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Abstract. Relationships between the Eulerian number e and the Ludolphine number π are

recalled, explaining why e is the natural basis of logarithm, while π relates to arc-length and area

in the plane, distinguished by the imaginary unit i. Old and new conjectures around Euler’s

identity are discussed, indicating that the mysteries about e and π are far from resolved.

Gentlemen, that is surely true, it is absolutely paradoxical;

we cannot understand it, and we don’t know what it means.

But we have proved it, and therefore we know it must be

the truth.

Benjamin Peirce

As reported by one of his students, the 19th century mathematician and astronomer
Benjamin Peirce (1809-1880) once got amazed by an Eulerian formula

eπ/2 =
i
√
i

and, after a few minutes’ contemplation, praised it in the highest terms [20]. With a slight
demystification, the formula turns into the well-known eπi/2 = i, so that one might say
[20]: “We certainly can understand what Peirce always called the ‘mysterious formula’,
and we certainly do know what it means.” Nahin [20] adds: “But, yes, it is still a
wonderful, indeed beautiful, expression; no amount of “understanding” can ever diminish
its power to awe us ...”

In this note, we start with a brief review of basic facts on Euler’s identity, hopefully
to revive at least part of the early fascination about this formula. Much has been written
about that, but it seems that in the standardised introductory courses of our days, the
“well-known” facts stand to loose their attraction if not taught as a coherent unity. Having
recalled such basic matters, our second concern is to emphasize that with the elementary
facts about e and π, the case is by no means closed. We focus upon the scandal that after
a century of hard work, fundamental questions on both transcendentals are widely open,
and indicate new developments concerning the heart of our number system which must
not be ignored.



Coming back to Nahin’s awe-inspiring amazement, are we really sure that “no un-
derstanding” can ever distract us from mathematical beauty? We certainly cannot be
distracted from something we never had in mind. So the question cannot be answered
unless our relation to mathematics is accompanied by a strong estimation for its beauty.

On the other hand, a working mathematician usually struggles with truth or falsity
rather than beauty. When a theory is complete, beauty will come as a reward and
satisfaction for what has been done. To be sure, this kind of self-involved, accidential
beauty, a product of human activity, was certainly not what Benjamin Peirce had in mind
when he was struck with admiration by that remarkable connection between e and π.
Precisely, the purpose of this note is threefold. First, we revisit the question

1. What is natural about the natural basis e of the exponential function?

An obvious answer would perhaps refer to the derivative of the exponential function at
zero - or to the special form of its series expansion. Both are good explanations, touching
the essential point in an analytic fashion. Moreover, both explanations belong to real

analysis, somewhat remote from the geometric nature of π. So we ask for a more intuitive,
geometric reason why the Eulerian constant e is the natural basis of exponentiation. It
will turn out that the reason is essentially connected with π. To highlight the geometry
of this connection between e and π, our second goal is to

2. Explain the essence of e and π in connection with length and area.

The exercise to prove “analytic” facts geometrically pursues another purpose, namely, to
regain the awareness that “analysis” - in its original meaning - refers to a method rather
than to a genuine part of mathematics itself.

With the increasing demand of rigour, triggered by the foundational crisis, twentieth
century mathematics developed a tendency to look upon geometric methods with suspi-
cion. An early advocate of this viewpoint was Edmund Landau, whose definition of π/2
(the smallest root of the cosine function) has become commonplace (see, e. g., the trea-
tise of Dieudonné [5]). Landau himself [11] speaks of the “universal constant” π, which
suggests that his unintuitive definition may well be taken as an amusing gag of a talented
teacher. His rigorous telegram style (definition - theorem - proof) was new at that time.
Combined with his ability to reduce proofs to a minimum of assumptions, he had a strong
impact to the following generations, including the Bourbakians until the seventies. How-
ever, mathematics cannot be fully captured in a formal system, just as the physical world
could not be encapsulated in a “theory of everything” [7, 14, 15]. This partly explains
the persistence of mysteries, problems in mathematics with little hope for a solution in
the near future. As an example, we discuss a long-standing conjecture on exponentials in
connection with the relationship between e and π:

3. Schanuel’s conjecture and Euler’s identity

Our exposition is completely elementary, making wide use of geometric arguments in a
stringent but not too formal way, assuming only the most evident facts about infinite
series.
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To set the stage, we briefly recall Euler’s limit formula for the exponential function

exp: C −→ C, (1)

the heart of the whole matter, defined by the infinite series

exp(z) :=
∞
∑

n=0

zn

n!
. (2)

In what follows, we usually write z or w for complex, and x or y for real variables. The
ratio | zn+1

(n+1)!
: zn

n!
| = |z|

n+1
tends to zero with increasing n. So the series (2), being majorized

by a geometric series, converges for all z ∈ C. A simple calculation, using the binomial
theorem

(a+ b)n =
n

∑

j=0

(

n
j

)

ajbn−j, (3)

shows that (1) is a homomorphism from the additive group of the field C of complex
numbers onto its multiplicative group C×:

exp(z + w) = exp(z) · exp(w). (4)

In particular,
exp(nz) = exp(z)n (5)

for z ∈ C and n ∈ Z. The following well-known representation of the exp-function is due
to Euler [6].

Proposition 1. For arbitrary z ∈ C,

exp(z) = lim
n→∞

(

1 + z
n

)n
.

Proof. By the binomial theorem (3),

(

1 + z
n

)n
=

n
∑

j=0

(

n
j

)(

z
n

)j
=

n
∑

j=0

n(n−1)···(n−j+1)
nj · zj

j!
=

∞
∑

j=0

(

1− 1
n

)

· · ·
(

1− j−1
n

)

zj

j!
.

For fixed z and n → ∞, the sum converges uniformly to exp(z), whence the result. �

Two aspects of plane geometry arise when the exponential function (1) is restricted
either to real or to purely imaginary z ∈ C. Accordingly, there are two classes of real
functions related to area and arc length of circles in the complex plane. We treat the two
cases separately.

1 Arc length: The imaginary case

Consider the function exp(iϕ), with ϕ ∈ R. We set

exp(iϕ) = x+ iy (6)
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with x, y ∈ R. From the series expansion (2), it is clear that the complex conjugate x− iy
of exp(iϕ) is exp(−iϕ). Hence |exp(iϕ)|2 = x2+y2 = (x+iy)(x−iy) = exp(iϕ)exp(−iϕ) =
exp(0) = 1 by virtue of (4). Thus exp(iϕ) is located on the unit circle in the complex
plane C. Where on the unit circle?

exp( iϕ
n
) ≈ 1 + iϕ

n
− ϕ2

2n2

1

i exp(iϕ)

By Eq. (5), we have exp(iϕ) = exp( iϕ
n
)n, and the series expansion (2) yields exp( iϕ

n
) ≈

1 + iϕ
n
− ϕ2

2n2 , with a second order term in direction of the negative real axis. The first

order term iϕ
n

shows that the arc length from 1 to exp( iϕ
n
) is ϕ

n
for large n. So the total

arc length from 1 to exp(iϕ) is exactly ϕ.

Thus ϕ can be interpreted as the argument, that is, the polar angle of exp(iϕ). As an
immediate consequence, this yields Euler’s formula

exp(iϕ) = cosϕ+ i sinϕ, (7)

with the usual geometric meaning of the sine and cosine function. Accordingly, every
complex number z ∈ C× can be written uniquely as z = |z| · exp(i arg z), where arg z
denotes the argument of z.

Now it is time to write exp(z) in its usual form as a power ez. With e := exp(1), Eq.
(5) gives exp(n) = en for n ∈ N, and with z = 1

n
, the same formula gives e = exp( 1

n
)n,

that is, exp( 1
n
) = e

1

n . Furthermore, Eq. (4) with z = 1 and w = −1 gives exp(−1) = e−1.
Thus, exp(x) = ex holds for all rational numbers. Thus, it is reasonable to define the
power ex for real x to be exp(x). For imaginary numbers, a similar procedure is suggested
by the above discussion of angles. So we can safely write exp(z) = ez for all z ∈ C. With
this notation, Euler’s remarkable formula

eiπ = −1 (8)

follows if, as usual, π is defined to be the length of the half unit circle.

What is more important, the geometric interpretation of exp(iϕ) = eiϕ shows that
e = 2.718281828459045... is the natural basis of exponentiation: If

ln : R>0 −→∼ R (9)

denotes the inverse function to exp|
R
, then aiϕ = eiϕ ln a runs along the unit circle. How-

ever, e is the unique exponential basis a for which the length from 1 to aiϕ on the unit
circle is exactly ϕ.
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2 Inversion

The natural logarithm (9), inverse to the exp-function, is closely related to the inversion
x 7→ x−1, an order-reversing automorphism

R>0 −→∼ R>0

of the multiplicative group of R>0. We would like to determine the

1 x

y

A(x)

H

x ax

y

R

H

area A(x) between the hyperbola H with equation xy = 1, and the x-axis restricted to
the interval [1, x]. For any a > 1, consider the rectangle R between x and ax of height
1
ax
. The area of R does not depend on x:

R = (ax− x) 1
ax

= 1− 1
a
= a−1

a
.

Therefore, the sequence 1, a, a2, . . . , an gives rise to rectangles of equal area:

1 a a2 a3 an−1 an

y

H

R R R · · ·

R

For n ∈ N and a := 1 + x
n
, this yields R = x

n(1+ x
n
)
= x

n+x
and an = (1 + x

n
)n. Hence

Proposition 1 gives
A(ex) = lim

n→∞
nR = x.

This shows that A(x) represents the logarithm ln x. If 0 < x < 1, the area A(x) has to
be taken negative, in accordance with ln x < 0. Precisely, we should have

A(x−1) = −A(x). (10)

Again, this can be visualized geometrically:
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1 x

y

H

P

E

O

x
−1

1

1 xx−1

y

P ′

P
E

O

A(x)

−A(x)

In the first picture, the unit square (between O and E), and the rectangle between O and
P are both of area 1. By adding the unit square to A(x) and subtracting the rectangle,
we get the shaded area between the horizontal lines of height x−1 and 1. Reflecting this
area at the dotted line OE, we obtain the shaded area in the second diagram, which
establishes (10).

We started with two manifestations of e in Proposition 1. An analogue for the loga-
rithm can be found in Euler’s “introduction” [6].

Proposition 2. For all z ∈ C,

z = lim
n→∞

n(ez/n − 1).

Proof. By definition, we have ez/n = 1 + z
n
+ z2

2n2 + · · · , which yields n(ez/n − 1) =

z + z2

2n
+ z3

3!n2 + · · · . Whence the result. �

From the polar representation z = |z| · earg z, it follows that exp maps the strip −π
2
<

z < π
2
bijectively onto the open half plane ℜ(z) > 0. Therefore, the inverse z 7→ ln z of

exp is uniquely defined in this half plane. Replacing z by ln z, Proposition 2 thus gives

ln z = lim
n→∞

n(z1/n − 1)

for ℜ(z) > 0, where z1/n denotes the n-th root with argument 1
n
arg z.

3 Area: The real case

Note that the points P and P ′ are symmetric with respect to OE. On the x-axis, this
symmetry corresponds to the automorphism x 7→ x−1. Now let P0 be the projection of an
arbitrary point P on H to the x-axis. Take the area A(x) and its mirror image −A(x−1)
together, add the triangle OP ′

0P
′ and subtract the congruent triangle OP0P to obtain the

shaded area in the following picture:
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x

y

P

P ′

P ′
0

E

O

Now we return to the exponential function (1) and restrict it to real numbers. Let us
denote the real part x and the imaginary part y of a complex number z = x+ iy by ℜ(z)
and ℑ(z), respectively. Representing the hyperbola H in the complex plane C (like the
unit circle in Section 2), its equation becomes

H : ℑ(z2) = 2.

Indeed, z2 = (x2 − y2) + 2ixy. So the real part gives another hyperbola H ′ with equation

H ′ : ℜ(z2) = 1,

that is, x2 − y2 = 1. The distance between H ′ and the origin O is 1, while it is
√
2 for H.

Therefore, the hyperbolaH ′ should be regarded as the proper analogue of the circle, rather
thanH. The map z 7→ (i+1)z transformsH ′ intoH. Indeed, (i+1)2z2 = 4xy+2i(x2−y2).
Since |i + 1| =

√
2, the size of any area is doubled by this map. Let us denote the

coordinates of H ′ by (u, v). Then (i+ 1)(u− iv) = x+ iy with x = u+ v and y = u− v.
Hence

u =
x+ y

2
v =

x− y

2
.

The area A(x), that is, half of the shaded area in the previous diagram of H, can thus be
represented by t in the graph of the hyperbola H ′:

u

v

t

Now recall that t = A(x) = ln x. So we obtain the hyperbolic functions

u = cosh t =
et + e−t

2
, v = sinh t =

et − e−t

2
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which give the even and odd part of the series (2):

cosh t =
∞
∑

n=0

t2n

(2n)!
, sinh t =

∞
∑

n=0

t2n+1

(2n+ 1)!
.

This completes our sketch of the real and imaginary part of the exponential function.
Further details can be gathered from any standard textbook like [1].

4 Relations between e and π

The fundamental importance of π as a “constant of nature” has been an inexhaustible
source of inspiration since the ancient days of Archimedes. For a unit circle, π is its
area and half of its circumference. Euler’s discovery of e after so many centuries where π
stood alone as a unique phenomenon adds a new dimension to the perception of numbers.
In fact, Euler’s invention appears as a last step in the convincement that the habitat of
numbers is two-dimensional. Our brief reflection on e and π should leave no doubt that e is
more fundamental than π, opening a deep shaft into the rock layers of C. Connecting the
additive with the multiplicative group of C, every exponential function maps imaginary
numbers onto the unit circle. Only the natural basis e gives the proper arc length in C,
which leads to the constant π. If the unit circle is replaced by a hyperbola, the variable
x of the function ex turns out to be an area, which leads to the hyperbolic functions.
Providing arc length and area of circles in the plane with an inseparable link to the
number system, the constant e has opened a new era after π. Note that from the mere
definition of C, the dominance of e is not obvious at first sight. It needed a genius like
Euler to bring it to light.

For a non-zero algebraic number α ∈ C, Lindemann [16] showed that eα is transcen-
dental. Thus Euler’s formula (8) shows that π is transcendental. Furthermore e = e1

is transcendental, a result that was proved earlier by Hermite [8]. More generally, Lin-
demann [16] and Weierstraß [24] proved that if α1, . . . , αn are Q-linearly independent
algebraic numbers, eα1 , . . . , eαn are algebraically independent (cf. [9]). More generally,
Schanuel’s conjecture [12] states that for Q-linearly independent numbers α1, . . . , αn ∈ C,
the transcendence degree of Q(α1, . . . , αn, e

α1 , . . . , eαn) is at least n. This very general
statement implies many known results on transcendental numbers. For example, it im-
plies that e and π are algebraically independent, while it is not even known that e+ π is
irrational. Schanuel’s conjecture also implies [17, 22] that in the field C of complex num-
bers together with the exponential operation (1), there are no relations between i =

√
−1

and π other than Euler’s identity (8).

Although there are not many fields with a natural exponential operation, exponen-
tiation in the field C of complex numbers is fundamental and should be included as
a third operation besides addition and multiplication, justifying the concept of expo-

nential field [23], a field K with a function E : K → K such that E(0) = 1 and
E(a + b) = E(a)E(b). As a consequence, E is a group homomorphism from the ad-
ditive group of K to K×. The fact that Schanuel’s conjecture is widely open reveals
an embarrassing limitation of knowledge concerning most basic properties of our number

8



system. An analogue of Schanuel’s conjecture for rings of formal power series is well
known [2]: If f1, . . . , fn ∈ C[[x1, . . . , xn]] are Q-linearly independent modulo constants,
the transcendence degree of C(f1, . . . , fn, e

f1 , . . . , efn) is at least n plus the rank of the
Jacobian J(f1, . . . , fn).

In 2004, Boris Zilber introduced a class of fields with exponentiation satisfying Schanu-
el’s conjecture. Among Zilber’s fields [25, 26] there is, up to isomorphism, a unique field
B of cardinality 2ℵ0 . Zilber conjectured [26] that as an exponential field, B is isomorphic
to C. A slight evidence for this striking claim, Kirby [10] proved that Zilber’s conjecture
is true if B and (C; exp) are elementary equivalent as logical systems. Recently, Bays
and Kirby [3] improved Zilber’s approach and showed that his conjecture is equivalent to
the conjunction of Schanuel’s conjecture and another unproved condition called “strong
exponential-algebraic closedness”. Furthermore, Bays and Kirby [3] extend Schanuel’s
and Zilber’s conjecture to a wider context including exponential maps of elliptic curves,
which leads to a close relationship to the André-Grothendieck conjecture [4] on periods
of 1-motives.

Much more could be said about the influence of Euler’s relation and its variants to
further developments until recently. For example, Diophantine geometry plays a big role
in the study of transcendental numbers [13]. Together with model theory, it applies
to the investigation of Zilber’s exponential fields [26, 10, 19]. The fundamental role of
exponentiation also occurs in the topos-theoretic approach to set theory [21, 18].
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