_{10}\}$$

$$w = \text{element } (1, 2)(3, 4) \text{ of } A = W(A_3) = \text{Sym}_4$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dimensions of Brauer and BMW algebras of simply laced Dynkin type

M	$\dim(\mathrm{Br}(M))$
A _n	(n+1)!!
D _n	$(2^n+1)n!! - (2^{n-1}+1)n!$
E ₆	1,440,585
E7	139, 613, 625
E ₈	53, 328, 069, 225

• There is a diagram interpretation for $BMW(D_n)$ and $Br(D_n)$.

(ロ)、(型)、(E)、(E)、 E) の(の)

- There is a diagram interpretation for $BMW(D_n)$ and $Br(D_n)$.
- There is a semisimplicity result for $BMW(D_n)$ and $Br(D_n)$ by Claire Levaillant.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some relations for the tangle algebra of type D_n , $KT(D_n)$

A pole twist and the relation of a pole of order two

Non-simply laced Dynkin type

Conclusion

Example D_n tangle

Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion
Outline				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3 Simply laced types

5 Conclusion

Non-simply laced Dynkin types obtained from foldings

Theorem

Let τ be a graph automorphism of the simply laced Dynkin diagram M. The τ -fixed subgroup of W(M) is a Coxeter group of a well determined type M_{τ} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Examples of non-simply laced Dynkin types from foldings

Cn	from	A_{2n-1}
\mathbf{B}_n	from	D_{n+1}
F_4	from	E6
G_2	from	D_4

イロト 不得 トイヨト イヨト

3

Example of diagrams obtained from folding

The one for F_4 uses E_6 and folds the diagram around its vertical axis.

Further Dynkin diagrams

Obtained by folding of simply laced diagrams (need admissible partitions of the nodes):

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion

The simply laced Weyl group which works for

 $\bullet \ \mathrm{H}_3 \text{ is } \mathrm{D}_6,$

Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The simply laced Weyl group which works for

- $\bullet \ \mathrm{H}_3 \text{ is } \mathrm{D}_6,$
- \bullet for ${\rm H}_4$ is ${\rm E}_8,$

Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion

The simply laced Weyl group which works for

- $\bullet \ \mathrm{H}_3 \text{ is } \mathrm{D}_6,$
- \bullet for ${\rm H}_4$ is ${\rm E}_8,$
- and for I_2^m is A_{m-1} , the symmetric group on m letters.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Extending to Brauer algebras of non-simply laced type

Let M be a simply laced Dynkin diagram with diagram automorphism $\boldsymbol{\tau}.$

Definition

The Brauer algebra $Br(M_{\tau})$ of type M_{τ} is the subalgebra of the Brauer algebra of type M generated by monomials in Br(M) fixed by τ .

In diagram of type A₃, with τ = (1,3), for M_τ = C₂, the minimal polynomial for T₁T₃ in Br(A₃) contains terms involving T₁ + T₃. OUCH.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In diagram of type A₃, with τ = (1,3), for M_τ = C₂, the minimal polynomial for T₁T₃ in Br(A₃) contains terms involving T₁ + T₃. OUCH.

• Hence no (obvious) extension to Hecke algebras.

Extending to Hecke algebras?

- In diagram of type A₃, with τ = (1,3), for M_τ = C₂, the minimal polynomial for T₁T₃ in Br(A₃) contains terms involving T₁ + T₃. OUCH.
- Hence no (obvious) extension to Hecke algebras.
- More promising approach: interpretation of the Artin group of type B_n as the fundamental group of the complement of the hyperplane arrangement in the complex reflection space and subsequent choice of cohomology space for a linear representation.

Extending to Hecke algebras?

- In diagram of type A₃, with τ = (1,3), for M_τ = C₂, the minimal polynomial for T₁T₃ in Br(A₃) contains terms involving T₁ + T₃. OUCH.
- Hence no (obvious) extension to Hecke algebras.
- More promising approach: interpretation of the Artin group of type B_n as the fundamental group of the complement of the hyperplane arrangement in the complex reflection space and subsequent choice of cohomology space for a linear representation.

 What's left is the specialized case of the group algebra of W(M): the Brauer algebra.

Theorem (C, Shoumin Liu, Shona Yu)

If $M = A_{2n-1}$ and $|\tau| = 2$, so $M_{\tau} \cong C_n$, then $Br(C_n)$ is cellular of dimension

$$\sum_{i=0}^{n} \left(\sum_{p+2q=i} \frac{n!}{p!q!(n-i)!} \right)^2 2^{n-i}(n-i)!$$

with cells parameterized by triples (X, Y, w) such that X and Y are admissible sets of commuting reflections in $W(M_{\tau})$ in the same $W(M_{\tau})$ -orbit and w is an element of a Coxeter subgroup of $C_{W(M_{\tau})}(X)$.

Let $n \geq 3$.

Theorem (C, Shoumin Liu)

If $M = D_{n+1}$ and $|\tau| = 2$, so $M_{\tau} \cong B_n$, then $Br(B_n)$ is cellular of dimension

$$2^{n+1}n!! - 2^nn! + (n+1)!! - (n+1)!$$

with cells parameterized by triples (X, Y, w) such that X and Y are **indexed** admissible sets of commuting reflections in $W(M_{\tau})$ in the same $W(M_{\tau})$ -orbit and w belongs to a Coxeter subgroup of $C_{W(M_{\tau})}(X)$.

Result for F_4

Theorem (Shoumin Liu)

If $M = E_6$ and $|\tau| = 2$, so $M_{\tau} \cong F_4$, then $Br(F_4)$ is cellular with cells parameterized by triples (X, Y, w) such that X and Y are admissible sets of commuting reflections in $W(F_4)$ in the same $W(F_4)$ -orbit and w belongs to a Coxeter subgroup of $W(F_4)$ centralizing X.

• Similar results by Zhi Chen using a flat connection.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Result for F_4

Theorem (Shoumin Liu)

If $M = E_6$ and $|\tau| = 2$, so $M_{\tau} \cong F_4$, then $Br(F_4)$ is cellular with cells parameterized by triples (X, Y, w) such that X and Y are admissible sets of commuting reflections in $W(F_4)$ in the same $W(F_4)$ -orbit and w belongs to a Coxeter subgroup of $W(F_4)$ centralizing X.

- Similar results by Zhi Chen using a flat connection.
- Similar results by Shoumin Liu for H_3 , H_4 , and I_2^m using admissible partitions.

Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion
Outline				

3 Simply laced types

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Discrepancies with Zhi Chen and Häring Oldenburg

Both Zhi Chen and Häring Oldenburg define Brauer algebras of type B_2 but these have dimensions slightly smaller than this definition which is 25, so are not the same.

They don't appear to be subalgebras or homomorphic images, just different.

Diagram algebras for Temperley Lieb algebras

Theorem (tom Dieck, R.M. Green)

For $M = D_n$ and $M = E_6$, there is a diagram algebra presentation for TL(M) generalizing the one for $TL_n = TL(A_{n-1})$.

Diagram algebras for Brauer and BMW algebras

Theorem (C, Gijsbers, Wales)

There is a diagram algebra presentation for BMW(D_n) and Br(D_n) generalizing those for $M = A_{n-1}$.

How about E_n ?

Theorem (Levaillant)

There is a diagram algebra presentation for $BMW(E_6)$ generalizing those for $M = A_n$ and $M = D_n$.

Other algebras with the label Brauer algebra

These are typically diagram algebras (many authors)

The Walled Brauer algebra, $B_{r,s}(\delta)$, where r + s = n

Brauer algebras of imprimitive complex reflection groups, labeled G(m, p, d), where pd = m

q-Brauer algebras

Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion
Problems				

• Try to find diagram algebras for the Brauer algebras of $\mathrm{E}_6,$ $\mathrm{E}_7,$ and $\mathrm{E}_8.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion
Problems	;			

- $\bullet\,$ Try to find diagram algebras for the Brauer algebras of ${\rm E}_6,\,$ ${\rm E}_7,\,$ and ${\rm E}_8.$
- When semisimple? (Levaillant has results for D_n and E_6 .)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion
Problem	S			

- $\bullet\,$ Try to find diagram algebras for the Brauer algebras of ${\rm E}_6,\,$ ${\rm E}_7,\,$ and ${\rm E}_8.$
- When semisimple? (Levaillant has results for D_n and E_6 .)
- In the case in which the algebras are not semisimple find the blocks.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation	Definitions	Simply laced types	Non-simply laced Dynkin types	Conclusion
Problem	S			

- $\bullet\,$ Try to find diagram algebras for the Brauer algebras of ${\rm E}_6,\,$ ${\rm E}_7,\,$ and ${\rm E}_8.$
- When semisimple? (Levaillant has results for D_n and $E_{6.}$)
- In the case in which the algebras are not semisimple find the blocks.

• Can BMW algebras of non-simply laced Dynkin type be defined from cohomological representations of the braid groups?

Non-simply laced Dynkin types

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Conclusion

Thank you!

