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Chapter 0O

Introduction

0.1 Envelope operations

In the construction of our envelope operations we follow Nico Stein [7], in that we first
perform the envelope construction including its functorialities, and then use these func-
torialities to derive its universal properties.

0.1.1 The Karoubi envelope

We give an account of the construction of the Karoubi envelope of an additive category.
This construction is due to Karoubi [3, II.1], see also [4, Theorem 6.10]. He calls it
“enveloppe pseudo-abélienne“ or “pseudo-abelian category® associated with the given
category.

Suppose given an additive category A. It is not necessarily idempotent complete, that
is, an idempotent morphism X 5 X in A does not necessarily have an image; cf.
Definition 45. We aim to endow A with images of all idempotents in a universal man-
ner. More precisely, we construct an idempotent complete additive category Kar A and
an additive functor J4 : A — Kar A such that every additive functor F' from A to an
idempotent complete additive category B factors uniquely, up to isomorphism, over J4
as F'=F'oJyu.

Ja

A

Kar A
F v

B

Still more precisely, we have the equivalence of categories

ada[A, B]  += aqa[Kar A, B]
(Uog) 25 (vory) ~— W-L-v),

which is surjective on objects; cf. Theorem 78.

The category Kar A is constructed as follows. Its objects are the pairs of the form (X e),
where X € ObA and X 5 X is an idempotent. A morphism from (X,e) to (Y, f) in
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Kar A is given by a morphism X % Y in A such that epf = ¢. Composition is then
given by the composition in A; cf. Definition 33.

More generally, we perform this construction for arbitrary, not necessarily additive cate-
gories.

0.1.2 The additive envelope of preadditive categories

We give an account of the construction of the additive envelope of a preadditive cate-
gory. In the literature, it has been mentioned for example in [5, VIL.2, ex. 6.(a)] or in
[2, Def. 1.1.15].

Suppose given a preadditive category A, that is, a category whose morphism sets are
abelian groups and whose composition is Z-bilinear. Note that A is not necessarily ad-
ditive, that is, A does not necessarily have direct sums. We aim to endow A with direct
sums in a universal manner. More precisely, we construct an additive category Add.A
and an additive functor I4 : A — Add A such that every additive functor F' from A to
an additive category B factors uniquely, up to isomorphism, over I4 as F = F' o l4.

A"~ Add A
F v
B

Still more precisely, we have the equivalence of categories
add[A, B] <~ .a[Add A, B]

(Wory 2 (vory) ~— Ww-2-v),

which is surjective on objects; cf. Theorem 113.

The category Add A is constructed as follows. Its objects are tuples of objects of A. Its
morphisms are formal matrices having as entries morphisms of A. Composition is then
given by the usual matrix multplication rule; cf. Definition 88.

More generally, we perform this construction over an arbitrary commutative ground ring.

0.2 The tensor product of categories

0.2.1 The tensor product of preadditive categories

We give an account of the construction of the tensor product of preadditive categories as
mentioned in [6, 16.7.4], where preadditive categories in our sense are called “additive*
by Schubert.

Suppose given preadditive categories A and B. We construct a preadditive category AXIB
and a Z-bilinear functor Mz : A x B— A[X B such that every Z-bilinear functor F'
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from A x B to a preadditive category C factors uniquely over My 5 as F' = FoM AB-

Ma,s

AxB AX B

F
F v

C

More precisely, we have the isomorphism of categories

zbil| A x B,C] <~ Ll AXB,C]|

BxMa B

<(U o Mag) (Vo MA,B)) — (UL

cf. Theorem 130.

The category A [x] B is constructed as follows. Its objects are the pairs (A, B) with
A€ ObA and B € ObB. We denote such a pair by A X B. For objects A; [X] B; and
A2B2 OfAB, let

AxB(AL K By, Ag X By) 1= A(Ay, Ag) ® 5(B1, Ba).
Composition in A [x] B is then given on elementary tensors by
(a/ ® b/)(a” ® b//) — (a/al/) ® (b/b”);

cf. Definition 123.

More generally, we perform this construction over an arbitrary commutative ground ring.

0.2.2 The tensor product of additive categories

We give an account of the construction of the tensor product of additive categories as
mentioned in [2, Def. 1.1.15].

dd
Suppose given additive categories A and B. We construct an additive category A a B

add
and a Z-bilinear functor M ffg : A x B— A X B such that every Z-bilinear functor F’

from A x B to an additive category C factors uniquely, up to isomorphism, over M jflg as

_ add
F=F oM¥gs.

Madd add
AxB—"> AKX B

F v

C

More precisely, we have the equivalence of categories

add
zoi[A x B,C] <=~ LA X B,C|

,8 add

x M
<VoM1?g>) — WLy,

((U o M)
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which is surjective on objects; cf. Theorem 143.

add
The category A [x] B is constructed by first taking the tensor product AX B of A and B

as preadditive categories and then taking the additive envelope of AX B. In other words,
add
we have A X] B = Add(AX B); cf. §0.1.2 and §0.2.1.

More generally, we perform this construction over an arbitrary commutative ground ring.

0.3 Counterexamples for compatibility relations

0.3.1 Karoubi envelope and additive envelope

Given a preadditive category A, in general we have

Add(Kar A) # Kar(Add A).
More precisely, consider the subring A := {(a,b) € Z x Z : a =5 b} of Z x Z and the full
preadditive subcategory A of A-free with Ob A := {A, 0}.
Then Add(Kar A) % Kar(Add A); cf. Proposition 145.

0.3.2 Additive envelope and tensor product

Given a commutative ring R and preadditive categories (A, p4) and (B, pp) over R, in
general we have

(Add A) X (Add B) # Add(AX B).

More precisely, consider R = Q and the full Q-linear preadditive subcategory A of Q-mod
with
ObA:={VeObQ-mod:dimV # 1};

cf. Remark 32. Then (Add.A) X (Add A) # Add(AX A); cf. Proposition 147.
Q Q

0.3.3 Karoubi envelope and tensor product

Given a commutative ring R and preadditive categories (A, p4) and (B, ¢g) over R, in
general we have

(Kar A) X (Kar B) Kar(A B).

More precisely, consider R = Q and the full Q-linear preadditive subcategory of Q(i)-mod
with Ob A := {Q(i), 0}; cf. Remark 32.

Then (Kar A) X (Kar A) 2 Kar(.AA); cf. Proposition 149.



0.4 Conventions

We assume the reader to be familiar with elementary category theory. An introduction
to this subject can be found in [5] or [6]. Some basic definitions and notations are given
below. Concerning additive categories, we essentially follow Nico Stein [7].

Let A, B and C be categories.

1. All categories are supposed to be small (with respect to a sufficiently big universe);
cf. [6, §3.2 and §3.3].

2. We write Ob A for the set of objects and Mor A for the set of morphisms of A.
Given A, B € Ob A, we denote the set of morphisms from A to B by 4 A, B). The
identity morphism of A € Ob A is written as 1. If unambiguous, we often write
1:= 1A .

3. The composition of morphisms in A is written naturally:
(4L B2c)=(aLh0)-(aL20)
4. The composition of functors is written traditionally:
(A5BSc) = (a4t o).

5. Suppose given A, B € Ob A. If A and B are isomorphic in A, we write A ~ B.

If p € 4(A, B) is an isomorphism, we often write A -2+ B. Given an isomorphism
fe AA, B), we write f~1 € 4B, A) for its inverse.

6. Given a functor F': A — B and X,Y € Ob A, we write

FX,Y: A<X7Y) - B(FX7FY)>90'_)F90

7. The opposite category (or dual category) of A is denoted by A°. Given A L Bin

A, we write B L, A for the corresponding morphism in A°.
8. We call A preadditive if it fullfills the following conditions (1, 2).

(1) For A, B € Ob A, the set 4 A, B) carries the structure of an abelian group,
written additively.

(2) For A—f>BZ:>>IC—h>D in A, we have f(g1 + g2)h = fg1h + fgeh.
2

Suppose A to be preadditive. Suppose given A, B € Ob.A. We denote the zero
morphism in 4 A, B) by 04 5. If unambiguous, we often write 0 := 04 5.

Note that full subcategories of preadditive categories are preadditive.

9. We write Z for the set of integers. Given a € Z, we write Zs, :={beZ : b > a}.
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10.
11.
12.

13.

14.

15.

For a,b e Z, we write [a,b] :=={c€eZ :a < c <b}.
Let M be a finite set. The cardinality of M is denoted by |M].

Suppose A to be preadditive. We use following variant of the Kronecker delta.
Let I be a set. Suppose given A; € Ob A for i e I. Let

5 ) 1y, if 1 = 7,
AiAj o= 0a;,4, ifi#7,

for 4, j € I. If unambiguous, we often write d; ; := 04, 4; -

Suppose A to be preadditive. Suppose given A;, A3 € Ob.A. An object C' € Ob A
together with morphisms A; <;—;> C ‘# Ay is called a direct sum of A; and A, in
A, if oymy = 14y, tom = 1y, and1 Tl +27T2L2 =1c.

In the following way this is generalized to a finite number of objects.

Suppose given n € Z>q. Suppose given A; € Ob A for i € [1,n]. A direct sum of
A17 e ,An in Ais a tuple (C, (ﬂ-i)ie[l,n] , (Li)ie[l,n]) with C' € Ob A, T € A(C, A2> and
ti € AA;,C) for i€ [1,n] such that y;m; = &;; for ¢, j € [1,n] and X,y .y miti = Lo
Often the following matrix notation is used for morphisms between direct sums.

Suppose given m,n € Zsq. Suppose given A;; and Ay ; in Ob A for i € [1,m] and
J € [1,n]. Suppose (C, (71,)icf1m] » (¢1,0)ie1,m)) to be a direct sum of Ayq,..., Ay
and (Cy, (T2,5)jef1,n] » (t2,5)je[1,n]) to be a direct sum of Ay, ..., Agp .

Suppose given f € 4C,Cs).
Let fi,j = Ll,if7T2,j € A(ALZ‘,AQJ) for (’L,j) € [1,m] X [1,TL] Then
f= Z T figt2 -
(4,5)e[1,m]x[1,n]

We write

fi1 - fin
f=fij)ig = (fig)iemljenm = | Sk
f'm,l fm,n

Omitted matrix entries are stipulated to be zero.
Suppose given n € Z>,. Suppose given A;; and Ay ; in Ob A for i € [1,n]. Suppose
given A ; EiN Ay, in Afor i e [1,n]. We write

dlag(fl)l = dlag(fz)ze[lm] = (fl fn>.

We call A€ ObA a zero object if | (A, B)| =1 = | 4B, A)| for B € Ob A.
The category A is called additive if the following conditions (1, 2, 3) hold.

(1) The category A is preadditive.

(2) There exists a zero object in A.



16.

17.

18.

(3) Every pair (A, B) € (Ob.A) x (Ob.A) has a direct sum in A.
Note that in additive categories direct sums of arbitrary finite length exist.

Suppose A to be additive. We choose a zero object 04 € Ob A.

For ne Z-y and Aq,..., A, € Ob A, we choose a direct sum

A - n A ie n
( @ A;, (7%( et ])ie[l,n] ; (LE et ])ie[l,n]>

i€[1,n]

in A.
(Aj)je[l,n

. . Aj)jeton
If unambiguous, we often write m; := m; (A3)sen,

Vand ¢; := U or i e [1,n].

In particular, we choose
( (‘B A, (Wi)z‘e[l,l] ) (Li)z'e[1,1]> = (Al ) (1A1)ie[1,l] ) (1A1>ie[1,1])
1€[1,1]

and

( D Ai, (m)iego (Li)ie[1,0]> = (04,(), ()

i€[1,0]

We often write Ay, ®--- @ A,, 1= @ie[l,n] A, .

In matrix notation, we have

0
(Aj)jer1,n) :
7 I = (6 k) ke[t e = | 1
6

and (A))
o jelln] _ ((52,7[)]66[171],[6[1’”] = (0..010..0)

for i € [1,n]; cf. Stipulation 106 below.

Suppose A and B to be preadditive. A functor F : A — B is called additive if
Flp+4)=Fp+ Fifor X—=Y in A
P

Let F,G : A — B be functors. Suppose given FX =5 GX for X € Ob A. The tuple

(ax)xeoba is called natural if ax - Gf = Ff - ay for X LV in A. A natural tuple
F

is often called a transformation. We write o : F - G, o : FF = G or A /UT; B.

—

G

A transformation a : F = G is called an isotransformation if FX =5 GX is an
isomorphism in B for X € Ob A. We often write F == G.

Suppose given functors F, G, H : A — B. Suppose given transformations o : F = G

and f:G = H.



19.

20.

21.

We have the transformation af : ' = H where (af)x := axfx for X € Ob A.
We have the transformation 1p : F' = F where (1p)x := lpx for X € Ob A.

Suppose given A |« B || C. We have the transformation
LA
a L

(y*a): (KoF)= (LoQ)

where (7= a)y := Kay - yax = Vrx - Lax for X € Ob A.

(Ko F)X X% (Lo F)X

Kocxl lLOtX

(KoG)X % (LoG)X
In particular, we have the transformations v = F' := v+ 1p and K =« := 1 = a.
A functor F' : A — B is called an isomorphism if there exists a functor G : B — A
with FoG = 1z and Go F = 14. In this case, we write G = F~1.

A functor F': A — Bis called an equivalence if there exists a functor G : B — A and

isotransformations Go F=>14 and Fo(Q % 15 . If there exists an equivalence
F: A— B, we call Aand B equivalent and write A ~ B.

A functor F : A — B is called surjective on objects, if the map
ObA—->ObB, A— FA

is surjective.

A functor F': A — B is called dense if given B € Ob B, there exists A € Ob. A with
FA>~B.

A functor F': A — B is called full if Fxy is surjective for X,Y € Ob A.
A functor F': A — B is called faithful if Fxy is injective for X,Y € Ob A.

Note that a functor F' is an equivalence if and only if it is full, faithful and dense.

Let A 5 Band B % A be functors. Let 14 > (GoF)and (FoG) > 1p
be transformations. We call (F,G,n,¢e) an adjunction, if the following diagrams
commute.

F— " FoGoF G—" L GoFoG
\lg}? \LGE
ja G

In this case, F'is called left adjoint to G and G is called right adjoint to F'. We also
write F' - G. Furthermore, we call 7 the unit and ¢ the counit of the adjunction.

By [A, B] we denote the functor category whose objects are the functors from A to
B and whose morphisms are the transformations between such functors.
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22.

23.

24.

25.

26.

27.

28.

29.

Suppose B to be preadditive. For F ﬁ G in [A, B], we have the transformation
B

a+ fB:F — G where (o + ) x := ax + Bx for X € Ob A.
The category [A, B] is preadditive with respect to this addition.

Suppose A and B to be preadditive. By ,q4[.A, B] we denote the full subcategory of
[A, B] with Ob ,4q[A, B] := {F € Ob[A, B] : F is additive}.

Given X € Ob A, we call X 5 X an idempotent in A if €2 = e. A tuple (Y,7,¢)
with Y e Ob A, me 4X,Y) and 1 € 4Y, X) is called an image of X 5> X in A if
the following diagram commutes.

X—< X
\Y/ly\

The category A is called idempotent complete if every idempotent in A has an image
in A; cf. Definitions 1 and 45 below.

Y

Suppose A to be idempotent complete.

Given an idempotent X 5 X in A, we choose an image (Ime, €, ¢) of e in A.

For X € Ob A, choose (Im1x,1x,(1x)) = (X, 1x,1x); cf. Stipulation 52 below.
Let R be a ring. By an R-module, we understand an R-left-module. The category

of R-modules is denoted by R-Mod. By R-mod we denote the category of finitely
generated R-modules.

Let R-free be the full additive subcategory of R-mod with
Ob R-free := {R" : n € Z>}.

In particular, R-free is a skeleton of the category of finitely generated free R-
modules.

Suppose I to be a set. Suppose given categories A; for i € I. We denote the product
category by [ [,.; Ai. For m e Zsy, we also write Ay x --- x A, :=]] 1 Ai and

A= Hie[l,m] A

Let R be a commutative ring.

i€[1l,m

Given preadditive categories (D, ) and (€,1) over R, we write gun[D,E] for the
full subcategory of [D, £] with

Ob gun|[D, €] := {F € Ob[D,&] : F is R-linear}.

Given preadditive categories (D, ¢), (€,%) and (F,n) over R, we write gD x &, F]
for the full subcategory of [D x &, F] with

Ob rui[D x &, F| :={F € Ob[D x &£, F] : F is R-bilinear}.
Cf. Definitions 23 and 27 below.

For m € Z~, the symmetric group on m symbols is denoted by S,, .
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Chapter 1

Preliminaries

1.1 Idempotents

For this §1.1, let A be a category.

Definition 1. Define Idem A := {e¢ € Mor A : ¢? = e¢}. The elements of Idem A are called
1dempotents.

Remark 2. Suppose given idempotents X = X and Y Ly in A Suppose given
pe AX,Y) with epf = p. We have ep = ¢ and of = .
Proof. We have ep = eepf = epf = . Similarly, we have of =epff =epf = . n

Remark 3. Suppose given an isomorphism X %Y in A. Suppose given an idempotent
—le .
X 5 X. We have the idempotent Y +—5Y in A.

1

Proof. We have (¢ tep)? = o lepptep = pleep = o lep. O

Remark 4. Suppose A to be preadditive. Suppose given an idempotent X = X in A.

Suppose given an idempotent X %> X with epe = ¢. We have the idempotent X —%> X
in A.

Proof. We have (e — )2 =€ —ep—pe+ 0> C e—p—p+p=e—¢. O

Remark 5. Suppose given a category B and a functor A 5 B. Suppose given idempotents
XS X andY LY in A Suppose given p € AX,Y) with epf = .

The following assertions (1, 2) hold:

(1) The morphism FX % FX is an idempotent in B.

(2) We have Fe-Fop-Ff = Fp.

Proof. Ad (1). We have Fe - Fe = F(ee) = Fe.
Ad (2). We have Fe-Fy-Ff =F(epf) = Fep. O

11



1.2 A lemma on equivalences

Lemma 6. Suppose given categories C and D. Suppose given a functor F : C — D.
Suppose F to be surjective on objects. Suppose given a map ObD — ObC, X — X' such
that FX' = X for X € ObD. Suppose the following assertions (1, 2) to hold.

(1) For X,Y € ObD, the map Fx'y:: o(X",Y') = p(X,Y),p — Fy is bijective.
(2) For A,Be€ ObC with FA = FB, we have A = B.

Then F' is an equivalence.

Proof. Since F' is surjective on objects, F' is dense. Therefore, it suffices to show that F
is full and faithful.

Suppose given A, B € ObC. We show that Fu 5 : (A, B) - p(FA,FB), p — Fpis a
bijection.

Since (2) holds, we have isomorphisms A — (FA)" and B N (FB)".
This gives a bijection
[+ dA,B) = d(FA),(FB)), ¢ — a™'¢p.
Furthermore, we obtain a bijection
g: p(FA, FB) — p(FA FB), ) Fa-1-Fp™"
Suppose given ¢ € (A, B). We have

o(f - Frayrpy - 9) = (@ oB) (Fipay ray - 9)
= (F(a™'¢f))g
=Fa-Fa' Fo-FB-Fp!
= ng
= pFap.

Because (1) holds, Fiap = f - Firay (rpy - 9 is a bijection. O

1.3 The tensor product of modules and linear maps

For this §1.3, let R be a commutative ring.

1.3.1 The tensor product of modules

In this §1.3.1 we establish the tensor product of a finite number of modules. Instead of defin-
ing the tensor product of two modules and then defining the tensor product of a finite number
of modules inductively, we follow the idea of Atiyah and Macdonald
[1, Prop. 2.12*] and do it at once. This is useful in §3.1.1.

12



For this §1.3.1, let n € Z>o, M; € Ob R-Mod for i € [1,n] and X € Ob R-Mod.

Definition 7. We say that a map f : ][]
property (ML) holds.

1 M; — X is R-multilinear, if the following

i€[1l,n

(ML) Suppose given i € [1,n]. Suppose given m}, m! € M,;. Suppose given m; € M; for
j € [1,n]\{i}. Suppose given 7', 7" € R. Then we have

/ / /4 "
(ma,...,mi_q,r'mi+r"m! mi g, my) f

= r(my,...,mi_y,mlmi, ... omp) f +r"(my, oo m,ml mi, . my) f

For n = 2, we often write R-bilinear instead of R-multilinear.
Remark 8. Let f:]],p ) Mi — X be a map.
The following assertions (1, 2) are equivalent.
(1) The map f is R-multilinear.
(2) Forie [L,n] and (m;)jerinp it € [ Licpagy sy My the map
M; - X,a— (my,...,mi_1,a,Miz1,...,my)f
is R-linear.
Definition 9. Define
R-mul(Hie[l,n]Mi , X) = {f : Iiep,yM; — X : f is R-multilinear}.
For f,9 € rmu(Iliep1,n)M;, X), we define
[+ g: WepmM; — X,m —mf+mg.
For f € pmu(ILiep,njM;, X) and r € R, we define
re f o g Mi — X,m =1 - (mf).

Remark 10. The following assertions (1, 2, 3) hold.

(1) For f> ge R-mul(Hie[l,n]Mi ) X)7 we have f +gE€ R-mul(Hie[l,n]Mi >X)

(2) For f € R—mul(H’iE[l,n]Mi ,X) and r € R, we have ’f’f € R—mul(HiE[l,n]Mi ,X)

3) We have an R-module g na(Ilieri1M;, X) with respect to the operations in (1, 2).
[1,n]

Example 11. We examine Definition 7 in the case n = 0.

We have [ [, . M: = {()} =: N, where () is the empty tuple. Since the condition a map
f : N — X has to fulfill to be R-multilinear is empty, we find that for m € M the map
f:N — M,()— mis R-multilinear.

13



(fi)ier1,n]

Lemma 12. Suppose given (X;)ic[1n] (Yi)icpn tn (R-Mod)*™. Suppose given
N € Ob R-Mod and g € gamu(IicpinYs, N). Suppose given N n, P in R-Mod.

Then

[T filor: [] Xi—>P

i€[1,n] i€[1,n]

18 R-multilinear.

Proof. Suppose given 7', 7" € R. Suppose given i € [1,n]. Suppose glven ol e X;.
Suppose given x; € X; for j € [1,n]\{i}. For j € [1,n]\{i}, we define 27 := 2 := ;.
We have

n_n

T R L S R A T TR RN | H fi |gh

ze ln
= (@1fr, . wiafior, (P2 +07"2)) fi s wiga fivrs - o fa)gh
= (xlfl s Tisy fic1, T (xzfz) + r”(as;’fi), Tit1fis1, .- Jﬁnfn)gh
= (r'((Z} f3)jenmg) + 7" (2] f5) jenrm9)) 1
= 7' (2} fj)jenmgh + 7" (2] ) jem gh
/

= 7" | (¥})jef1m] H filgh || +7" | (2))jen H fi |gh

i€[1,n] i€[1,n]

]

Definition 13. Let C' be the free R-module on the set [] M;. Let D be the

R-submodule of C' generated by the elements of the form

i€[1,n]

/ !/ " "
(ma,...,mi_q,r'm;+r"m! m;q, ... my)
/ /
—-r (mla sy Ty 1, T s Mg 1, - 7mn)
" "
—-r (m17 ceey My—1, My M1, - 7mn)

for i e [1,n], ', 7" € R, m}, m! € M;, m; € M; for j e [1,n]\{i}.
Define the tensor product over R of My, ..., M, as @le 1 Mi = C/D.
We also write M1 ® --- Q@ M, := ®i€[1 ] M; for the tensor product.

R R R ’

If unambiguous, we often write M| ® - - - ® M,, := ®ie[1 o] M; = ®ie[1 ] M; .
9 R b
For (ma,...,my) € [ Licp ) Mi s we write

myQ---Qmy = ®z‘e[1,n]mi = (m17 s 7m") +C.
Let

(M, ..., my) — ®ie[1,n]M

If unambiguous, we often write p =y, .. a,) -



Lemma 14. The following assertions (1, 2) hold.

(1) The map p is R-multilinear.

2) The set Impu = {Qiefrnymi - (M1, ...,my) €] M; ¢ is an R-linear generating
[1,m] i€[1,n]
set for ey g Mi -
R I

Proof. Ad (1). Suppose given i € [1,n]. Suppose given m,, m! € M;. Suppose given
r',r" € R. Suppose given m; € M; for j € [1,n]\{i}. Let m} := m/ := m; for j € [1,n]\{i}.

We have
(mb ey M1, T/m/ + rﬂm;,a Mgt - - mn):u
= m1®---®mi71®(rm +7"m]) @mip1 ® - ®@my,
= ' (Qjefin] /-) " (Qjefin] j)
/

=T ((m])geu n])M+T (( ”>je[1n]),u
Therefore, i is R-multilinear.

Ad (2). Since [ ] M; is an R-linear basis of C, we obtain the R-linear generating set

i€[1,n]

Imy’: m1®"'®mn:(mlv"‘7mN>€ HMZ

Example 15. We examine Definition 13 in the case n = 0.

Then we have C' = g(()) = R and D = 0. Therefore, we obtain ), oy Mi = R.
R k)

Lemma 16. Let Y € Ob R-Mod. Suppose given f € R—mul(nz‘e[m] M;,Y).

There exists a unique R-linear map f : @ M; — Y such that uf = f.

1€[1,n]

Proof. Since [,

/- C =Y, (m,...,my) — (my,...,my,)f. Since f is R-multilinear, D is contained in
Ker f Thus, f 1nduces a unique R- hnear map f: X M; — X with

iel1,n] Mi is an R-linear basis of C'; the map f extends to an R-linear map

1€[1,n]
(m1®---®mn)f=(ml,...,mn)fz(ml,...,mn)f

for (mi)iepi,n) € [ Ligpy oy Mi - Therefore, we have uf =f.

M; — X such that ug = f. Then we have

pug = f = pf. Since Im y is an R-linear generating set for ®ie[1,n] M; by Lemma 14.(2),
we obtain g = f.

Suppose given an R-linear map ¢ : X)

i€[1,n]

O

15



Lemma 17. We have the R-linear isomorphism
Rt Liequ o Mis X) = mtoa( ey oy Mi » M)
Hg <— g.
Proof. By Lemma 14.(1) and Lemma 12, this map is welldefined. By Lemma 16, this
map is bijective. We show that it is R-linear.

Suppose given ', r” € R. Suppose given f,g € R-MOd(®ie[1 o Mi M). Suppose given
R b
m; € M; for i € [1,n]. We have

(m1,....m)u(r'f+7r"g) = (m1 @ - @my,)(r' f +1"g)
= (M ® - @my)(r'f) + (M1 @+ @my)(1"g)
="M ® - @my)f +1r" (M ® - ®@my)g
=r'(ma,...,mp)pf +1"(ma, ... .my)pg
= (my,...,mu) ("' pnf) + (my,...,my) (" pg)
= (my,...,mu)(r'nf +r"ug).

O
Remark 18. Suppose that n = 1. Suppose given x € ®i€[1 n] M;. There exist s € Zi>q
R b

and m; ; € M; for (i,7) € [1,n] x [1, s] with

T = Z Rie[1,n]Mij -

j€[1,8]

Proof. Since Im p1 is an R-linear generating set for @ie[m]
for j € [1, s] and m; ; € M; for (i,7) € [1,n] x [1, s] with

M; , there exist s € Z>o, r; € R

= ) i (my® - @muy) = ) (rm )@ @my .

Jje[1,s] je[1,s]

Lemma 19. Suppose given j € [2,n]. There exists a unique R-linear isomorphism

CE ®ie[1,j—1]Mi> % <ﬂ®ie[j,n]Mi> —~r }@ie[l,n]Mi

with
(M@ @mj1)® (M@ @my))th =m ® - @my,

for (my,...,my)€ ]—[Z.E[Ln] M; .

Proof. Define



Let

Hoo= P, M, Hie[l,n] M; — T,

pr= gy, ] Lo Mi — Th

po = iyt ] gy Mi = T2,

s = prn T x Ty > Th @15,

fooi= (o x p)ps ] L Mi > T @ T

cf. Definition 13.
We show that [ is R-multilinear.

Suppose given ', 7" € R. Suppose given k € [1,n]. Suppose given m},m} € M. Suppose
given m; € M; for i € [1,n]\{k}. For i € [1,n]\{k} we define m) := m/ :=m,.
Case k € [1,j — 1]. We have
(ma, ... me_1,'my +r"'my, mei1, .. my) il
= ((ma,. .. 7mk7177”/m;c + 'f’”mZ,mH, . 7mj71),ul> (m]w oy M) o) 13
= (M ®- - @my_1 @ (r'mj, +r"mp) @ mys1 - @mj—1) @ (QiefjnMs)
= (7"/ - (®ieqrj—1ymy) + 1" (@ie[l,jfl]m;/)) ® (Rie[jn]mi)
= Tl((@ie[l,jfl]m;) & (®ie[j,n]mi)) + 7“”((®ie[1,j71]m;/) X (@ie[j,n]mi))
=" ((miepm) i+ 1"+ (0 icpim) -
Case k € [j,n]. This follows analoguosly to the first case.

Therefore, ji is R-multilinear.

By Lemma 16, there exists a unique R-linear map ¢ : T' — 11 ® Ty with
(Qie,nmi)e = (M, ..., my) it = (Qjef1,j—11M4) & (Ricpjn] M)
for (mqy,...,my) € Hie[l’n] M.
For m = (mq,...,mj_1) € [ [ ;e j_1) Mi, we define
mf : H M; = T, (aj,...,a,) — (M, ...,Mj_1,05,...,0,)H.
i€[j,n]

First we show that mf is R-multilinear. Suppose given r’,r” € R. Suppose given k € [j, n].
Suppose given aj, aj € M. Suppose given a; € M; for i € [j,n]\{k}. Define a} := a} := qa;
for i € [j,n]\{k}. Let @’ = (a},...,a,) and a" := (aj, ..., a;). We have

ja » Yn
/" n_n
(aj,...,a_1,7"a) +7"a), apsr, ... an)(mf)
! ! n.n
= (Ma,...,mj_1, a4, ... ap_1,7"ay + 1), Qi1 ..., an) 1

=r'(m,ad )+ r"(m,a")p
=r'(a'(mf)) +r"(a"(mf)).

Thus, mf is R-multilinear. Therefore, we have the map

f: 1_[ M; — R—mul(l %_[ ]Min)vm'_)mf;

i€[j,n
iel1,j—1] !

17



cf. Definition 9. Now we show that f is R-multilinear.

Suppose given 1’1" € R. Suppose given k € [1,j — 1]. Suppose given mj,m; € M.
Suppose given m; € M; for i e [1,7 —1]\{k}. For i e [1,j— 1]\{k} define m] := m;’ = M.

! __ / / n.__ " "
Furthermore, we define m’ = (mj,...,m}_;) and m" := (mf,...,mj_,).
Suppose given a € [ [;(; ;) Mi. We have
/ / " "
a((ma, ..., mep_y,r'my +r"my, mya, ..., my1)f)
/ !/ " "
= (mla sy M1, T My, +7r My ME415 - - - 7mj—1aa’)lu

= r'(m/ a)u+r"(m" a)p
r'(a(m'f)) +r"(a (m )
ZCL( "(mf) +r"(m"f)).

Thus, we have
(may ooy mg_y, r'my + r'my myer, o ome) f= (' ) + 7" (m" f).

Therefore, f is R-multilinear.

By Lemma 16, there exists a unique R-linear map f : 1Y = pemul(ILiejn)M;, T') with
pf = f. So,

(®ze [1,5—1 mz)f (mz)ze lj,m] T ®z€ 1,01
Suppose given x € T}. Since zf € Remul(Iiepjn) M, T'), there exists a unique R-linear map
af : Ty — T with pszf = xf; cf. Lemma 16.(1).
Define

g: Ty x Ty - T, (z,y) — y(l’f)-
We show that g is R-bilinear.
Suppose given r',r” € R. Suppose given x, x’, 2" € T}. Suppose given y, 1/, y" € Ts.

Since f is R-linear, we have

(TZL' + y)g _ y((r’az'+r”x”)f>

= y(r@h + )

L7 (7" . x’f—i— r"”. x”f)

2 rogfef) e (e

<

Since x f is R-linear, we have

(@, 7y +1"y")g = 'y + 1"y Naf =1y (:cf> ey (fcf> =7 (2,y)g+ 1" (2,4")g.

Thus, g is R-bilinear.
Therefore, there exists a unique R-linear map ¢ : TY®T, — T with pzp = g; cf. Lemma 16.

18



Suppose given m; € M; for i € [1,n]. We have

(®icrj—11m4) @ (Riefjnmi))V = ((Rief1,j—117) s (Riefjn]Mi)) g

~

®Riefjn]Mi) (Rier,j—11mi) f
YRR ,mn>((®ie[1,j—1]mi)f)
mja ) 7mn>((ml> e 7mj—1)f)
17"'7mj—17mj7“'7mn)lu“

= Qie[1,n]Mi -

|
/\/\/3‘\/\/‘\

3

Thus, we have
(Qiepr,nmi) (0¥) = (Rief1,j—11Ms) @ (Ricjn)Mi) )Y = Rie[1,mMi
and
(®ie1,j—11M4) @ (Riefjn)™Mia)) (V@) = (Ricprn)mi) = (Rieqr,j—1174) @ (Riefjn]Mi)-

Since Im p is an R-linear generating set of 7" and Im pu3 is an R-linear generating set of
T1 ® Ty ; cf. Lemma 14.(2); we have ¢i = 17 and ¥ = lp,gr,.

Thus, ¢ and 1 are mutually inverse R-linear isomorphisms. [

1.3.2 The tensor product of linear maps

For this §1.3.2, let n € Z-,.

Definition 20 (and Lemma). Suppose given (M;)ic[1] RQISIEON

(Ni)ie[l,n] n (R —MOd)Xn.
We have the R-linear map

®ief1,n] fi
_

®i€[1,n] M; ®ie[1,n] Ni,
R R
Z Qie[1,n]Mi,j — Z ®ie[1,n] (M fi) -
Jje[l,m] Jje[l,m]

We often write fi ®...® fn = ®;f; := Qiep1n] fi -

Proof. By Lemma 12,

ie[1,n] i€[1,n]
(mi)ie[l,n] i Rie[1,n] (mifi)a
is R-multilinear. For brevity, we write f := (Hie[l ] fz> Ny, N, -

By Lemma 16, there exists a unique R-linear map

fi ®Mi_’®Nz’

i€[1,n] 1€[1,n]
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with (Qiept,nmi) f = (ma)iepn)f = ®ieing(mifi) for (mg)iepn € [ Liepa g Mi-
Suppose given Zje[l,m] (®ie[1,nMij) € ®i€[1,n] M, . We have

Z ®ie[l,n]mi,j f: Z (@ie[l,n]mzj Z 1€1n mZ]fZ)

jE[1,m] Jj€[1,m] e[1l,m
Thus, the assertion follows with ®e[1 n)fi := f.
Definition 21 (and Lemma). We have the functor

®ieri,n]
(R-Mod)*" n

(Ni)ie[l,n]) — (C?ie[m] M;

R-Mod,

(fi)ieri,n] ®ie[1,n] fi
> Y

<<Mi)ie[1,n] C;;)iE[Ln] Ni)‘

If unambiguous, we often write ) := &;c(1 1) = i1 -
R 7

Proof. Suppose given

(fi)ie1,n) (94)ief1,n]

(M;)ief1,n] (Ni)ie[1,n] (Py)ic[1,n]
n (R-Mod)*"

We have

1(M)Z€1n] <1M )ZE[l n| ’—’®z€1n]]—M .

Suppose given ®;e[1,,]M € ®ie[1,n] M,; . We have
(®ieq1,n) i) (Qiein) 1) = Riein](Milagy) = Qiepr i = (®z’e[1,n]mz’)1®ie[1,n] M; -

By Lemma 14.(2), we have

®
1(M’i)ie[1,n] ®i€[1,n]1Mi = 1®z‘e[1,n] M; -

Suppose given ®je[1,,M; € ®i€[1,n] M;. We have
(@ze[l,n]mz)((@ze[l,n]f@)(@ze[l,n]gz)) = ((@ze n]mz)<®2€ 1,n] z))(@ze[l,n]gz)
(@ze [1,n] (mlf ))(®ze 1,n] gz)
- ®ze 1,n] ((mzfz) Z)

= ®ief1,m) ((mi)(fig:))
= (@ze 1,n] mz)(@ze 1,n] (flgl))

By Lemma 14.(2), we have

((fi)ieri,n - (9)ieqin) 2, (Qiep,n) fi) (Rie[1,n19:)
= Qief1,n(fii) 2, (fii)ier,n] -

Thus, we have a functor (X) indeed.
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1.4 Preadditive categories over a commutative ring

In this §1.4 we establish the notion of a preadditive category over a commutative ring. For
this type of categories we shall define the tensor product below; cf. §3.1.
For this §1.4, let R be a commutative ring.

Remark 22. Let A be a preadditive category. Then End 14 = [4.4(14,14) is a commu-
tative ring.

Proof. Recall that End 14 is a ring. We have to prove commutativity.

Suppose given «a, f € End 1 4. Suppose given X € Ob.A. We have Sx € 4 X, X). Since «
is natural, we have the following commutative diagram.

1 X —2% X

1 X —2% X

Thus, we have axfx = Oxax. Since X € Ob.A was arbitrary, we have af = pa.
Therefore, End 1 4 is commutative.

O]
Definition 23.

(1) Let A be a preadditive category. Let ¢ : R — End 14 be a ring morphism.

We call (A, ¢) a preadditive category over R or an R-linear preadditive category.
We often refer to just A as a preadditive category over R.

Suppose given X Ly % 7in A Suppose given r € R. We often write

r-fi=rf:=(re)xf.
We have

r(fg) = (re)x(fg) = ((re)xflg = (rf)g
= f(re)yg = f((rey)g) = f(rg).

(2) Let (A, ) be a preadditive category over R. Let A be additive. We call (A, ¢) an
additive category over R or an R-linear additive category.

(3) Let (C, ) and (D, ) be preadditive categories over R. Let F' € ,4q[C, D]. We call
F an R-linear functor if

F(rf)=F((re)x - f) = (Y)px - Ff =r(Ff)
for XL vVinCandreR.
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Remark 24. Let (A, ¢) be an additive category over R. Suppose given
fz ]
D A =5 D Ay
i€[1,m] JjE[1,n]

in A. Suppose given r € R. We have
r- (fz‘,j)z‘,j = (r- fi,j)z’,j .
Proof. We have
(7“ : fz])z] = (7" Llifﬂ'Zj)ij
= ((re)a i fm2,)i
(Ll Z<T90)A1 1@ @A1, mfﬂ—?J) 4,J

= (tr,i(r - f)may )iy

= ((r- fij)iy

]

Remark 25. Let (C,¢) and (D, ) be preadditive categories over R. Let F' € Ob[C, D].

The following assertions (1, 2) are equivalent.

(1) The functor F' is R-linear.

fi
(2) For ¢'" —=C" inC and 11,79 € R, we have F(rif1 + rofs) = mFfi + roF f5.

f2

Remark 26. Let (A, p) be a preadditive category over R. Suppose given X,Y € Ob A.
We have the ring morphism

e:Endly — Endz(4X,Y))

a <(X1>Y)+—>(X°‘Lf>Y):(Xf°‘—Y>Y)>.

Therefore, we have the R-module ( A X,Y), ¢¢), i.e. forre R and f € 4X,Y), we have
a module operation

refi=(ro)xf = flre)y
Proof. Suppose given a € End 1 4. Since « is natural, we have ax f = fay for f € 4(X,Y).

The map f — ayf is a Z-linear endomorphism of 4 X,Y) since A is preadditive. Thus,
¢ is a welldefined map. We show that ¢ is a ring morphism.

We have f(lgna1,e) = 1xf = ffor fe AX,Y). Thus, we have lgna1,6 = Lendy( 4(xv)) -
Suppose given «, 8 € End 14 . We have

flla+PB)e) = (a+B)xf = (ax + Bx)f = axf + Bxf = f(ae) + f(Be) = f(ae + fe)
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and
f(aB)e) = (af)xf = axBxf = ax [Py = (f(ag))By = [((ag)(Be))
for f € 4 X,Y). Thus, ¢ is a ring morphism.
Therefore, we have a ring morphism ¢e : R — Endz ( 4 X,Y)).
Thus, we have an R-module ( 4(X,Y), pe). O

Definition 27. Let (A, ¢), (B,) and (C, ) be preadditive categories over R.
Let F': A x B— C be a functor. The functor F is called R-bilinear if

F(ﬁfl +712f2,9) = 7°1F(f1>9) +12F (fa, 9),
F(f,r191 +1r2g2) = 1 F(f, 91) + 72 F'(f, 92)

f1 g1
for ri,roe R, AA—= A” and A” Loamin Aand for B—=B" and B” % B"” in B.
f2 g2

Remark 28. Let (A, ), (B,v) and (C,T) be preadditive categories over R.
Let F: A x B— C be a functor. The following assertions (1, 2) are equivalent.

(1) The functor F is R-bilinear.
(2) Suppose given A€ Ob A and B € ObB. Then

Fi:B— C, (B/ 9, B//) L (F(A,B/) F(A,g) = F(la,g) F(A, B”)),
Fp:A—C, (A/ L A//) . (F(A/,B) F(f,B) = F(f1B) F(A”,B))

are R-linear functors.

Proof. Ad (1) = (2). Because of the symmetry of the situation, we only have to show
that Fp is an R-linear functor.

First of all, we show that Fg is a functor. Suppose given A’ TAm 2 A i A We have
Fp(fife) = F(fife,18) = F((f1.18) - (f2.18)) = F(f1,18) - F(f2,18) = Ffi - Fpfo.
Furthermore, we have
Fply = F(1a,1p) = 1par) = lpgar -

Thus, Fg is a functor.

f1
Now we show that Fj is R-linear. Suppose given A'—Z A” in A and r1,75 € R. We
f2

have

Fp(rifi +rafe) = F(rifi + rafa, 15) = riF(fi, 1) + roF(fo, 1p) = miFpfi + 12Fpfo.
Thus, Fp is R-linear by Remark 25.

f g
Ad (2) = (1). Suppose given 11,79 € R, A’::lA” and A" LA™ in A, B’:ZIB”
and B” % B" in B. 2 ”
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We have

F(rifi +rafa,g) = F((rifi + 72f2, 1m) - (1ar, g))

= F(rifi +rofa, 1pw) - F(1ar,g)

= Fpn(rifi +7r2fo) - F(Lar, g)

= (1 Eprfi +roFpnfo) - F(lar, g)

= (nF(f1,1p7) + 12F (fo, 1)) - F(Lar, )

= F(fi,1p0) - F(Lar, g) + 12 F (fo, 1) - F(1ar, 9)

= rlF(fl,g) + T2F(f2ag) :

Similarly, we obtain

F(f,rig1 +1292) = F((Law, 7101 + 1292) - (f, 1B7))

= F(1am, 1191 +71292) - F(f, 1pr)

= Fan(rig1 +12g2) - F'(f, 15r)

= (r1Famgy + roFangs) - F(f, 1pr)

= (MFar, g1) + r2F(Lan, g2)) - F(f, 1)

= TlF(lA///,gl> . F(f, 13//) + T’QF(lAw,gg) . F(f, 131/)

= 7ﬁlF’(fagl) + T2F(f792)'

Thus, F'is R-bilinear.

Remark 29. Let (A, ), (B,v),(C,7),(D,6),(E,n) and (F,() be preadditive categories
over R. Suppose given R-linear functors A ¢ and BS D. Suppose given an R-bilinear

functor C x D e, Suppose given an R-linear functor € 577

Then

1s R-bilinear.

1 g1
Proof. Suppose givenri,ry € R, A’—= A” and A” I Amin A, B —=B" and B” % B" in
g2

We have

and

KoHo(FxQ)

Ax B F

f2
(Ko Ho(F xQ))(f,ri91 + 1292)
(Ko H)(Ff: G(rigr + r292))
(K @) H)(Ff Tngl + TQGQQ)

K(rH(Ff,Gg) +roH(Ff,Ggz))
(Ko H)(Ff,Gg1) +ra(K o H)(Ff,Ggn)
ri(KoHo(F xG))(f,g1) +r2(KoHo(F xG))(f,g2)

o(F x G))(rifi +rafa,9)

)E (rifi +1r2f2),Gg)

KoH
KoH
KOH) TlFf1+T2Ff2,Gg)

(TlH(FflaGg> +T2H(Ff2?Gg)>
Tl( © )(Fbe.g) +T’2<K H)(FfQ’Gg)
ri(KoHo(F xG))(f1,9) +r2(l o Ho (F xG))(f29)
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Lemma 30. Suppose given preadditive categories (A, pa) and (B, pg) over R. Suppose
gwen an R-linear functor F : A — B.

Suppose given an adjunction (F,G,n,e). Then G is R-linear.

Proof. We show that
A(GB,GB) *2  4(FGB,B),
u +— Fu-ep
is an R-linear map for B € Ob B.
Suppose given B € Ob B. Suppose given u,u’ € 4(GB,GB). Suppose given r,1’ € R.
Since F' is R-linear, we have
(ru+r'u g = F(ru+r'u') -ep
= (rfu+r'Fu)ep
=rFu-eg+1r'Fu -ep
= r(up) + ' (u'p).
Thus, ¥p is R-linear.
For B € Ob B, let
AGB,GB) & 4(FGB,B),
negg - Gv <« wv.

We show that we have mutually inverse R-linear isomorphisms

VB

A(GB,GB) s(F'GB, B)

YB
for Be ObB.
Suppose given B € Ob B. Suppose given u € 4(GB,GB) and v € 5(FGB, B).
We have
wbphp = (Fu - ep)Yp
= NGB * G(FU . 83)
:nGB'GFU'GEB
=u-ngp - Gep
=u
and
vpts = (Nap - GU)Ys

=F(77GB'GU)'EB
IFT]GB'FGU'&TB

= Fngp - €rcB - v
= 7.
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Thus, we have mutually inverse bijections 15 and 1;3- Since Y p is R-linear, so is QZB.
For B € Ob B, we now write ¢5 = V5.
Suppose given B # B in B. Suppose given r, 1’ € R.
We have to show that G(rb + r't) < rGb + 1'GV'; cf. Remark 25.
We have
G(rb+r't') = ngp - Gep - G(rb +r'b’)
= (ep - (rb+r'b))Yg
= (regb+ r'epgb/ )y
=r(epb)y™ +1'(ept )Yy
=r-ngp-Geg-Gb+ 1" -ngp - Geg - GV
=rGb+1'GV.

O

Corollary 31. Suppose given preadditive categories (A, @) and (B, pg) over R. Suppose
giwven an R-linear functor F : A — B. Suppose given a functor G : B — A. Suppose given

isotransformations (F o G)==1p and (GoF) . 14. Then G is R-linear.
Proof. By [6, Remark 16.5.9], we have F' 4 G.
Thus, the claim follows from Lemma 30. O

Remark 32. Suppose (A, p4) to be a preadditive category over R.
Suppose B to be a full subcategory of A. Then B is a preadditive category by restriction.

We have the ring morphism

Endl, % Endlg,
(aX)XeObA = (aX)XeObB-

Thus, (B, ¢4 - 1) is a preadditive category over R.
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Chapter 2

Envelope operations

2.1 The Karoubi envelope

2.1.1 Definition and duality

For this §2.1.1, let A be a category.

Definition 33 (and Lemma). We shall define a category Kar A as follows.

Let
ObKar A := {(X,e): X e ObA,ee 4X,X) with €* = e}.

For (X,e) and (Y, f) in Ob Kar A, we define
kara((X,€), (Y, f) :={d @) p€ AX,Y) and ¢ = epf}.

If unambiguous, we often write ¢ := [ ¢ )f for ( ¢ )r € kara((X,€), (Y, f)).
For (X,e), (Y, f) and (Z,¢g) in ObKar A,

e( 2 )f € KarA((X7 6)7 <Y7 f)) and f( 77D )9 € Kar.A((Y7 f)7 (Z7 g))?

we define composition by
L) Av)y:=doy)y.
For (X, e) € ObKar A, we define

1(X,e) = e( (& )e.

We call Kar A the Karoubi envelope of A.
This defines a category Kar A.

Proof. Suppose given (X, e) Lo, (Y, f) ES2 A (Z,9) LOLN (W, h) in Kar A.
Thus, we have X 5V % Z 2 W in A with
epf =@, fibg=1 and gph=p.

27



Using these equalities, we obtain epg e o). Therefore, we have

e( 90¢ )g € KarA((X7 6)7 (Z’ g))

Moreover, we obtain

(L)AL )g) dph=dpY )yl ph=d(eP)p
Lo@p) h=de)dvoh= o) (AV)gd ph).

We have Liv,p) = A [ )f € kara((Y, f), (Y, f)), because f = fff.

Furthermore, we have

Ly AU )= AFUAv )= AFf0)Z Av).

Similarily, we obtain

d o) lon=d o)A f)r=dof 5= o).

Lemma 34. We have the isomorphism of categories
(Kar(A4))° — Kar(A°)

(0 wn) e (e S )

(0 mn) — (e S )

Proof. Suppose given idempotents X = X and Y Ly in A Suppose given p € 4 X,Y).
Assume epf = ¢. Then we have f°¢°e® = (epf)° =
Assume f°p°e® = ¢°. This implies

epf = ((epf))” = (7€) = (¢°)° = o

Thus, we have

o, 0,0

epf = if and only if f°p°® = °.
Therefore, we obtain welldefined maps on objects and morphisms in both directions.

Suppose given (W, d) ES2.N (X,e) LN

We have

Lo d ) =(dv)d o)) Z dvp);
ol (@90) e = (97 Yo D o 0 Yoo ool U Do

(Y, f) in Kar A.
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and

7o 97 o el 0% e = o 7% ap = o (p)° Do
> A )= (A )ed @) 2 L 0)id )

In (Kar A)® we have 1(x ) 133 de).

(&)

In Kar(A°) we have 1(x e 2 (e )eo

We obtain

Lixe) = d €)= el € o = L(x,e0)
and

Lixe) = e € ) = d €)= 1(x)-

Therefore, we have functors indeed. They are mutual inverses by definition. Thus, we
have isomorphisms of categories. O

Remark 35. Suppose given an isomorphism X —Y in A. Suppose given idempotents
e AX,X) and fe AY,Y) with ep = pf. We have mutually inverse isomorphisms

in Kar A.
Proof. We have
cepff=epf and ffp~lee= fole
Therefore, we have | epf )i € kara((X,€), (Y, f)) and A fo e ) € kara((Y, f), (X, e€)).

Furthermore, we have

Lepf ) fole) 2 depffele) = Lepfole)
= deepple)=de) Z Lixe .

Similarily, we obtain

{fetedepf )y 2 A foleepf )y = A folepf )
= A fooff )= A0 Ly -

Therefore, we have mutually inverse isomorphisms. ]

Remark 36. Suppose given an isomorphism X —~Y in A. Suppose given an idempotent
ee AX,X). Define f:= o tep. Then we have mutually inverse isomorphisms

Lep)r
(Xe) —=—"=(.f)

fe7ted

in Kar A.
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Proof. By Remark 3, f is an idempotent. By applying ¢ from the left to f = ¢ tep, we
obtain ¢ f = ep. Thus, the claim follows from Remark 35. Note that

epf =epp —lep = ep and fote = o lepp—1le = o —le.

2.1.2 The Karoubi envelope respects additivity

The main purpose of the Karoubi envelope construction as presented in §0.1.1 is to complete
an additive category with respect to its idempotents. Thus, the Karoubi envelope of an
additive category should be additive. In this §2.1.2, we prove that this is the case.

For this §2.1.2, let A be a category.

Lemma 37. Let A have a zero object A. Then (A, 14) is a zero object in Kar A.
Proof. Suppose given (B, f) € Ob(Kar.A). We have to show that

| KarA((Bv f)7 (A) 1A))| =1= ‘ KarA((Aa 1A>’ (Ba f))| .

By assumption, there exists exactly one morphism ¢ in 4B, A). We have fply € 4B, A).
Thus, we have fpla = ¢, ie. { ¢ i, € kara((B, f),(A4,14)). In consequence, we have
|Kar./4((B’ f)7 (Au 1A))| = 1.

Suppose given p € kara((B, f), (4,14)). By Definition 33, there exists ¢ € 4B, A) with
p= A h,. Since B,A) = {¢}, we have ¢ = 1. Therefore, we obtain p = ¢ ), =
A ), - In consequence, we have | kar a((B, f), (A, 14)| < 1.

Thus, we have |kar4((B, f), (4,14))| = 1.
Dually, we obtain | kar 4((A,14), (B, f))| = 1. -

Definition 38 (and Lemma). Suppose A to be preadditive. Suppose given (X, e) and
(Y, f) in ObKar A.

For { ¢ )r and { ¢ )f in kara((X,€), (Y, f)), we define

del+dv)y=de+v).

The Karoubi envelope Kar A is preadditive with respect to this addition.

In particular, we have

for { ¢ )y € Mor Kar A.

Proof. First we show that k.. 4((X,e), (Y, f)) is an abelian group carrying the addition
defined above.

It suffices to show that U := {p e A X,Y) :epf = p} is a subgroup of 4X,Y).
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We have €0X7yf = OX7y, i.e. OX,Y eU.

Suppose given ¢, € U. We have
p—tp=epf—epf=elp—1)f

Thus, we have ¢ — 1) € U. In consequence, k.. 4((X,e€), (Y, f)) is an abelian group.

Suppose given (X’ e) M>— (K f) fi Zl ;g (Z, g) ok (W, h) in Kar A. We have
A¥2)g
Lol (L )g+ Av2)y) dph=de)rAvr+v2)gd ph
= d p(¥1 +12)p

= d p1p+ pap
= pthip b+ d otap
:e(‘;o)ff<¢1)gg(p)h+E(SO)ff(@D?)gg(p)h' O

Lemma 39. Suppose A to be preadditive. Suppose given Ay, As € Ob A. Let Ay and As

have a direct sum
A ——=C~——=A,

T T2

in A.
Suppose given idempotents A1 = Ay and Ay => A, in A.
Define e := meqty + moeaty € C,C). Then

e ( €1t1 )e e (€2L2 )e
1 (C’ 6) 2

e( mTi€el )51 e( mT2€2 )62

(A1, e) (Ag, e2)

is a direct sum of (Ay,e1) and (As,es) in Kar A.

Proof. We have

um = ly
Loy = 1y,
tmy = 0g,
LT = OA1 .

We will use these equalities throughout this proof without further notice.

We calculate

2
€” = Me1L1T1€e1l1 + T1€1L1M2Coly + MoColoT1€2l1 + Mo€alaM2Coly
= mejerl] + 0+0+ 7T2f2f2b2

= €.

Thus, we have (C,e) € Ob Kar A.
We show that

ei< €il; )e € KarA((Ai ) 61'), (C, 6)) and e( Ti€; )ei € Kar.A((Ca 6), (Ai ) Gi))
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for i e [1,2].
Pars pro toto, consider ¢+ = 1. We have
€1 €1l - € = e1e1L1T1e1l1 + e1e1t1maealy = e1e1t; + 0 = ey

and
€ T€e1 - €1 = Me1L1T1€1€6] + MaealoT €161 = M€1€61 + 0= T1€1 .
Furthermore, we have

d 11 Yoy e €101 Je + o T2€2 )y o €2L2 )e = o Tr€1€1L1 ) + A T2€2€9L2 e

= { meit + meats )
= e( € )e
== 1(0,6) .

Finally, we have
61( €11 )e e( €1 )el = 61( €101T1€1 )61 = el( €1 )61 = 1(A1 e1)

and
62( €al2 )e e( T2€2 )e2 = 62( €2L2TT2€2 >€2 = 82( €2 )62 = 1(A2 ,e2)

]

Corollary 40. Suppose A to be additive. Suppose given idempotents Ay <> Ay and
AQ 2, AQ m ./4

Define e := (601 602) € A1 DAy, A1 @ As). Then

el((el 0))e 52( (Oe2) )e

(A1, e1) (A1 @ Ay, e) (Az,e2)
() oL (&) o
is a direct sum of (A1, e1) and (As,es) in Kar A.
Proof. Since
(10) (01)
Ay —1> AL @ Ay <0— Ay
(0) (%)
is a direct sum of A; and A, in A, this follows from Lemma 39. O

Proposition 41. Suppose A to be an additive. Then Kar A is additive.

Proof. Since A is additive, it has a zero object. Thus, Kar A has a zero object; cf.
Lemma 37.

Since A is additive, it is preadditive. Thus, Kar A is preadditive; cf. Definition 38.

Suppose given (X, e) and (Y, f) in ObKar A. By Corollary 40, (X, e) and (Y, f) have a
direct sum in Kar A.

Thus, Kar A is additive. a
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2.1.3 The inclusion functor

The inclusion functor will play the role of the universal functor of the Karoubi envelope
construction; cf. §2.1.8.

For this §2.1.3, let A be a category.
Definition 42 (and Lemma). We have the functor

A 24 KarA

x2y) = (G 2 ).

We call J 4 the inclusion functor of A in Kar A.

If unambiguous, we often write J := J 4.

Proof. Suppose given X %Y Y Zin A

Since 1% = 1x, we obtain a welldefined map on objects.

Since 1xply = ¢, we obtain a welldefined map on morphisms.
Furthermore, we have

J(gpd}) = 1X( vab )1z D:33 1X( ¥ )1Y 1Y( ¢ )12 = ‘]90 ’ J@b

Finally, we have

J(1X> = 1X( 1x )lx 1 1(X,IX) =1sx.

Lemma 43. The following assertions (1, 2) hold.
(1) The inclusion functor J4 is full.

(2) The inclusion functor J4 is faithful.

Proof. Suppose given A, B € Ob A.

Ad (1). Suppose given p € gara((A,14),(B,15)). By Definition 33, there exists ¢ €

D42

AA,B) with p = 1,( ¢ h,. In particular, we have Jo =" 1,( ¢ h, = p. Therefore, J is

full.

Ad (2). Suppose given p,1) € LA, B) with Jo = 1,( ¢ hy = 1.( ¢ by = Jp. By

Definition 33, we have ¢ = 1. Therefore, J is faithful.
Lemma 44. Suppose A to be preadditive. Then Jy4 is additive.

Proof. Since A is preadditive, so is Kar A; cf. Definition 38.
Suppose given A é B in A. We have
P
D42

Jo+9) 2 (0 + ) = (0 + (¥ s = Jo+ JY,
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2.1.4 Idempotent complete categories

In §0.1.1 we stated that the Karoubi envelope completes a category by endowing it with
images of its idempotents. In this §2.1.4, we specify this by defining images of idempotents
and introducing idempotent complete categories.

For this §2.1.4, let A be a category.

Definition 45. Let X = X be an idempotent in A. A tuple (Y,7,:) with Y € Ob A,
e AX,Y)and 1€ 4Y,X), is called an image of e if the following diagram commutes.

X——X
\ /1y\y

Y

If every idempotent in A has an image, we call A idempotent complete.

Remark 46. Suppose given an idempotent X = X in A with image (Y, m,1). Suppose

—le . . .
given Z € Ob A and an isomorphism X — Z. Then Z £—% 7 is an idempotent with
image (Y, o™, 1p).

Proof. By Remark 3, ¢~ lep is an idempotent.

Since (Y, 7,¢) is an image of e, we have the following commutative diagram.

Thus, (Y, 'm, 1p) is an image of p~tep.
]

Remark 47. Suppose given categories B and C. Suppose given a functor F' : B — C.

Suppose given an idempotent X < X in B with image (Y,7,1). Then FX T FX is an
idempotent in C with image (FY, Fr, F1).

Proof. By Remark 5.(1), Fe is an idempotent in C.

Since (Y, 7,¢) is an image of e, we have the following commutative diagram in B.




Since F'is a functor, we have the following commutative diagram in C.

FX fre FX

N 2T N

FY Ly FY

Thus, (FY, Frr, Ft) is an image of Fe.
]

Remark 48. Suppose given categories B and C. Suppose given an equivalence F' : B — C.
Then B is idempotent complete if and only if C is idempotent complete.

Proof. Because of the symmetry of the situation, it suffices to show that if B is idempotent
complete, so is C.

Assume B to be idempotent complete.

Suppose given an idempotent X 5 X in C.
Since F is dense, there exists A € ObB with FA ~ X. Let FA -2~ X be an isomorphism.

By Remark 3, we have an idempotent F'A vee !, FAinC.
Since F is full, there exists f € g A, A) with F'f = pep™!.

We have F(f2) = (Ff)? = pep™ - pep™ = pep™! = Ff. Since F is faithful, we obtain
=

Therefore, we have an idempotent A S A B.

Since B is idempotent complete, there exists an image (B, 7,¢) of f in B.

By Remark 47, (FB, Frr, Ft) is an image of F'f = pep~! in C.

By Remark 46, (FB, o' - Frr,Fi- ) is an image of e = o~ - Ff - o in C. O

Lemma 49. Let X = X be an idempotent in A with image (Y,7,1). The following
assertions (1, 2) hold.

(1) The morphism X =Y is a retraction, in particular T is epic.

(2) The morphism'Y = X is a coretraction, in particular ¢ is monic.

Proof. Recall that tm = 1y ; cf. Definition 45. Therefore, 7 is a retraction of ¢. From the
same equation we obtain that ¢ is a coretraction of . O
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Lemma 50. Suppose given idempotents X = X and X' % X in A. Suppose given an
image (Y, m, 1) of e. Suppose given an image (Y', 7' (') of €. Suppose given f e 4 X, X’)
with efe’ = f. Define g := 1fn’.

The following assertions (1, 2, 3) hold:

(1) The following diagram commutes.
X—"-Y —+=X
N
X/ w’ Y/ Y X/

(2) Suppose given ge AY,Y') such that the following diagram commutes.
X—7-Y —+=X
ol b
e T y! ;,>X/

We have g = g.

(3) Suppose f to be an isomorphism. Then g is an isomorphism with g=1 =/ f~'r.
Furthermore, the following diagram commutes.

X—>Y—"+X
AT e e
X ey X
Proof. Ad (1). We have
ng =mfrn =efr = fen' = fn'ln' = fn'ly, = fr'.
Therefore, the left quadrangle commutes.

Furthermore, we have
gl = ofr’ = ufe =ef = vmif = 1yof = of.
Therefore, the right quadrangle commutes.
Ad (2). We have
wgl = muf = mwgl.
Since 7 is epic and ¢’ is monic; cf. Lemma 49; we obtain g = g.
Ad (3). We have
g/ fir = ofn’ f i = ofe fin = ef f I = umilxm = 1y = 1y
and
Jf g = mufr = f e fn = T e = o7 = 1y lyr = 1y
Therefore, ¢ is an isomorphism with inverse g=! = //f .

The commutativity of the stated diagram follows from (1). O
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Corollary 51. Let X = X be an idempotent in A. Suppose given images (Y, m,t) and
(Y, 7', 1") of e. The following assertions (1, 2) hold.

v’

(1) We have mutually inverse isomorphisms Y -~ " Y.

J

(2) The following diagram commutes.

Proof. Ad (1). By Lemma 50, we obtain the following commutative diagrams with mu-
tually inverse isomorphisms (7" and /7.

Xy ‘> X X"y ‘> X
1Xl/ lwr’ llx 1XT TL/W Tlx
X"y Lo X X Toyr o X

Ad (2). Combining these commutative diagrams, we obtain the commutative diagram
stated above. O

Stipulation 52. Suppose given an idempotent complete category B.

Suppose given an idempotent X > X in B. Recall that we have chosen an image
(Ime, €, ¢é) of e in B. Thus, the following diagram commutes.

X ¢ X
NN

Ime Ime

Recall that we have chosen

(Im1x, Ty, 1x) = (X, 1x, 1x)
for X € Ob B; cf. Convention no. 25.
If unambiguous, we also refer to just Ime as the image of e .

Lemma 53. Let A be additive and idempotent complete. Suppose given an idempotent
X 5 X. The following assertions (1, 2, 3) hold.

(1) We have é(1 —e) =0 and (1 —e)e = 0.

(2) We have mutually inverse isomorphisms

Im(e) ®Im(1 —e)
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(3) The following quadrangle is commutative.

(09)

Im(e) ®Im(1 — e) ——————=1Im(e) ® Im(1 — ¢)

(é (l—e)) l ((1—ée)') (é (l—e)) Z ((158).)

X = X

Proof. Ad (1). We have 0 = e(1 —e) = eé(1 —e)(1 —e)’. By Lemma 49, € is epic and
(1 —e) is monic. Therefore, 0 = ¢é(1 — e).

The other equality follows from the symmetry of the situation.

Ad (2). Since (1) holds, we have

((1,ée)-) (é (1*6)) = ((1—éeé)'é (1—é(e§'7(1e)—€)> - ([1)

Moreover, we obtain

(e 0=0) (nSoy) =€+ (1—e)(l—e) =e+(1—e) =1

Ad (3). Using (1), we compute (1 —e)e = (1—e)ee =0.

Therefore, we have

(aley) e = (aZeye) = (6) = (60) (aey) -

Thus, the claim follows from (2). O

2.1.5 The Karoubi envelope is idempotent complete

After introducing idempotent complete categories in §2.1.4, we can now show that the
Karoubi envelope is idempotent complete. Furthermore, in Proposition 56 we give a nec-
essary and sufficient condition for a category C to be idempotent complete. This condition

justifies the notion Karoubi enwvelope for KarC.

For this §2.1.5, let A be a category.

Lemma 54. Suppose given an idempotent (A, e) LGN (A, e) in Kar A.
Then ((A, ), d © )o 9 )e) is an image of { ¢ )e.

In particular, Kar A is idempotent complete.

2 (o) = (), we have @ = ¢; cf. Definition 33. Therefore,

e

Proof. Since { ©? ).
we have (A, ¢) € ObKar A.

Moreover, we have ppe = pe £ . Thus, [ ¢ ) € kara((A, ), (A e)).

38



We also have epyp = ep i ¢. Thus, e( "2 )cp € KarA((Av 8)7 (A, 90))

Therefore, we can consider the following diagram in Kar A.

\5/ o

We have
delod @) = dopl=d¢)k-

Furthermore, we have

A0)d )= Lop)o=d ek = Lay.

Thus, the diagram stated above is commutative.

Therefore, ((A,¢), d ¢ )p, L ¥ )e) is an image of { ¢ ).; cf. Definition 45. O

Remark 55. Suppose given an idempotent X < X in A. Suppose e to have an image
(Y,7, 1) in A. We have mutually inverse isomorphisms

Y, 1ly)
in Kar A.

Proof. Since (Y, 7,¢) is an image of e in A, (JY, Jr, Ju) he (Yoly), 1 7 hyy 150 ¢ iy)
is an image of Je & | ey in Kar A; cf. Remark 47.

By Lemma 54, ((X,e€), 1.( € )e, d € 1) is an image of ;. ( e ), in Kar A.

By Corollary 51, we have mutually inverse isomorphisms

leny 1x(mhy

(X,e) (Y, 1y).
1y (g 1x(e e
Since we have
d e ™ hy = demhy =dmh, and 1,(¢ )€ = (e e = 1,0t ),
the claim follows. O
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Proposition 56. Suppose given a category B. The following assertions (1, 2) are equiv-
alent.

(1) The category B is idempotent complete.

(2) The inclusion functor Jg : B — Kar B is an equivalence.

Proof. Ad (1)=(2). By Lemma 43, it suffices to show that J is dense. Suppose given
(X, e) e ObKar B. Since B is idempotent complete, there exists an image Ime of e in 5.

We have J(Ime) e (Ime, 1ime) v (X,e). Thus, J is dense.

Ad (2)=(1). By Lemma 54, Kar B is idempotent complete. Thus, B is idempotent
complete; cf. Remark 48. O

2.1.6 Functoriality

In this §2.1.6 we define the Karoubi envelope construction Kar for functors and transforma-
tions. Furthermore, we establish functoriality properties of Kar, which could be expressed
by saying that it is turned into a 2-functor.

For this §2.1.6, let A, B and C be categories.

Definition 57 (and Lemma). Suppose given a functor F': A — B. Let

KarA 25 KarB

((X, e) 25 (v, f)) - ((Fx, Fe) 2200, (Fy, Ff)).
This defines a functor Kar F' : Kar A — Kar B.

So, we have
(Kar F)(X,e) = (FX, Fe)

for (X, e) € ObKar A.

Furthermore, we have

(Kar F) { ¢ )y = rd F'@ )y
for ¢ ); € Mor Kar A.

Proof. By Remark 5, we obtain welldefined maps on objects and morphisms; cf. Definition 33.

Suppose given (X, e) —— Ak, Ly, f) 2 A, (Z,9) in Kar A.
We have

(KarF)l(Xe) = (KarF) de)=rd Fe)re D33

= L(rx,Fe) = L(Kar F)(x.e) -

Furthermore, we have

(Kar F) (d ¢ )p 00 )g) = (Kar F) 00 )y = rd F(00) Iy = rd Fio- Fi )
2 el Fo g pf Fio Jrg = (Kar F) (¢ )y - (Kar F) {4 ), .
Therefore, Kar F' is a functor indeed. O
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Lemma 58. Suppose given a functor F : A — B. The following assertions (1, 2, 3) hold.

(1) Suppose F' to be faithful. Then Kar F' is faithful.
(2) Suppose F' to be full. Then Kar F' is full.
(3) Suppose F' to be full, faithful and dense. Then Kar F' is full, faithful and dense.

Le.if Fis an equivalence, so is Kar F.
Proof. Suppose given (X, e), (Y, f) € ObKar A.
Ad (1). Suppose given ( ¢ ) and { ¥ )r in kar a((X, €), (Y, f)) with
rd Foo)rp=KarF){ )y = (Kar F) ¢ )y = rd FY )y -

By Definition 33, we obtain Fyp = Fi. Since F is faithful, we obtain ¢ = . Therefore,
we have ¢ )y = ¢ );. Thus, Kar F' is faithful.

Ad (2). Suppose given pd p )rs € kars((FX, Fe), (FY,Ff)).

Then we have p € g FX,FY). Since F is full, there exists ¢ € 4X,Y) with Fo = p.
Define ¢ := epf. Then we have

epf =eepff =epf =o.
Therefore, we have [ ¢’ )r € kara((X,€), (Y, f)).
Since pd p )Jrf € karB((FX, Fe), (FY,Ff)), we have
Fo=Flepf)=Fe-Fo-Ff=Fe-p-Ff =p.

In consequence, we have

(Kar F) { ¢ )y 2 pd F@ )pp = rd p ey

Thus, Kar F' is full.
Ad (3). Since (1) and (2) hold, it suffices to show that Kar F' is dense.
Suppose given (A, f) € Kar B. Then we have A € ObB.

Since F is dense, there exists X € Ob A with FX ~ A. Let FX -2~ A be an isomorphism.
Define ' := pfp~t. By Remark 3, we have (FX, f') € ObKar B. By Remark 36, we have
an isomorphism (FX, f’) f/(f/—ff)f> (A, f) .

Since F is full, there exists e € 4 X, X) with Fe = f'.

We have F'(e?) = Fe- Fe = Fe. Since F is faithful, we obtain e = e. Therefore, we have
(X,e) e ObKar A.

In consequence, we have
(Kar F)(X,e) 2 (FX,Fe) = (FX, f) = (A, f).
Thus, Kar F' is dense.
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Lemma 59. The following assertions (1, 2) hold.

(1) We have Kar1ly = lgara -

(2) Suppose given functors A 5 BS C. We have (Kar G) o (Kar F') = Kar(G o F).

e(‘P)f

Proof. Suppose given (X, e) — (Y, f) in Kar A.
Ad (1). We have

o L0602 ) (L) 2 (1,1
= (e Loy, f))
= 1KarA<(X7e) M (}/7 f))

Ad (2). We have

((Kar G) o (Kar F»((X, &) <90, (v, f))

2T (Kar G)((FX, Fe) L4r1 gy, Ff))

57 ((G(FX),G(F@)) aurol A e, (G(FY),G(Ff))

_ (((GoF)X, (G o F)e) e CDokeons o Fyy, (G o F) f)>

D57 (Kar(G o F))((X, e) 2L (v, f>)'
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Definition 60 (and Lemma). Suppose given F < [ in [A, B].
For (X, e) € ObKar A, we define

Q(xe) = Fe-ax - Fe.
For (X,e) e ObKar A, we have

Fe( @(X,e) )F‘e € KarB((FXv Fe)7 (FXa F@))

Suppose giwen (Y, f) and (Z,g) in ObKar A and [ ¢ ); € xara((Y, f),(Z, 9)).

The following diagram is commutative.

Fi Fo)rg
—_—

(FY,Ff) (FZ,Fg)

Pl @y, Jpy Fo ¥(z,9) Jirg

S-S W
(FY7Ff>Ff—(PFg>(FZ7Fg)

Define _
Kara := (Fe( Q(X,e) )Fe)(x,e)EOb Kar A

= Jd Fe-« - Fe ~> .
(F( X )Fe (X,e)eObKar A

We have the transformation Kar F' K9 Kar F.
Proof. Suppose given (X, e) € ObKar A. We have
Fe-d(x,e)-F’e=Fe~Fe-aX-ﬁe-Fe=Fe-aX-Fezo?(X,e).

Therefore, we have pd G(x.e) )pe € Kar B((FX, Fe), (FX, Fe)>.

Furthermore, we have

FAF@ )rg rd Qz,9) )y 2 FSO'Fg'aZ'Z:jg g
= rAFf Fo-az Fg)g,
= Ff{Ff'OéY‘IiSO'Ifg)@
= A Ff-ay -Ff Fo)g,
D33

= rl oy Jig iAFP )i -
Therefore, the diagram stated above is commutative. Thus, Kar « is a transformation.
Lemma 61. Suppose given F € Ob[A, B]. Suppose given Fy =% Fi 5 Fy in [A, B].
The following assertions (1, 2) hold.

(1) We have Kar1p = lgar F -

(2) We have Kar(apay) = (Kar ag)(Kar ;).
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Proof. Suppose given (X, e) € Ob Kar A.

Ad (1). We have
(Kar1p)(x,e) e rd Fe-(1p)x - Fe )re = pd Fe )pe e Lrx,Fe) -
Ad (2). We have

Qo1 (X e) 4 Foe - (Oéo)X : (041))( - Fye

F(]e . Foe . (Oéo)X . (Oél)X . F2€ . F26
Fe-(ap)x - Fie- Fie- (a1)x - Fye

= Qo(X,e) ¥ (Xe) -

Thus, we obtain

D60 __ __
Kal"(OéoOél)(X,e) = Foe( Qo1 (X e) )FQe = Foe( Q0 (X,e)X1(X,e) )Fge

D33 — — D60
= Foe( 0(X,e) )F15 Fle( Q1(X,e) )F2€ = (Kar ozo)(Xye)(Kar al)(X,e) :

Remark 62. We have the functor
[A,B] 22 [Kar A, KarB]

(F& G) — (KarF—I%r—oi»KarG»
cf. Lemma 61.

Lemma 63. Suppose A and B to be preadditive. The following assertions (1, 2) hold.

(1) Suppose given F' € Ob 4qq[A, B]. Then Kar F' € Ob ,qq|Kar A, Kar B].

(2) Suppose Fif? in aqd[A, B]. We have Kar(a + &) = Kar a + Kar a.

Proof. Since A and B are preadditive, Kar A and Kar B are preadditive by Definition 38.

Ad (1). Suppose given (X, e), (Y, f) € ObKar A. Suppose given { ¢ )f and { ¢ ); in
KaTA((Xa 6)7 (Ya f)) We have

(Kar F) ({0 )s+ ¢ )y) = (KarF) Lo+ )

2 pl Flo+9) )y

= pd Fo+ F )py

2 Fo )+ rd F ey

2 (KarF) ¢ )y + (Kar F) (0 )y .

Ad (2). Suppose given (X, e) € ObKar.A. We have

(Kar(a + @) (x,¢) R Fe'(oz—k&)X'Fg)Fe
= pd Fe-(ax +ax) Fe)p,
= pd Fe-ax-Fe+ Fe-ax - Fe)g,
b3s Fe(Fe-aX-Fe)Fe+ Fe(Fe-&X-Fe)Fe

(Kar a)(x,e) + (Kar &) x,e)
= (Kara +Kara)x,) -
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Remark 64. Suppose A and B to be preadditive.
We have the additive functor

aadl A Bl 25 a[Kar A, Kar B]

(F RN G) — (KarF Kara, KarG);
cf. Remark 62 and Lemma 63.

Remark 65. Suppose given an isotransformation F — F' in [A, B].

Then Kar F X2% Kar F' is an isotransformation in [Kar A, Kar B].

Proof. We have (Kar o)(Kar o) "2 Kar(aa™!) = Kar 1p 2 1gu p . O

Remark 66. We can now give a new proof for Lemma 58.(3).

Suppose given an equivalence F : A — B. Then Kar F' : Kar A — Kar B is an equivalence.

Proof. Since F' is an equivalence, there exists a functor G : B — A and isotransformations
(GoF)=%1, and (FoG)=215.

By Remark 65, we obtain the isotransformation

(Kar G o Kar F) "2’ Kar(G o F) 222 14 4.
Similarily, we have the isotransformation

(Kar F o Kar G) "2’ Kar(F o G) LY IKarB

cf. Remark 65.

Thus, Kar F' is an equivalence. O
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Lemma 67. Suppose given functors F, F:A— Band G,G: B — C. Suppose given
transformations o : F = F and 8 : G = G. We have Kar(ﬁ a) = (Kar 8) = (Kara).

Proof. Suppose given (X, e) € ObKar . A. We have

((Kar 8) = (Kar a))(x.e)
(Kar G)(Kar a)(x,) - (Kar 5)(Karﬁ)(x,e)
D60
(
(

e-(GOF)@‘GOKX'BFX'(éOF)e )(éoﬁ')e
e-Gax - Bpx - (GoF)e )(Goﬁ)e
e (Bra)x - (GoF)e g

= KarG)pd acce Jie - @oryd B(#x Fe) NGoF)e
= Kar )Fe(Fe'aX'Fe)Fe (GoF) ((G F) BFX'(GOF)G)(GOF)e
= (GoF)e( (GOF e-Gax - (GOF)G )(Goﬁ)e ' (GoF)e( (GOF)«S ’ BFX ’ (GOF)@ )(éoﬁ‘)e
= omd (GoF)e-Gax-(GoF)e-(GoF)e-fry-(GoF)e )(éoﬁ)e
= (GoF)e( (GOFG-GO./X-<GOF)€~BFX'(GOF)€ )(éoﬁ')e
(
(
(

2.1.7 The image functor

For this §2.1.7, let A be an idempotent complete category.

Definition 68 (and Lemma). Recall that in Stipulation 52 we assigned to every idem-
potent X 5 X in A an image (Ime, ¢, ¢).

We have the functor
Kar A 4

(X.0) 7

We call 14 the image functor of A.

(. 1) ~ (meamy).

If unambiguous, we often write [ := [ 4.

Proof. Since A is idempotent complete, we obtain a welldefined map on objects. By
Definition 33 and Stipulation 52, we obtain a welldefined map on morphisms.

Suppose given (X, e) — LS Y, f) —> RSN

(Z,g) in Kar A.
We have I1(xe) = [ { € ). = ée€ = é€é€ = limelime = lime = Li(x,e)-
Furthermore, we have

I o) Av)y) =Td ), =épng=éoftyg=céoffg=I1d o) TA¢)y. O
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Remark 69. We have [ 4 0 J4 = 14; cf. Definitions 42 and 68 and Stipulation 52.
Lemma 70. The following assertions (1, 2, 3) hold.

(1) The image functor I is faithful.
(2) The image functor 14 is full.

(3) The image functor I is surjective on objects. In particular, 14 is dense.

Thus, 14 1s an equivalence.

Proof. Suppose given (X, e) and (Y, f) in Ob Kar A.
Ad (1). Suppose given (¢ )y and (v )y in s a((X, €), (Y, f)) with

eof =1L @)p=1{%);=epf.
Applying e from the left and f from the right to this equation, we obtain
p=epf =epff =eevff =evf = .
Thus, [ is faithful.
Ad (2). Suppose given ¢ € A(I(X,e), I(Y, ) 2* 4(Ime,Im f).
Consider j:= epf € AX,Y). We have
eﬁfzeépff:éeépfff:éllmepllmff:épf:ﬁ
Therefore, we have { p )r € kara((X,e), (Y, f)). Furthermore, we have

~ D68 .~ & e 7
[e(p)f = epfzeepflehne'p'llmf:p-

Thus, I is full.

Ad (3). Suppose given Z € ObA. We have I(Z,1;) = Im 1, = Z; cf. Stipluation Stipu-
lation 52. Thus, [ is surjective on objects. ]

Lemma 71. Suppose A to be preadditive. Then I4 is additive.

Proof. Since A is preadditive, so is Kar A; cf. Definition 38.

L)
Suppose given (X, e) (Y, f) in Kar A.
{V)r
We have bas
I(dLo)+d¢)y) o LLo+9);
= e+ U)f
= epftepf
D68

= ]e(¢)f+fe(¢)f~
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2.1.8 Universal property

For this §2.1.8, let A and B be categories. Let B be idempotent complete.
Definition 72 (and Lemma). We have the functor
[A,B] — [KarA,B]
(F5G) — <(IB o Kar F) 22529, (1.6 KarG)).
Cf. Definitions 57, 60 and 68.
For F 5 G in [A, B], we write F” := Iz oKar F and o' := I * Kar .
Suppose given F <> G in [A,B]. We have

Kar A ,

B
((X, e) L2k, ) <1mFe \Fe) - Py FJ Ime).

Suppose given (X,e) € ObKar A. We have

afx e = (Fe) - ax - Ge.

Proof. Suppose given F 5 G 5 Hin [A, B].

Suppose given (X, e) —— LS (Y, f) in Kar A. We have

P28 1) = (mokarR)((ne 2L )
M(FY,F]“))

T IB((FX, Fe)
D68 (ImFe ——»(Fe). P FY Ime).

Furthermore, we have

Ve = UpxKara)ix,

= IB ((Kara)(Xe))
= Ig(rd Fe-ax-Ge )
= (Fe) - Fe-ax-Ge-Ge
= (Fe) -ayx - Ge.

Thus, we have
(1) (xe) = (Fe) - (1p)x - Fe
= (Fe) - Fe

= 1Im(Fe)

= 1F’X-

48



Therefore, we have (1p) = 1p.

Moreover, we have

" (aB)x - He
-ax - fx - He

~ax-Ge-f[x - He

“ax-Ge-(Ge) - Bx - He
= C“/(X,e) Bixe) -

In consequence, we have (af) = o/f'.

Thus, we have a functor indeed. n

Lemma 73. Suppose given F = G in [A, B]. The following assertions (1, 2) hold.

(1) We have F' o J4 = F.
(2) We have o' * J4 = a.

Proof. Ad (1). Suppose given X %Y in A. We have

(FloJa) (X 5v) 22 F’((X,lx)M(Y,lyO

D2 (m(F1y) L e My Im(Fly))
852 (FX Flx - Fy - Fly FY)

- F(x =)

Ad (2). Suppose given X € Ob.A. We have

S52

(@' = Ja)x = aix1yy = (Flx) -ax-Glx = Fly -ax-Glx =ax.

Lemma 74. Suppose given F € Ob[A, B]. The following assertions (1, 2, 3) hold.

(1) If F is faithful, so is F".
(2) If F is full, so is F".
(3) If F is dense, so is F'.

Proof. Ad (1). Since F is faithful, so is Kar F; ¢f. Lemma 58.(1). By Lemma 70.(1), I is
faithful. Thus, F’ = Ig o Kar F' is faithful.

Ad (2). Since F is full, so is Kar F'; cf. Lemma 58.(2). By Lemma 70.(2), I5 is full. Thus,
F’" = IgoKar F is full.
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Ad (3). Suppose given B € ObB. Since F'is dense, there exists A € Ob A with FA ~ B.

We have
Fl(A 1) = (F o)A "™ Fa=~B.
Thus, F’ is dense. O

Proposition 75. Recall that A and B are categories and that B is idempotent complete;
cf. Definition 45. Recall that Kar A is idempotent complete; cf. Lemma 54.

The following assertions (1, 2, 3) hold.

(1) We have J4 € Ob[A, Kar A].

Suppose given F = G in [A, B]. We have F’ G in [Kar A, B] with F'oJq = F,
G'oJy =G and o = J4 = «; cf. Definition 72 and Lemma 73.

Suppose given € karag(F',G") with B+ J4 = a. Then we have = o'

A T4 Kar A

(2) Suppose given U,V € Ob[Kar A, B] with Uo Jy =V oJs. Then U = V.
(3) We have the equivalence of categories
[A, B] Jas [Kar A, B]
(ot 22 o) « Whv),

that is surjective on objects.

If unambiguous, we often write A := A4 5.
Proof. Ad (1). Suppose given (X, e) € ObKar.A. We show that O/(X7e) = Bix.e)-
By assumption, we have
Bixix) =B Ja)x = ax = ('« Ja)x =[x, -
Since o is natural, the following diagram commutes.

Flig(ede Fle(ey

F/(X, 1y) FI(X,e) FI(X, 1y)
Bxay) |= O/(X,IX) O/(X,e) Bxaix) |= O"(x,lx)
el e )e G (e
(X, 1) 0 rx o) LN arx 1)
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Since [ is natural, the following diagram commutes.

F' € e F/e e
FUX ) —2 prx o) 2O prx 1)
Bix,x) =] ¥x,1x) B(x,e) Bixax) =[xy
G/ € Je Gle
(X, 1)~ G, e) LN (1)

By Lemma 54, ((X,€), 1,( € )e, o € h1y) is an image of (X, 1x) x € e (X, 1x) in Kar A.
Thus, (F'(X,e), F 1,( € ), F' € )15 ) is an image of

Fllx(e)

(F’(X, 1y) ——%, F'(X, 1X))

in B; cf. Remark 47.
Similarily, (G'(X,e),G'1,( € ), G € )1,) is an image of

G’lX(e

(G’(X, 1) Sl oy 1X))

in B; cf. Remark 47.
In consequence, we obtain o/(X,e) = Bx,e) ; cf. Lemma 50.(2).

Ad (2). Suppose we have shown that (W o J4)" = W for W € Ob[Kar .4, B]. Then we
have
Uz (Uoldy) = Vol =V

Therefore, it suffices to show that (W o J4)" = W for W € Ob[Kar A, B].
Suppose given W € Ob[Kar A, B].
Suppose given (X, e) € ObKar A.

By Lemma 54 and Remark 47, (W (X, e), W 1, (€ ), W { € )1 ) isanimageof W (e ), =
(W o JA)G in B.

By Corollary 51, we have mutually inverse isomorphisms

D72 (Woda)e) - Wiy(e)
(W o Ja)(X,e) Z Im((W o Ja)e) (X, )
Welehy - (Woda)e

in B.
Define

0:= (W -(Wold .
< (e)lX ( ° A)e)(X,e)EObKar.A

We show that ¢ is natural. Suppose given (X e¢) Ak, (Y, f) in Kar A.
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We have
dxe) - (Woda) d v)y
Wd ey Wodae: (Wodae) (Woda)p- (Woldyf
= Wdehy- ( oJa)e (Woldap - (Wold)f
Wd ey - Wiehe - Wileh - Wola)f
= ((6)1X'1X(€) 1 (@) (Wolda)f
= Wdeeph, - (Wolda)f
= Wdofh - (Woda)f
= W(de) Af ) Woda)f
= Wdo) - WAShy Woda)f
= W) dwp-

Thus, we have W == (W o J4)' .

Ad (3). Suppose given F' € Ob[A, B]. Because (1) holds, we have F’ € [Kar.A, B] and
AF’' = F'o J4 = F. Therefore, A is surjective on objects.

Suppose given F,G € Ob|A, B]. Since (1) holds, we have a bijection
[Kar.A,B](F/v G/) - [A,B](F> G)v 5 = AB
Suppose given U,V € Ob[Kar A, B] with AU = AV. Since (2) holds, we have U ~ V.

Therefore, A is an equivalence by Lemma 6. O

Lemma 76. Suppose A and B to be preadditive. Suppose given F' € Ob 444 A, B]. We
have F" € Ob ,qq[Kar A, B].
Proof. Since A is preadditive, so is Kar A; cf. Definition 38.

Since F' is additive, so is Kar F'; c¢f. Lemma 63. By Lemma 71, Iz is additive. Thus,
F' 2 IgoKar F is additive. O

Proposition 77. Suppose A and B to be preadditive categories.

Recall that B is idempotent complete; cf. Definition 45. Recall that Kar A is preadditive;
cf. Definition 38; and idempotent complete; cf. Lemma 54.

The following assertions (1, 2, 3) hold.

(1) We have Ja € ,a4[ A, Kar A]; cf. Lemma 44.

Suppose given F = G in .qa[A,B]. We have F' G i add|Kar A, B] with
FlroJy=F,GoJsg=G and o/ = J4 = a; cf. Definition 72, Lemmas 73 and 76.

Suppose given € kara B(F',G") with §+ J4 = o. Then we have 8 = .

Ja

Kar A
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(2) Suppose given U,V € Ob ,qq[Kar A, B] with U o Jg =V oJs. ThenU = V.

(3) We have the equivalence of categories
add[A, B] 4B ada[Kar A, B]
(ot 2 wory) « Whv),

that is surjective on objects.

If unambiguous, we often write A := Ay .

Proof. Ad (1). This follows from Proposition 75.(1).
Ad (2). This follows from Proposition 75.(2).

Ad (3). Suppose given F' € Ob ,44[A, B]. Because (1) holds, we have F’ € ,qq[Kar A, B]
and AF" = F' o J4 = F. Therefore, A is surjective on objects.

Suppose given F, G € Ob ,qq4[A, B]. Since (1) holds, we have a bijection

waalKar 48] (F, G) = as)(F, G), B — AB.
Suppose given U,V € Ob ,q4[Kar A, B] with AU = AV. Since (2) holds, we have U =~ V.
Therefore, A is an equivalence by Lemma 6. O]

Theorem 78. Suppose A and B to be additive categories.

Recall that B is idempotent complete; cf. Definition 45. Recall that Kar A is additive; cf.
Proposition 41; and idempotent complete; cf. Lemma 54.

The following assertions (1, 2, 3) hold.

(1) We have J4 € ,a4[A, Kar A]; cf. Lemma 44.

Suppose given F = G in .q4[A,B]. We have F' 2 G ada|Kar A, B] with
FloJgs=F,GoJy=G and o = J4 = a; cf. Definition 72, Lemmas 73 and 76.

Suppose given f € (iar ap(F',G') with B+ J4 = a. Then we have § = o,

A i Kar A

(2) Suppose given U,V € Ob qq[Kar A, B] with U o Jg =V oJy. ThenU = V.

(3) We have the equivalence of categories
add[A, B] et ada[Kar A, B]

(o 25 o) < W),
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that s surjective on objects.

If unambiguous, we often write A := A4 5.

Proof. Since additive categories are preadditive, this follows from Proposition 77. O

Proposition 79. Suppose given an idempotent complete additive category C. Suppose
given a full subcategory D of C. Let D' be the full subcategory of C with

ObD' :={AeObC:3BeObCIDeObD: A® B =~ D}.

The following assertions (1, 2, 3) hold.

(1) The category D is a full subcategory of D’.
(2) The category D' is idempotent complete.

(3) Consider the additive functor
D 5L D
(45 B) — (adB).

Then
KarD & D

((A, e) L2x, (B,f)) — <Ime £, Im f) ,

1s an additive equivalence; cf. Definition 72.

Proof. Ad (1). Since D is a full subcategory of C, it suffices to show that ObD < ObD'".

Suppose given D € ObD. Since C is additive, there exists a zero object N € Ob(C. We
have D@ N =~ D. Thus, we have D € ObD’.

Ad (2). Suppose given an idempotent A - A in D',

Since C is idempotent complete, we have an image (Ime, €, ¢é) of e in C. Since D’ is a full
subcategory of C, it suffices to show that Ime € ObD’.

By Lemma 53.(2), we have Ime @ Im(1 —e) = A in C. Since A € ObD’, there exist
B e ObC and D € ObD with A® B =~ D. Thus, we have Ime ® (Im(1 —¢e) ® B) = D.
Therefore, we have Ime € Ob D',

Ad (3). Since (1) holds, F is additive, full and faithful.

Since (2) holds, D’ is idempotent complete. Thus, F” exists; cf. Definition 72.
By Lemma 76, F” is additive. By Lemma 74.(1, 2), F’ is full and faithful.
Thus, it suffices to show that F” is dense.

Suppose given A; € Ob D',
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There exist Ay € ObC, D € ObD and an isomorphism A; @Ag—f>D in C. So, we
have Al ,AQ e ObD.

Consider e := ¢! (§9) ¢ € p(D, D). We have

e =0 (50) e (00) e =¢"(00) (60) e =¥""(00) p =

Thus, e is an idempotent in D. Since (1) holds, e is an idempotent in D’. Since D’ is
idempotent complete; cf. (2); e has an image (Ime, ¢, ¢é) in D'.

We have the following commutative diagram in C.

D ¢ D 1
\ (1% X_;(o)
+(0)
A = A

Since D' is a full subcategory of C, this diagram is in D’. Thus, A; is an image of e in D’.
By Corollary 51, we have A; =~ Ime in D'

By Definition 72, we have
F'(D,e) =Im(Fe) =Ime >~ A; .
Thus, F' is dense. O

2.1.9 Karoubi envelope for preadditive categories over a com-
mutative ring

For this §2.1.9, let R be a commutative ring.

Definition 80 (and Lemma). Let A be a preadditive category. We have the ring mor-
phism
Ya
End 1A — End 1KarA

a +— Kara.

Proof. Since A is preadditive, so is Kar A; cf. Definition 38.
Suppose given «, ' € End 1 4. For brevity, we write ¢ := 4.

We have
(a+ )Y = Kar(a + o) Y23 Kara + Karo/ = ay + o'

and
(aa’)yp = Kar(aa!) LB (Kar o) (Kar o') = (a))(a'y).

Furthermore, we have

L61.(1 L59.(1
(Igna1,)¢ = (11,)v = Kar 1, , L Ikariy, 2 ik a = 1End g, 4 -

Thus, v is a ring morphism. O]
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Lemma 81. The following assertions (1, 2) hold.

(1) Let (A, pa) be a preadditive category over R. Then (Kar A, o410 4) is a preadditive
category over R; cf. Definition 80.

(2) Let (A,p4) be an additive category over R. Then (Kar A, o 1v4) is an additive
category over R; cf. Definition 80.

Proof. Ad (1). By Definition 80, ¢4 : End14 — End lka 4 is a ring morphism. Thus,

wahq : R — End 1k, 4 is a ring morphism. Therefore, (Kar A, p414) is a preadditive
category over R; cf. Definition 23.(1).

Ad (2). By Proposition 41, Kar A is additive. Thus, the assertions follows from (1) and
Definition 23.(2). O

Remark 82. Suppose given a preadditive category (A, p4) over R. Suppose given (X, e) LA

(Y, f) in Kar A. Suppose given r € R. We haver - {a )= {r-a ).

Proof. For brevity, we write ¢ := ¢4 and ¢ := 4. We have

reda) DY (o)) xe - da)
2 (Kar(re))(xe) - d @)
2 e (ro)x-e) fa)
= ((rg)x-ec-a)y
= d(ro)x-a)
PR ray

]

Lemma 83. Suppose given a preadditive category (A, o) over R. The inclusion functor
J4: A— Kar A is R-linear.

Proof. By Lemma 81.(1), (Kar A, p4t4) is a preadditive category over R.
By Lemma 44, J is additive.

Suppose given r € R. Suppose given X % Y in A. We have

J(r-«) b4z (7T a )y RE2 .. 1@y B2 0 Ja.

Thus, J is R-linear; cf. Definition 23.(3). O

Lemma 84. Suppose given preadditive categories (A, p4) and (B, pg) over R. Suppose
giwen F € Ob gl A, B]. Then Kar F' € Ob gy, [Kar A, Kar B].

Proof. By Lemma 81.(1), (Kar A, pav4) and (Kar B, pptp) are preadditive categories
over R.

By Lemma 63.(1), Kar F' is additive.
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Suppose given r € R. Suppose given (X e) Ao, (Y, f) in Kar A. We have

(Kar F)(r- d a)y) = (KarF)d{r-a)

2 pd F(r-a) ey
= Fe( r- Fa )Ff
R=82 T- Fe( FO./ )Ff
D57

= r-(KarF)J{ a)f.
Thus, Kar F' is R-linear; cf. Definition 23.(3). O

Lemma 85. Suppose given a preadditive category (B, pp) over R. Suppose B to be idem-
potent complete. The image functor Ig : Kar B — B is R-linear; cf. Definition 68.

Proof. By Lemma 81.(1), (Kar B, pgtg) is a preadditive category over R.
By Lemma 71, [ is additive.

Suppose given r € R. Suppose given (X e) Ak, (Y, f) in Kar B. We have

Ir-da)) = Idr-a)
% ira)-f
D23.(1) —
= (TSO)X S Ji
= (TS0>X e-a-f
= I{ o)y
Thus, I is R-linear; cf. Definition 23.(3). O

Lemma 86. Suppose given preadditive categories (A, p4) and (B, pp) over R. Suppose
B to be idempotent complete. Suppose given F' € Ob guyn[A, B].

We have F' € Ob gy Kar A, B]; cf. Definition 72.

Proof. By Lemma 81.(1), (KarA, o4 4) and (Kar B, pgtg) are preadditive categories
over R.

Recall that I’ = Iz o Kar F'; cf. Definition 72.

Since F'is R-linear, so is Kar F'; cf. Lemma 84. Furthermore, Iz is R-linear; cf. Lemma 85.
Thus, F' = Iz o Kar I’ is R-linear. O
Proposition 87. Suppose given preadditive categories (A, p4) and (B, pg) over R. Sup-
pose B to be idempotent complete; ct. Definition 45.

Recall that (Kar A, p41¢4) is a preadditive category over R; cf. Lemma 81.(1). Recall
that Kar A is idempotent complete; cf. Lemma 54.

The following assertions (1, 2, 3) hold.
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(1) We have J4 € Ob ry[A,Kar A]. Suppose given F = G in pun[A, B]. We have
F' % G in rin|Kar A, B] with F' o Jy = F, G'oJq = G and o/ = J4 = a5 cf.
Definition 72, Lemmas 73 and 86.

Suppose given € . kara,B(F',G") with B+ J4 = o. Then we have = o.

Ja

Kar A

/

(2) Suppose given U,V € Ob gyu|Kar A, B] with U o Jqy =V oJy. ThenU = V.
(3) We have the equivalence of categories
R—lin[Ay B] (AA—ﬁ R—lin[I<ar A7 B]
(Wod) 5 (vory) < Wwhv),

that s surjective on objects.

If unambiguous, we often write A := Ay .

Proof. Ad (1). This follows from Lemma 83 and Proposition 75.(1).
Ad (2). This follows from Proposition 75.(2).

Ad (3). Suppose given F' € Ob gyin[A, B]. Because (1) holds, we have I’ € gy,[Kar A, B]
and AF" = F' o J4 = F. Therefore, A is surjective on objects.

Suppose given F,G € Ob giin[A, B]. Since (1) holds, we have a bijection
R_]m[K&I‘A,B](F,7 G/) - R.]in[.A,B]<F7 G)? /8 — A/B

Suppose given U,V € Ob gy[Kar A, B] with AU = AV. Since (2) holds, we have U =~ V.

Therefore, A is an equivalence by Lemma 6. ]
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2.2 The additive envelope of preadditive categories

2.2.1 Definition and additivity

For this §2.2.1, let A be a preadditive category.

Definition 88 (and Lemma). We shall write tuples of objects and tuples of morphisms
of A in square brackets.

We shall define a category Add A as follows.

Let
ObAdd A :={[A1,...,An] :meZsy, A; € Ob A for i € [1,m]}.

We often write A1 H---H A, := A; = [A,...,An] € ObAdd A.

i€[1,m]
We write Npgq.4 := [ ] for the empty tuple of objects; cf. Lemma 89 below.
For Aj H---HA1, and Ay H---H Ay, in Ob Add A, let

Adda(A1 1B BAL,, Asi H - H Agy)
= {[fi,j]ie[l,m],je[l,n]i fij € AAvi, Agy) for (i,5) € [1,m] x [Ln]}.

For [fi,j]ie[l,m],je[l,n] € Mor Add ./4, we often write
fir o fin
=1 | =il = Uiiliermgenn -
fm,l fm,n

Omitted entries are stipulated to be zero.

For Al,l' : 'Al,m and A2,1' . 'A2,m in Ob AddA and fl S A(Al,’i 7A2,i) fori e [1, m],
we often write

diag[ fi]; := diag[ filiep1,m] := [fl fm]-
For A; % A, in A, we often write
[p] = [Pliepnjernn € aaaal[Ar]; [Az2])-
For Ay H - HAim, AoaH---H Ay, and A3 H---HAs, in ObAdd A,
f=1fijli;€ adaa(Ai BB AL, A1 BB Az,)

and
9=19kljkr € rdaaa(As1 B - -HAs,, As1H - -HAs,),

we define composition by

fa=Ff-9="1fijlij lgirlir = Z 395k

jell,n] ie[1,m],ke[1,p]
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For AiH---HA,, € ObAdd A, let

1
L@ -man = [0i5]i; = diag[laJie1m) = l 1].

For Ay ;H - ‘HA;, and Ay 1B - HA2, in Ob Add A, [fi;]i; and [g;5]i; in ada.a(A1q
we define

[fiilig + [9iglig = [fij + gigli-
We call Add A the additive envelope of A.
This defines a preadditive category Add A.

Proof. First, we show that Add A is a category.

Consider
Ay ER Ay e As LN Ay
i€[1,m] j€[1,n] ke[1,p] le[1,q]
in Add A.
We calculate
Lag,@@s, 9 = [Oig)ig  [gialin = | D, iggin | = [giklin = 9.
Similarily, we have
flagmman, = il 0ialin = | D) figbiw | = [fiklin = [
je[1,n] ik

Furthermore, we obtain

f(gh) [figlig - (girlie - [haalen)

[fi,j]i,j' ’ Z gj,khk,z]
gl

ke[1,p]

> <fzyj > gj,khk,z>]
jeltn) \* ke[l y

> fii(Gikhen)
| Getimix (L) i

2 (fij950) iy

(7:k)e[1,n]x[1,p]

il
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= | X < )y fm%k) hkvl]
| ke[1,p] \je[l,n] il

= Z fi,jgj,k] '[hk,z]k,z
ik

| jelin]

= (iglis - Lgielin) - Drnadr
= (fg)h.
Thus, Add A is a category.
Now we show that Add A is preadditive.
Suppose given ‘e ]ALZ- and _e ]AQJ- in Ob Add A. Since A is preadditive, 4(A;;,As;)
ie[1,m jelln

is an abelian group for (7, 5) € [1,m] x [1,n]. By definition of the addition in Add.A, we
have

Add Al A,
€[1,m]

(]

‘ ]AQJ) = (—B A A, Agj)

J€ (4,7)€[1,m]x[1,n]

as abelian groups, so that aqq.4( Ay,
]

i€[l,m

A, ;) is an abelian group.
jeltn]

Suppose given

g
Ay Ay 2 Az Ay
i€[1,m] Jelln] 9 ke[1,p] le[1,q]

in Add A.

We calculate

flg+ah = [fislig (girlir + [Gixlin) - [hrilra
= Ufislig - Lgix + Girlie - Uowalig

= DU fi(Gik + Gk
| Gimellmnl 1]

= Z (fiigirbrg + fijGinhei)

| GR)eltn][1,9) y

= Z JijGirhes |+ Z i3G5k

il

| Gelim]x 1) o Lumeimlxi) N
= [fiilig - Lgiklin - [Pralia + [fiilig - 1Ginlie - [Priles
= fgh + fgh.
Thus, Add A is preadditive. ]
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Lemma 89. We have a zero object Nagq 4 in Add A; cf. Definition 88.

Proof. Suppose given A;H---HA, € Ob Add . A. We have to show that

| adaa(A1 B B An, Nadaa) =1 = | adaa(Nadaa, A H---HA,)|.

We have
AddA(ATEH B A, Nagaa) = {[ ]}; cf. Definition 88;

and
Add A(Nadaa, AvH---HA,) = {[ ]}; cf. Definition 88.

[
Remark 90. Let F and G be finite totally ordered sets. For m := |F|, n := |G|, we have

[

unique monotone bijections [1,m] 5 F, [1,n] - G. Given A;. € ObA for ¢ € F and
Ay, e ObAfor ne G, we write A= H A, and HAy, = Ajr.

CeF i€[1,m] neg Jjel1,n]
Given fe, € A(Aic, Asy) for (¢, n) € F x G, we write [fenlcn := [fiojrlij

Lemma 91. Suppose given m,n € Zq . Define

I :={(1,7): ie[l,m]},
L :={(2,7): je[l,n]} and
I:= ]1 U IQ,

ordered lexicographically.

Suppose given Ay1H---H A, and Ay H---HAs, in ObAdd A. Then
AB--BAns
1 .

" 1 0.0
[d¢.0lcer.oer, = 0.0 [ .. 1(:) (:]:|:[50,C]9611,CEI

0. 0
A H - BHAL B A BB Ay
0..0

. . 0..01
5 _|(0 ... 0 Do, =[5
[0¢,0lceroer,=|1 Do " =[d0,¢cloc1y,ce1

1

A - --H Agp,
is a direct sum of Ay1H - H Arm and Ay H---H As, in Add A.

Proof. We calculate

[06.cloen cer - [O¢cnlcerner, = [259 ¢0c, n] = [0o.n)oernen, = Lay @41 -
CEI 96]1 776]1
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Similarily, we obtain

[00,clocts cer - [O¢mlcerner, = [259 ¢, n] = [0o,nlocomer, = 140, m-mAs,, -
CEI 96[2 T]EIQ

Furthermore, we have

[O¢n)cermens - [Onelnenecr + [0cnlcermer, - [Onglner cer

= Z 5677577,5] + [ Z 5417767776]
[ el Cel el el Cel el

= Z 5( ,nén,ﬁ ]
nel

Cel kel
= [dcelcereer
1A1,1--~A1,mA2,1'“A2,n :

Proposition 92. The additive envelope Add A of A is additive.

Proof. By Definition 88, Add A is preadditive. By Lemma 89, Add .A has a zero object.
By Lemma 91, all objects A, B € Ob Add A have a direct sum in Add.A. Thus, Add A is

additive. O]
Remark 93. Suppose given A, ..., A,, € ObA. Let
(A je[1,m
v P8 ket ) ae1m)=[0 - 010 0]
4] 0 AVE B A
(A;) m 0
w7 selt, ]1:[5k,i]ke[1,m],le[1,1]: (1)
0

forie[1,m]. If unambiguous, we often write

(Aj)jel1,m]

L =1L, and ;=

; 7{_(14 )]E [1,m]

7

forie[l,m].
Then (AyEH - B Ap s (T)ieqim] » (i)iefim) 95 a direct sum of [Aq], ..., [An] in Add A.

Proof. We have
Z T by = 2 [5k,z']ke[1,m],ze[1,1] : [5i,j]z€[1,1],je[1,m]

ie[1,m] i€[1,m]
= > [k 0ilheqtmgeftm]
i€[1,m]
= Z 5162 ]
i€[1,m]

ke[1,m],je€[1,m]
= [0k, keq1,m].je[1,m]

= lam-man
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Suppose given i, j € [1,m]. We have

ti - T = [0i1)kea)eftm] - [0 )ieft,m)nef1] = Z 8ii0rj | = [0i4]-

le[1,m]

Thus, we have
vi-m = [1a,] = 11ay
and
vi-mj = [04,4;] = Opaa;)

for j € [1,m]\{s}. ]

Remark 94. Suppose given m € Z=,. Suppose given A; € Ob A for i € [1,m].
The following assertions (1, 2, 3) hold.

(1) Suppose given o € S,,. Then A, Aj, are mutually inverse
isomorphisms in Add A. «[1,m] [Okolir je[1,m]

(2) Suppose A, to be a zero object in A. Then A; H A; are

mutually inverse isomorphisms in Add A. ie[1,m] kilkl o je[lm—1]

(3) Suppose Ay, ..., Ay, to have a direct sum (C, (7;)ie[1,m], (4)ie[1,m]) in A.

T oo T

Then [C] A; are mutually inverse isomorphisms in Add A.

[ “ ] ie[1,m]

Remark 95. Suppose given a ring R. Suppose B to be a full preadditive subcategory of
R-free with R € ObB. Then

R-free & AddB

(Rm fww Rn> s ( R [fi5)ig R)
i€

ie[1,m] je[1,n]

18 an equivalence.

Proof. For x € R we also write = for the map R — R,y — yz.
First we show that F' is a functor.

Suppose given R™ )i R (95431 RP in R-free.

We have

F(lRm) Fdlag( ) = dlag[ ] 1ie[1,m]R = 1F(Rm) .
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Furthermore, we have

F((fig)ig - (giw)in) = F | D frigin

je[1,n]

= Z fljgjk;

je[1,n]

ak

7,k
= [fijlis - [9j)in
= F(fij)ij - F(gj8)
Thus, F'is a functor.

We show that F' is full.

Suppose given R, R" € Ob R-free and f = [fi;lij € aaas(F(R™),F(R")). By Def-
inition 88, we have f;; € g(R,R) = R for (i,7) € [1,m] x [1,n]. Thus, we have
f = [fi,j]i,j = F(fi,j)i,j . Therefore, F'is full.

We show that F' is faithful.
Suppose give R™ and R™ in Ob R-free, (f;;)i; and (gi;)ij in p-tree(R™, R™) with
[fijlig = F(fij)ij = F(gij)ig = 9ijlij

By Definition 88, we obtain f;; = ¢;; for (i,7) € [1,m] x [1,n]. Thus, we have (f;;)i; =
(gij)i;- Therefore, F' is faithful.

We show that F' is dense.

Suppose given By H---H B,, € Ob Add B. Since B is a subcategory of R-free, there exist
ki € Zo with B; = R¥ for i € [1,m]. Define n := Duie[1,my ki - We have

Bl---Bmszl---ka ~ [R"] 4; R.

R94.(3) R94.(3) .

Thus, we have B1H---H B, = R = F(R"). Therefore, F is dense. O

i€[1,n]
2.2.2 The inclusion functor

The inclusion functor will play the role of the universal functor of the additive envelope
construction; cf. §2.2.5. In Proposition 99 we give a necessary and sufficient condition for a
preadditive category C to be additive. This condition justifies the notion additive envelope
for AddC.

For this §2.2.2, let A be a preadditive category.
Definition 96 (and Lemma). We have the additive functor

A 2 AddA
(A% B) - (1411 (8))
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We call I 4 the inclusion functor of A in Add A.
If unambiguous, we often write I := [ 4.

Cf. also Remark 94.(3).

Proof. Suppose given A 5 B Y, C'in A. We have

I(py) =[] = [pl[Y] = T - I

Furthermore, we have
I(14) =[14] = 174 .

Thus, [ is a functor.

¢
Suppose given A—Z B in A. We have
¥

Ho+v)=lety]=lpl+[¥]=To+ 1.
Thus, I is additive. []
Lemma 97. The following assertions (1, 2) hold.

(1) The inclusion functor 14 is full.

(2) The inclusion functor 14 is faithful.

Proof. Suppose given A, B € Ob A.

Ad (1). Suppose given f € aqaa([A],[B]). By Definition 88, there exists ¢ € 4 A, B)
with f = [¢] = Ip. Thus, [ is full.

Ad (2). Suppose given p, 1) € 4 A, B) with I = I{. We have

[o] = Ip = Ip = [¢].
Therefore, we obtain ¢ = 1. Thus, [ is faithful. O
Lemma 98. Suppose A to be additive. Then I4: A — Add A is dense.

Proof. Suppose given Ay H---H A, € ObAdd A.

Since A is additive, we have a direct sum

( @ A17 7Tz i€[1,n] 7(Li)ie[1,n]>

i€[1,n]
OfAl,...,An 111./4

Since I 4 is an additive functor, we have a direct sum

< ( @ A) (I7;)ic [1,n] (Ibi)z‘e[lvn]>
1€[1,n]
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of [Al = [Al]; c. ,IAl = [An] in AddA
By Remark 93, A, H---H A4, is also a direct sum of [A],...,[A,] in Add A.
Therefore, [(A1®--- @ A,) = AjH---HA,. Thus, [, is dense. O

Proposition 99. Suppose given a preadditive category C.

The following assertions (1, 2) are equivalent.

(1) The preadditive category C is additive.

(2) The inclusion functor C Le, AddC is an equivalence.

Proof. Ad (1)=(2). By Lemma 97, I¢ is full and faithful. Since C is additive, I is dense;
cf. Lemma 98. Thus, I is an equivalence.

Ad (2)=(1). By Proposition 92, AddC is additive. Thus, C ~ AddC is additive. O

2.2.3 Functoriality

In this §2.2.3 we define the additive envelope construction Add for additive functors and
transformations between them. Furthermore, we establish functoriality properties of Add,

which could be expressed by saying that it is turned into a 2-functor.

For this §2.2.3, let A, B and C be preadditive categories.

Definition 100 (and Lemma). Let F' € Ob ,44[.A, B]. We have the additive functor

Add A 249 AddB

fi,ilig [Ffi )i
( A1,ii> A2,j> = ( FAl,i—’ . FA2J>

i€[1,m] j€[1,n] i€[1,m] j€[1,n]

So, we have

(Add F) (.A) H] FA,

i€[1,m] i€[1,m]

A; € ObAdd A.

i€[1,m]
Furthermore, we have
(Add F)[fij)is = [F filig

for [fi;]i; € Mor Add A.
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Proof. Suppose given Av ER Ay EN Az in Add A. We have
7 n|

ie[1,m] je(1, ke[1,p]

(Add F))(fg) = (Add F) Z i3 95k
jelln] ik
= | F Z fi 9k
j€[Lin] ik

= Z F(fij9ik)

_je[l,n] ik
= | D Ffij Fyjn
| 7€[1n] ik

= [Ffi,j]i,j : [ng,k]j,k
= (Add F)f - (Add F)g.

Furthermore, we have

(Add F)1A1,1'“A1,m = (Add F) [51‘7]']1',]'

FA \B-BFA1,m

1
= 1(Add F)(A1 1B BALm) -

Thus, Add F' is a functor.

f
Consider Ay —=< Ay ; in Add A. We calculate
i€[1,m] 9 je[ln]

(AAd F)(f + g) = (Add F) ([fij + gijlij)

= (

=[F(fij + 9i3)i;

= [Ffi;+ Fygijli;

= [Ffijlig + [Fgi5li;

— (Add F)f + (Add F)g.

Thus, Add F' is additive.

Lemma 101. Let F' € Ob ,q4A, B]. The following assertions (1, 2, 3) hold.

(1) Suppose F' to be full. Then Add F is full.
(2) Suppose F to be faithful. Then Add F is faithful.

(3) Suppose F to be dense. Then Add F' is dense.
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Proof. Suppose given Ay, Ay ;€ ObAdd A.
' Jje[1,n]

i€[l,m

Ad (1). Suppose given

[pigli; € Add3<<AddF)< Al’i) - (Add F) (je Am))

ie[1,m] [1,n]

= AddB( H FAlz: FALJ)'
i[1,m] Jjeltin]
Since F' is full, there exists f;; € A(A1;, Az;) with ¢, ; = Ffi; for (i,7) € [1,m] x [1,n].
With f = [fi;lij € adaa( H Alz , B Ayj), we obtain

i€[1,m] Jj€[1,n]
(Add F) f = (Add F)[fi iy = [F fizlig = [@ig)is
Thus, Add F' is full.

Ad (2). Suppose given f, g € AddA( B A, ©H AQJ) with (Add F)f = (Add F)g.

i€[1,m] je[1,n]

We have F'f; ; = Fg;; for (i,7) € [1,m] x [1,n]. Since F is faithful, we obtain f;; = ¢;;
for (z,7) € [1,m] x [1,n]. Therefore, we have f = g. Thus, Add F is faithful.

Ad (3). Suppose given B1H---HB, € Ob Add B. Since F' is dense, there exists A; € Ob A
with FFA; = B; for i € [1,n]. Let FA; =~ B; be an isomorphism for i € [1, n].
We have mutually inverse isomorphisms

diag[@i]i

FAH---BHFA, BiH---HB,.

diag[(:) "1

Therefore, we have
(AddF)(A @ BHA,) =FAR  BFA, =B @H --H#B,.

Thus, Add F' is dense.
Lemma 102. Suppose given additive functors A-L-pB-%. ¢
The following assertions (1, 2) hold.

(1) We have Add14 = 1pqq4 -

(2) We have Add(G o F) = (Add G) o (Add F).

Proof. Suppose given [ ZE (1] Ay RECHLER je[l,n] Ay in Add A.
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Ad (1). We have

(Add 1,4) ( [ Ay, L2, A2]> - ( A 144, 228, 1AA2J>

i€[1,m] j€[1,n] i€[1,m] je[l,n

i€[1,m] je[1,n]

_ ( 9 A, Ll Agj)

= 1AddA( H] Ay ——5 el

i€[1,m] je(1,

Ad (2). We have

(Add(GoF))< M A, Ll m A2]>
i€[1,m] je[1,n]

[((GoF)fijli,

ie[1,m] Je[1,n]

- ( (Go F)Ay, (GOF)Az,j>

[Ffi ]
= (AddG)( FA17Z—> . FAQJ)

i€[1,m] je[1,n]

= ((AddG)o(AddF))( A A 22 A23)

i€[1,m] j€[1,n]

Definition 103 (and Lemma). Suppose given F' 5 F in q4[A, B]. Let

(Add @) 4,m-@ma, = diag[aAi]ie[l,n]
for Ay ---HA, € ObAdd A, being a morphism from

i€[1,n] i€[1,n] i€[1,n] i€[1,n]

Let Adda := ((Add a)Al"'An)Al---AneObAddA'
This defines a transformation Add o : Add F = Add F.

Proof. Suppose given Ay, ER Ay in Add A.

i€[1,m] je[l,n]
We have
(Add @) 4, -4y, - (Add F) f = diag[aa, ,Jiepm) - [F fislis
= laa, - Ffijlis
Ffij-aa, ]]ZJ

=[
[Ffz ]]Z j dlag[aAz J]Je[l n]
(Add F) (Add a)AQ,l."'.AQ,n :

Thus, Add « is natural.
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Lemma 104. Suppose given additive functors F', Fy, Fy, Fy: A — B
The following assertions (1, 2, 3) hold.

(1) We have Add 1F = 1AddF .

(2) Suppose given transformations o, & : Fy = Fy. We have

Add(a + @) = Add o + Add 4.

(3) Suppose given transformations o : Fy = Fy and oy @ Fy = Fy. We have

Add(apa) = (Add o) (Add aq).

Proof. Suppose given A{H---H A,, € ObAdd A.
Ad (1). We compute

(Add 1p) a,m-@ma, = diag[(lF)Ai]ie[l-m]
diag[1pa, lief1,m)
lram-mFAn
L(Add F)(A\@-EF Am)
(1addF) 4, m-m4,,

Ad (2). We have

(Add(a + &@)) a4, = diag[(a + &)a, Jief1,m]
= diaglaa, + &a,lieq1,m]
= diag[a, |ieq1,m) + diag[aa, Jie[i,m]
= (Add @) a4,m-@m4,, + (Add &) 4,m.-m4,,

Ad (3). We have

(Add(apar)) a,m-ma,, = diag[(aoar)a ]ze [1,m]
= diag[(ao) 4, (1) 4, Jie1,m)
= dlag[<a0> ]le 1,m] dlag[( ) ]ze[l,m]
= (Add ap) 4,m-m4,, - (Add a1) a,m-m@A,,
((Add ap)(Add 1)) 4,m--mA,,

I

]

Lemma 105. Suppose given additive functors F,F : A — B and G,G : B — C. Suppose
given transformations o : F = F and  : G = G. Then we have Add(S * o) = (Add §) =
(Add «).

Proof. Suppose given A{H---H A,, € ObAdd A.
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We calculate

(Add(B * @) ;- @A, gl(B = a)Ai]ie[l,m]

glGaa, - Bia,liel1m)

= diag[Gaa,lic(1,m] - diag[ Bz 4, lic(1,m]

= (Add G)(Add @) a,m-@a,, - (Add ﬁ)(AddF)(A1~~~Am)

= ((Add B) = (Add a)) 4,m.-ma,, -

= dia
= dia

2.2.4 The realisation functor

In this §2.2.4 we introduce the realisation functor, mapping formal direct sums as constructed
in §2.2.1 to direct sums, provided the latter exist. In Definition 110, the realisation functor

is used for the construction of the induced functors and transformations.

For this §2.2.4, let A be an additive category.

Stipulation 106. We recall no. 16. Recall that we have chosen a zero object 04 in A.

Suppose given m € Zxq. Suppose given A; € Ob A for i € [1,m]. Recall that we have
chosen a direct sum

A. - m A e m
( @ A (g s (9 ])z’e[l,m]>
i€[1,m]

OfAl,...,Am in A.

Recall that we have chosen
( @D Ai, (T)ie (Li)z'e[1,1]> = (A1, (Lay)iery> (1, )iena])
1€[1,1]

and

< G—) Ay, (Wi)ieu,o] ) (Li)ie[1,0]> = (OA ) ()7 ()) .

i€[1,0]

Definition 107 (and Lemma). We have the additive functor

AddA B4 4

( Alzm’ AQ,j) — @ Alzm’ @ Ay .
ie[1,m] Jje[1,n] i€

ie[1,m] je[1,n]

We call R4 the realisation functor from Add A to A.

If unambiguous, we often write R := R4 .
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Proof. Suppose given

in Add.A. We have

R(fg) = R(Lfislis - 19klix)
Zf’bj.g]k

j€[1,n]

= Z fzgg]k

1
Jeltn] ik

= (fij)ig - (9jk)jx
= R([fijlij) - R([g5x]x)
= Rf - Rg.

Furthermore, we obtain
R(1a,m-ma,,) = R(diag[14,liej1,m)) = diag(1a,)icpim = lae @A, = 1r(A@-m@4,,) -
Thus, R is a functor.

f
Suppose given PR p—— Ay in Add A.
i€[1,m] f JjE[1,m]

We have
R(f+f)= R([fm‘ + Jé,j]@j) = (fij+ fig)ij = (fij)ij + (fij)ig = BRf + Rf.
Thus, R is additive.

Lemma 108. The following assertions (1, 2, 3) hold.

(1) The realisation functor R4 is full.
(2) The realisation functor Ry is faithful.

(3) The realisation functor Ry is surjective on objects. In particular, Ry is dense.

Thus, R4 is an equivalence.

Proof. Suppose given Ay H---H A, and Ay H---H Ay, in ObAdd A.
Ad (1). Suppose given (f;;)ij € AAi1 @ - DA m, As1 ®--- D As,,). We have

R([fijlij) = (fij)ij
Thus, R is full.
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Ad (2). Suppose given f,g € agaa(Ai1 B - -HAm, As1B---HAs,) with Rf = Rg.
We have (fi,j)i,j = Rf = Rg = (gi,j)i,j . We obtain f’i,j = Gij for (’l,j) € [l,m] X [1,7’1,]
Therefore, we have f = [fi;li; = [9i;]i; = g. Thus, R is faithful.

Ad (3). Suppose given A € Ob.A. We have [A] € Ob Add A; cf. Definition 88. We obtain
R[A] = A; cf. Stipulation 106. Thus, R is surjective on objects. O

Remark 109. We have Ryoly =14.
Proof. Suppose given A % B in A. We have

(RoI)(A% B) 2 R ([A] 1el, [B]) DT (A5 B) = 14(A 5 B).

2.2.5 Universal property
For this §2.2.5, let A be a preadditive category. Let B be an additive category.
Definition 110 (and Lemma). We have the functor

add[A, B] —  .aa[Add A, B]

(FS@Q) — ((RB o Add F) Fexddde (b oo Add G)).

For 5 G in ,q4[ A, B], we write I’ := Rgo Add F and o/ := Rp + Add a.
Suppose given F <> G in ,q4[A, B]. We have

AddA B
1,514, Ffij)isg
( Al,iL Az,j> — @ FAI,iL’ @ FAy; .
ie[1,m] Jjel1,n] i€[1,m] je[1,n]
Suppose given A1H ---H A, € ObAdd.A. We have
05241...,4,,1 = diag<aAi)ie[l,m] .
Proof. Since R and Add I are additive, cf. Definitions 107 and 100, F' = Rz o Add F' is
additive.
Suppose given F % G 5 Hin add[ A, BJ.
We have

&y meoma, = (Rp* Add o) a,m.ma,,
= RB (Add Oé)Al...Am
= Rp(diag[aa,]:)
= diag(aa,); -
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Thus, we have

(1) 4,m-ma,, = diag((1p)a,)i = diag(lpa,)i = lra,@-@ra, = Lr(A@-mAm) -

Furthermore, we have

(@) nema, = diag((@B)a),
diag(aa, - Ba,):
diag(a,); - diag(Ba, )i
= Aagegan  Pam-man

Thus, we have a functor indeed.

Furthermore, we have

F( B Ay L, AQ,j> =(RBoAddF)< @ A A2,j)
i€[1,m] j€[1,n] i€[1,m] 1,n]
:RB< FAlz LFfilis FA2J)
i€[1l,m j
( @ ray, s, gy FA2J>
i€[1,m] Jj€[1,n]

]

Lemma 111. Suppose given F € Ob ,q4[A, B]. The following assertions (1, 2, 3) hold.

(1) If F is full, so is F".
(2) If F is faithful, so is F".

(3) If F is dense, so is F'.

Proof. Ad (1). Since F is full, so is Add F’; c¢f. Lemma 101.(1). By Lemma 108.(1), Rz is
full. Thus, F' = Rgo Add F is full.

Ad (2). Since F is faithful, so is Add F'; ¢f. Lemma 101.(2). By Lemma 108.(2), Rp is
faithful. Thus, F” = Rg o Add F is faithful.

Ad (3). Since F' is dense, so is Add F’; cf. Lemma 101.(3). By Lemma 108.(3), Rp is
dense. Thus, F' = Rg o Add F is dense. m

Lemma 112. Suppose given F' = G in ,q4[A, B]. The following assertions (1, 2) hold.
(1) We have F' ol = F.
(2) We have o' * 4 = a.

Cf. Definition 96.
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Proof. Ad (1). Suppose given X % Y in A. We have

(Fol)(X 5&Y) = F(X][v)
i€[1,1] Jje[1,1]
W (PX S5 FY)
- F(X3Y).

Ad (2). Suppose given X € Ob.A. We have

/ !
(@ I4)x = Q7. x
o /
— Y
D110

= diag(ax)ier

5106
= ax .

]

Theorem 113. Recall that A is a preadditive category and that B is an additive category.
Recall that Add A is additive; cf. Proposition 92.

The following assertions (1, 2, 3) hold.

(1) We have I € aq4 A, Add A]; cf. Definition 96.

Suppose given F' > G in aq4|A,B]. We have F’ G ada[Add A, B] with
Flolg=F,Golys=G and o/ = [4 = «; cf. Definition 110 and Lemma 112.

Suppose given € adaaps(F',G") with 14 = o. Then we have B = o/,

A f4 Add A
G !
o F =
F
B

(2) Suppose given U,V € Ob ,qq[Add A, B] with U oIy =V ols. ThenU = V.
(3) We have the equivalence of categories
il A Bl <22 [Add A, B]
Uola 245 vor) « Wi,

that is surjective on objects.

If unambiguous, we often write ® := O 4 .
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Proof. Ad (1). Suppose given X; {H---H X,, € Ob Add A.

We show that o'y, mx,, = Bxi@m-mx.-
Let 5 := (Bxym-mx,, )i and oz;j = (@ mx,, )ig for i,7 € [1,m].
Suppose given e, f € [1,m]. We show that 5. ; = a ;.
We have
a/@f = (O/Xlu-xm)e,f = (diag(aXi)ie[l,m])e,f = ax,lcf -
We have F/(X,[@- - -BX,) = FX1®- - @F X, and G/(X,@- - EX,0) = CX10- - ®G X, .

Since [ is natural, the following diagram commutes.

r_ —
Qe,e=OXe _ﬁ[Xe]

F[X.] = FX, G'[X.] = GX.
(Oe,j)iern,1),5e[1,m] | =F'([0e,5)ief1,1],5e[1,m]) G'([0e,5)ier1,1),5e[1,m]) | =(0e,5)ie[1,1],5€[1,m]
Bx1@--BXm =(Bj,k) je[1,m],ke[1,m]

FX\®---®FX, GX|® - ®X,,

(Ok, £ ) kel1,m],le[1,1]

G'[Xy] = GX¢
Therefore, we obtain

Be,p = (0ej)ie111,je[1,m] - (Bjk)jertm]kefi,m] - (Ok,f)ke[1,m] ie[1,1]
= Oé;,e : (5e,j)z‘e[1,1],je[1,m] : (5j,f)je[1,m],le[1,1]

=l | D) bei- iy

jeltml ie[1,1],le[1,1]
= a;,@ ’ 5evf
= 0ax, 5e,f

Thus, g = /.

Ad (2). Suppose we have shown that (W o I,) =~ W for W € Ob ,qq[Add A, B]. Then we
have
U~ (UOIA)IZ (VOIA)/E V.

Therefore, it suffices to show that (W o I4) = W for W € Ob ,qq[Add A, B].
Suppose given W € Ob ,qq[Add A, B].

Suppose given A;H---HA,, € ObAdd A.

By Definition 110, we have

(Wold)(AH--BA,) =(Wolg)A)® @ (WolhAy) =W[A]® - @W[A,]
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By Remark 93 and additivity of W,
(W(Al T A ) (Wﬂ-z)ze 1 m ) (sz)ze 1 m])
is a direct sum of W[A,],...,W[A,,] in B.

With the notation of Remark 93, we have mutually inverse isomorphisms

(W?Ti)i=(W7T1 Wﬂ'm)

W(A B B A) WA @ @ W[An].

W
(WLi)z‘:< : )
Wim
Define

) (Aj)jel1,m] .
(O AL BAm) A4, cOb Add A = ((WLZ Ll kel ;
i€[Lm].ke[L1] ) A @ m@AmeOb Add A

cf. Remark 93.

Suppose given Ay H---H A, ——> Lfuiles Ay H -+ H Asy, in Add A.
We have

(A yxJxe|ll,m
Oapam@arn = Wo ) iepmiery = (W0kslier . erim) e mpiepg

and

(A2,2)ae n
5A2,1"'A2,n = (WLK‘ ’ . ])ke[lvn]’le[lvl] = <W[5k7j]i€[1’1]7je[l’n])ke[Ln],le[l,l] :

Furthermore, we have
D110
(Wola)[fisliy = (Wola)fij)ij=WI[fisDis
We show that the following quadrangle is commutative.

(Wfi,5)ie[1,m],jel1,n]

WAL ® - - @W[ALn] WAy ® - @ W[A2,]

(Alﬁx)zE[l,m] )

A
(Wi, w2 veltnly

ke[1,m],le[1,1] ( ke[1,n],le[1,1]

W([fi,j]ie[l,m],je[l,n])

WA B HALm) W(Ag - H Azp)

We have (A
(WL lzme[lm])ke[lm] le[1,1] ([f”] [1,m] Jeln])

(A x ze m
= (WL bedeelt 'W([fi,j]ie[l,m],je[l,n]))

A s T ze m
= ( (L( ! . fz ]]ze [1,m],j€[1, n]))

- ( 6k i pG [1,1],ie[1,m] [fi’j]ie[Lm]vje[l’n]))ke[l,m],le[l,l]

ke[1,m],le[1,1]

ke[1,m],le[1,1]

= W Z 5kz fz]

i€[1,m] ;
pelLiLielln] /) / ker1m] le[1,1]

= (W fkj pe[L,1],5¢[ 1"])ke[1 m],le[1,1]
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and "
(W[fz‘,j])iE[l,m],jE[l,n] ) (WLJ' Y ye[l’n])je[l,n],ze[l,u

B W Z [fz‘,j] . L§A2,y)ye[1,n]

Je[l,n] i€[1,m],le[1,1]

= | W 2 [fii] - [0 peri i) kefing

Je[ln] i€[1,m],le[1,1]
= W Z [fz ] J k‘]pe 1 1] ke[l Tl]

Je[1,n] ie[1,m],le[1,1]
= W Z fz J ] k

]E [1,n]

pe[L1LkelLn] /i1 m ief1,1]
= ( [fz ]pe 1,1],ke[1 n])ze[l,m],le[l,l] .
Thus, § is natural. Therefore, (W o I4)’ 2. W is an isotransformation.

In consequence, we have W =~ (W o 14)".

Ad (3). Suppose given F' € Ob ,qq[A, B]. Because (1) holds, we have F’ € ,qq[Add A, 5]
with ®F" = F' o [ 4 = F. Therefore, ® is surjective on objects.

Suppose given F, G € Ob ,q4.A, B]. Since (1) holds, we have a bijection

waaladd A8 (F, G = s (F,G), B — @B.

Suppose given U,V € Ob ,q4dAdd A, B] with ®U = V. Since (2) holds, we have U =~ V.
Therefore, ® is an equivalence by Lemma 6.

]

2.2.6 Additive envelope for preadditive categories over a com-
mutative ring

For this §2.2.6, let R be a commutative ring.

Definition 114 (and Lemma). Suppose given a preadditive category .A. We have the
ring morphism

EndlA QZJ_A) EndlAddA

a +— Adda.

Proof. Suppose given o, @ € End 1 4. For brevity, we write ¢ := 1 4.
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We have

~y L104.

(o + &)y = Add(a + &) “"2® Adda + Add & = ap + &

and
(a@)y = Add(aa) "' E® (Add ) (Add &) = (a)(aw).
Furthermore, we have
L104.(1 L102.(1
(Igna1,)¢ = (11,)v = Add 1, , 20 Taddiy, 20 Lipgaa = LEndigga 4 -
Thus, v is a ring morphism. O

Lemma 115. Suppose given a preadditive category (A, p4) over R. Then (Add A, 410 4)
1s an additive category over R; cf. Definition 114.

Proof. By Proposition 92, Add A is additive. By Definition 114, we have a ring morphism
paa: R — Endlygqa.

Thus, (Add A, p414) is an additive category over R. ]

Remark 116. Suppose given a preadditive category (A, p4) over R. Suppose given

fiilig
Al,l"'Al,mﬁ’AZl'”AZn

in Add A. Suppose given r € R. We have r - [fiili; = [r- fijlij-

Proof. For brevity, we write ¢ := ¢4 and ¥ := 1 4. We have

refiglig = (r(@¥) asm-manm - [fijlig
= (AdA(r)) a, @ @as [ figlig
= diag[(re)a,.li - [figlis
= [(re)ar,; - fijlig
=[r- fijli;-
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Lemma 117. Suppose given a preadditive category (A, p4) over R. The inclusion functor
I4: A— Add A is R-linear.

Proof. By Definition 96, I is additive.

Suppose given X L yin A Suppose given 7 € R. We have

o )=l 1= [l =71,
Thus, I is R-linear; cf. Definition 23.(3). O

Lemma 118. Suppose given preadditive categories (A, p4) and (B, pg) over R. Suppose
gwen F € Ob gyl A, B]. Then Add F € Ob py,[Add A, Add B.

Proof. By Definition 100, Add F' is additive.

Suppose given A; 1 H---H A, Lighis, Ay H---H Ay, in Add A. Suppose given r € R.

We have
(AAAF)(r - [fis)ig) "% (AAAF)[r- fiy)is
(7 fij)]i
R116 [r . Ffl7j]27]
= - [Ffigliy
= 7 (AddF)[fijli;-

Thus, Add F' is R-linear; cf. Definition 23.(3). O

Lemma 119. Suppose given an additive category (B, @) over R. The realisation functor
Rp : Add B — B is R-linear.

Proof. By Definition 107, Rp is additive.

Suppose given By H---H By, JEEIEN By1H---H By, in Add B. Suppose given r € R.

We have
R116 R24
R(r-[fijlig) = Rlr- fijlij = (- fij)iy = v (fij)ig =7 Rlfijlij -
Thus, R is R-linear; cf. Definition 23.(3). O

Lemma 120. Suppose given a preadditive category (A, p4) over R. Suppose given an
additive category (B, pp) over R. Suppose given an R-linear functor F : A — B. Then
F': Add A — B is R-linear.

Proof. By Lemma 115, (Add A, p 41 4) and (Add B, ¢pi5) are additive categories over R.
Recall that F’ = Rg o Add F'; cf. Definition 110.

Since F' is R-linear, so is Add F; cf. Lemma 118. Furthermore, Rz is R-linear; cf.
Lemma 119. Thus, F’' = Rz o Add F' is R-linear. m
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Proposition 121. Suppose given a preadditive category (A, ¢4) over R. Suppose given
an additive category (B, ¢p) over R. Recall that (Add.A, ¢ 410 4) is an additive category

over R; cf. Lemma 115.

The following assertions (1, 2, 3) hold.

(1) We have I4 € Ob griy[A, Add A]; cf. Lemma 117,

Suppose given F % G in puu[A,B]. We have F' < G in rin[Add A, B] with
Froly=F,Goly =G and o = I, = «; cf. Definition 110 and Lemmas 112
and 120.

Suppose given € . iadaas(£’,G') with B+ 14 = . Then we have = o

A 4 Add A
G !
o = e
F
B

(2) Suppose given U,V € Ob gin|Add A, B] with U olg=V ol ThenU = V.
(3) We have the equivalence of categories
il A Bl <2 p[Add A, B]
Uolya 25 voly) «  (USV),

that is surjective on objects.

If unambiguous, we often write ® := P 4 .

Proof. Ad (1). This follows from Theorem 113.(1).
Ad (2). This follows from Theorem 113.(2).

Ad (3). Suppose given F' € Ob gyn[A, B]. Because (1) holds, we have F’ € gj,[Add A, B]
and ®F’' = F' o J4 = F. Therefore, ® is surjective on objects.

Suppose given F,G € Ob giin[A, B]. Since (1) holds, we have the bijection

ranfadd AB(F, G') — L pas(F,G), B — ®p.

Suppose given U,V € Ob gy,[Kar A, B] with ®U = ®V. Since (2) holds, we have U ~ V.

Therefore, ® is an equivalence by Lemma 6. O
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Chapter 3

The tensor product

3.1 The tensor product of preadditive categories over
a commutative ring

For this §3.1, let R be a commutative ring.

We often write ® instead of ®; cf. §1.3.
R

3.1.1 Definition

For this §3.1.1, let (A, ¢) and (B, ) be preadditive categories over R.

Definition 122 (and Lemma). Let A; € Ob.A and B; € Ob B for i € [1, 3].

There exists a unique R-bilinear map

(A(Ah Aj) (}? B(Bi, B2)> X (A(A% As3) % B(Ba, Bg)) e Ay BB By AlAq, AS)%B(BM Bj)

with
((1/ ® b,, a" ® b”)"{'Al,AQ,A37B1,BQ,B3 _ (a/a//) ® (b/b”)
for o' € A(Al, Ag), a” € A(A27 A3)7 b e B(Blu B2)7 b’ e B(BQ, Bg)

Proof. Define
AAL, As) % (B, Bs) x A(As, A3) % 5(Ba, Bs) > A(A1, As) ® 5(B1, Bs)
(a/7 b,, Cl”, b”) — (a/a//) ® (b/b”).

We show that A is R-multilinear.

Pars pro toto, consider the first component. Suppose given a},al, € 4 Ay, Az). Suppose
given 1,79 € R. Suppose given b’ € g(By, Bs), a" € 4 Ay, A3) and b” € g(Bs, Bs).
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We have

(riay + raay, b’ a” ")\ = ((r1a) + rea5)a”) @ (b'b")
/) (b/bll)
)

= (riaya"” + rqahad’
— () ® W) + ral(asa”) © (48)

=r1((a},a”, V', 0")N) + ra((ahy, a”, b, 0" )N).

Define p11 = f,04;,45), 5(B1,Bz2), A(A2,A3), 5(B2,B3); ¢f. Definition 13. By Lemma 16, we obtain
a unique R-linear map

A A(A1, A3) ® p(Bi, B2) ® A(As, A3) ® g(Ba, Bs) — A(A1, As) ® s(B1, Bs)

with ,u15\ =\

Define 12 1= fi,(A,,42)® 5(B1,Bz), A(A2,A3)® 5(Bs,Bs): cf. Definition 13.
By Lemma 19, there exists a unique R-linear isomorphism

(A1, A2) ® 5(B1, B))®( A Az, A3) ® 5(Ba, By)) 5 A(A1, As)® 5(By, Ba)® A(As, A3)® 5( Bz, Bs)
with
((CL/ ® b/) ® (al/ ® b//))é« — a/ ® b/ ®a// ® b”,
for o' € A(Al,Ag), b e B(Bly Bg), a” € _A(AQ, Ag), b’ e B(BQ, B3)
Define K := K4, 4,,A3,B1,B2,B5 := ugfj\. We have
(a ®b/ a”®b”)f€ — (a ®b/ CL”@b”)ugf)\

= ((d' @) ® (a" ®V"))EX

(a ® b/ ®CL” ® b”>)\

( ! //) (b/b//)

for o' € A(AL Ag), b e B(B17 Bg), a” € A(AQ, Ag), b e B(BQ, Bg)
Since 15 is R-bilinear and &, X are R-linear, x is R-bilinear; cf. Lemma 12.

Suppose given an R-bilinear map
Ko (A(A1, Ag) ® B(Bi, Bs)) x (A A2, A3) ® p(Bs, Bs)) — A(A1, As) ® (B, Bs)

with
(a/ ® b/, CL” ® b”)/i/ _ ( / //) ® (b/b//) (a/ ® b/, CL” ® b”)lf
for o' € A(A17A2>, a’ e A(AQ, Ag), Ve B(Blu BQ), b e B(BQ, Bg)

Suppose given

Z a; @, Z ai ®@b; | € (A1, A2) ® 5(B1, Ba)) x ( A Az, A3) ® 5(Ba, Bs)) -

i€[1,m] j€[1,n]
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We have

Y ey, X ae - Y @oy o e
iE[l,m] je[l,n] (i,j)e[l,m]x[Ln]

hd

(@, @b, ! ®V))r

(i,5)e[1,m]x[1,n]

= Z a; b, Z a; @b |k

i€[1,m] j€[1,n]
Thus, we have k' = k.
Definition 123 (and Lemma). We shall define a category A X B as follows.
R

Let
ObAX B :=0ObA x ObB.
R

We write AX] B := (A, B) for (A, B) € Ob AKX B.
R
For A, X B; and A, [X] By in Ob A X B, we define
R

B(Al By, As[X] By) := (A1, As) C}? B8(B1, Bo).

Since this is an R-module, it is in particular an abelian group.

For A; X1 By, Ay [X] By and A3 [X] B3 in ObAB,

(e AB(Al B1, Ay X By) and ne AB(AQ By, A3 X1 Bs),
we define composition by
Cn = (C, M)k Ay s, A5,B1,B5,B5 € B(Al By, A3[X] By);
cf. Definition 122. Recall that in particular
(' @) (a" ® 1) = (aa’) ® ()

for o' € A(Al,AQ), Ve B(BI,BQ), = _A(AQ,Ag), b e B(BQ,B3).
For AXI Be Ob AX B, we define 1z =14 ® 15.
R

We call AX] B the tensor product over R of A and B.
R
If unambiguous, we often write AX B := AKX B.
R

This defines a preadditive category AX B.
R

Proof. First we show that A[X B is a category.
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Suppose given

= n=_ ¥ ai@ b= 3 ey

ie[1,m/] je[1,m’] ke[1,m"]
A1 X By Ay X By A3 [X] Bg Ay X By

in AX B.
For brevity, we write K, := Ka, 4, A,,B:,B;,B, ; ¢f. Definition 122.
We have 14,m8, = 14, ® 1p, € 4(As, A2) ® p(Ba, By) = axp(A2 X By, Ay [X] Bs).

Furthermore, we have

(n=((;nki23€ AA1,A3) ® g(B1, Bs) = amp(A1 X By, A3 [X] Bs) .

We calculate

¢ lamp, = Z a; @b, 14, ®1p, |K122
i€[1,m/]

= Z (a; ®b; , 14, ®1p,) K122
i€[1,m/]

= Z (a;1A2> ® (b;132)
i€[1,m/]

= Z a; ® b
i€[1,m/]

=(

and

1A232 n=|14®lp,, Z a;/ ® b;l K223

jelt,m”]
= Z (14, ® 15, ,0] @) K223
JjelLm”]
= Z (1142@;{) ® (1B2b;{)
Jjeltm”]
- Y eV
Jjeltm”]
= ”7 .
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Moreover, we have

(Cn)o = ((C: n)k1,23 9) K1,34

! / " /!
= Z a; b;, Z a; ®bj K1.2,3,0 |k134

i€[1,m’] je[1,m’]

= Z (‘1 ® b; ) a;’ X b”)/‘fl,z,s 0 |ri34

(i.7)e[1,m/]x[1,m"]

_ Z ( ! //) ® (b/b//) Z a ® b/// K134

(3,5)e[1,m/ ] x[1,m"] ke[1,m"]

_ ((a/a”) ® (b/b//) ’aZ/ ® b;;/) K134
(3,5,k)e[1,m/] x[1,m" ] x [1,m"]
_ Z ((a;a//) ///) ® ((b/b”)b”/)
= > (ai(ajay)) ® (b;(b7by))

_ (CL ® b; ’ ( // ///) ® (b”b/”)) /4«:17274

= >, a®b, > (ajay) @ (b7by) 1,24

ie[1,m’] (. k)e[1,m"] x [L,m™]

" /! " "
= |G Z (af @b}, ay @by )kaza |Fi24

(J,k)e[1,m"] x[1,m"]

" /! /// /1
= |, Z a; ®b;, Z a, @by, |K234 |K1,24

je[Lm”] ke[1,m"]

= (¢, (n, )@34)/43124

= ((nd).

Now we show that A [X] B is preadditive.

Suppose given
m
AIBI—<>A2B2TA3B3—9>A4B4

in AX B.
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We have

(C,m + m2)R123,0)k134

(C;m)r123 + (¢, m2)k1,23,0)k1,34
(C;m)k123,0)k134 + (((,m2)k123,0)K134
MmO + (na0 .

Clm +n2)0

(
(
(
¢

Lemma 124. We have the ring morphism

R End 1gs
R
roo— (T(ww)AB)ABeobAB r= ((TSO)A®1B)ABeObAB

= (1u® (T@D)B)ABeObAB-

Thus, (AXI B, p X)) is a preadditive category over R.
R

Proof. Suppose given r € R. Suppose given AX] B € Ob A B. We have

(re)a®1p = ((rea)la) ®1p
=(r-14)®1p
=r-(la®1p)
=14® (r-1p)
=14®((r¢)plp)
=14® (1Y)
€ AA,A)® 5(B,B) = amp(AX B, AKX B).

We show that r(¢ X)) is natural.
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C_ Z ai®bi
Ay X By in AX] B. We have

Suppose given A; x] B;

(T(pr))z‘hBl ’ C = ((Tg& Aq X 1Bl ( Z a; ®b)

i€[1,m]

= Z ((re)a, ® 1p,)(a; ®b;)

i€[1,m]

= 2 ((rp)a,a) © (1p,by)
i€[1,m]

= Z (ai(T@)A2)®(bilB2)
i€[1,m]

= Y @ ®b)(rp)a ® 15,)
i€[1,m]

= ( Z %@b) (r0)a, ® 1p,)

i€[1,m]

= (- (r(pXv)) ayms, -
Thus, 7(¢ X1%) is natural. Therefore, ¢ X1 is a welldefined map.
Now we show that ¢ [X]¢ is a ring morphism.
We have
(1r(pBY))amp = (1rp)a ® 15
=14®1p
= lamp ,
for AKX B € Ob AX] B. Thus, we have 1z(¢ X %) = lgnd 1 4 -
We have
(r+ )P E V) ams = (7 +5)9)a ® 1
= ((re)a+ (s¢)a) ® 15
= (ro)a®lp + (s0)a®1p
= (r(e X)) ame + (s(9 K ¥)) amb ,
for AX] Be Ob AX B. Thus, (1 + s)(¢X¢) = r(p K Y) + s(e X ).
We have

((rs)(e X)) ams = ((rs)p)a®1p

= ((re)a(sp)a) ® (1plp)
= (rp)a®lp - (sp)a®1p
= (

)A
©)a
(g X ¢))AIB (s(e X)) ams »

for AX B € Ob AKX B. Thus, (rs)(¢ X ¥) = r(pE ) - s(p K 1p).
Therefore, ¢ Xl is a ring morphism.



3.1.2 Universal property

For this §3.1.2, let (A, ¢) and (B, 1) be preadditive categories over R.

Definition 125 (and Lemma). We have the R-bilinear functor

Ax B Mas, AB

fab)

(A1, B) 22 (A3, By))  — (A RB; 22 4,1 By).

If unambiguous, we often write M 1= My 5.

ab) (ab

Proof. Suppose given (Aq, By) ——> (Ag, By) —— (A3, Bs) in A x B. We have

M((@/)b/)(a[ﬂ, b”)) — M( ! n b/b//)
— (a/a//) ® (b/b//>
_ (a/®b/)(a/l®b//>
— M(d, V) M(d", V") .

Furthermore, we have

Mlapy = M(1a4,1p) =14 ® 15 = lags = Ly, -

Thus, M is a functor.

!

Suppose given A; ——= A, in A Suppose given B 2 B, in B. Suppose given 1, 1" € R.
We have
M(r'a" +r"ad" b) = (r'd +r"d")®b

=7r'(d’ ®b) + r"(a" ®D)
=r'M(d',b) + r"M(a",b).

a . . b/ . .
Suppose given A; — Ay in A. Suppose given B; —= By in A. Suppose given r', 1" € R.
b//

M(a, b +7"V") = a® (r't + r"b")
=7"(a®V) + r"(a®b")
=r'M(a, V') +r"M(a,b").
Thus, M is R-bilinear; cf. Definition 27. O]

Remark 126. The functor M p5: Ax B — AKX l B is bijective on objects. In particular,
M 4 5 is dense.

Definition 127 (and Lemma). Let (C,w) be an R-linear preadditive category.
Let F: A x B — C be an R-bilinear functor.

The following assertions (1, 2, 3) hold.
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(1) We have the R-linear functor

e

A

=(X]

B
> ai®b; > F(a,by)
i€[l,m i€[l,m
<A1 By = Ay BQ) — <F<A1, By) - F(A,, B2)> :

(2) We have FoMyp=F.

(3) Suppose given an R-linear functor A[X] B LR C with F o Map = F. Then F=F.
R

Proof. Ad (1). Suppose given A;[x] B; and A3 X By in Ob AX|B. Since F is an R-bilinear
functor, we have the R-bilinear map

axs(A1, B, (As, By)) = a(Ar, As) x 5(By, By) —C2200259, (g4 By) (A, By))
(a,b) — F(a,b).
By Lemma 16, we obtain a unique R-linear map
Fla,,B1),(42,B5) © A A1, A2) ® 5(B1, By) = dF(A1, By), F(As, B))
With [0 (4,.42), 5(81.82) Flas Bu).(42.82) = Fla1,8)), (42,8, 1€
(a®b)Fla,,51).(40,B2) = (@, 0) Fay 1), (0,8) = F(a,b)

for a € .A(A17 AQ) and b € B(B17 BQ)
For C = Z a; ® bl S AB(AI Bl ,AQ BQ) we have

i€[1,m]

CF(AhBl)’(A2,B2) = Z F(ai ) bi) .

i€[1,m]

Thus, F is welldefined on morphisms.
Now we show that F is a functor.

Suppose given

(= % ey n= % e

ie[1,m/] je[1,m’]
A X By Ay X By

A3 [X] Bs
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in AX B. We calculate

F(¢n)=F Y (e @)
(i,7)e[1,m']x[1,m"]

= ), Flad. b))
(.7)e[Lm'] > [Lm"]

= > F(a;,b;) - F(aj, bj)

(i,7)€[1,m/]x[1,m"]

Z F(a;,b) |- Z F(a},b})

ie[1,m/] je[1,m"]

Furthermore, we have
F1A131 = F(lAl ® 131) = F(1A1 ) 131) = Fl(Al ,B1) — 1F(A1 ,B1) — 1F(A131) .

Thus, F is a functor.

Now we show that F is R-linear.

¢
Suppose given A; [X] By :1: Ay X1 By in A[X]B. Suppose given rq,ry € R. We have

2

F(ri¢i 4 r2Ga) = (11 + r2G) Fay py) (As.5)

=T (<<1> (A1,B1),(A2,B2) ) + 72 ((CQ) (A1,B1), A2,B’2))
=T1'F§1 + TQ'FCQ.

Thus, F is R-linear by Remark 25.
Ad (2). Suppose given (A, Bl) (A2 ,Bs) in A x B. We have

(Fo M) <(A1 ,By) Y, (AQ,BZ)) <A1 = B, AQBZ)

3
= (F(A, By) 2% F(4; By))
=F

(4, B1) 2% (4, By)).
Ad (3). Suppose given AX] B € Ob A B. We have

F(ARB) = (FoM)(A,B) = F(A,B) = F(AX B) .
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¢= > a;®b;
i€[1,m]

Ay X By in AX] B. We obtain

Suppose given A; x] B;

F¢ = Z ﬁ(ai®bi)

i€[1,m]

= Z F(az,bl)

i€[1,m]
= Z F(%’@bi)
i€[1,m]
=F(.
Thus, we have F = F. O

Lemma 128. Suppose given an R-linear preadditive category (C,w). Suppose given an
R-bilinear functor F : A x B — C. The following assertions (1, 2) hold.

(1) Suppose F to be full. Then F is full.

(2) Suppose F to be dense. Then F is dense.

Proof. Ad (1). Suppose given A; x| B; and Ay X] By in Ob AX 5.
Suppose given p e o(F(A) K By), F(As K By)) " 2® o(F(Ay, B), F(Ay, By)).
Since F'is full, there exists (a,b) € ax5((A1,B1), (A2, Bs)) with F(a,b) = p.

We have a ® b e ags(A1E Br, As® By) and Fla®b) "2 F(a,b) = p.
Thus, F is full.

Ad (2). Suppose given C' € ObC. Since F' is dense, there exists (A, B) € Ob.A x B with
F(A,B) = C. We have F(AX B) Pz @) F(A,B) = C. Thus, F is dense. O

Definition 129 (and Lemma). Let (C,w) be an R-linear preadditive category.
Suppose given F' <> G in gpy[A x B,C]. Define @ := (Oé(A,B))ABeobAB )

The following assertions (1, 2, 3) hold.
(1) We have F = G in R_hn[AB, C].
(2) We have @+ My = «.

(3) Suppose given F % G in pim[AX B, C] with & Map=a. Then & = @.
R

Proof. Ad (1). We have
(F(A, B) 242, (4, B)) - (F(A B) GAR B))

for AXIBe Ob AX B,

It remains to show that @ is natural.
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(= 2 ai®b

i€[1,m]

Suppose given A; x] B; Ay X] By in AXIB. We have

amn - GC = agay ) - 2 G(a; ®b;)

i€[1,m]
= Z (A ,B1)G(ai ,bi)
i€[1,m]
= Z Fla;, bi)a(A2 ,B2)
i€[1,m]

= Z F(az ® bz) * QA ,Bo)

i€[1,m]

= F( - Qama, -
Ad (2). Suppose given (A, B) € Ob.A x B. We have
(@* M)ap) = Qma,B) = QagB = Q(AB) -
Ad (3). Suppose given Ax] B € Ob A B. We have

amp = On(ap) = (0 M)ap) = qa,B) = CaxB -
O
Theorem 130. Recall that (A, ¢) and (B,1)) are preadditive categories over R. Recall
that (.A B, X)) is a preadditive category over R; cf. Definition 123 and Lemma 124.
Suppose given an R-linear preadditive category (C,w).

The following assertions (1, 2) hold.

(1) We have M 45 € Ob gl A x B, AX B]; cf. Definition 125.
R

Suppose given F = G in rpaA x B,C].
There exist unique R-linear functors F,G : AKB — C with F o Map = F and
G o My = G; cf. Definition 127.

=[X]

There exists a unique transformation F 2 G with @ Mg = a; ct. Definition 129.

Ax B
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(2) We have the isomorphism of categories

q’ﬁ,B,C
bl A x B,C] «——— R—lin[-A B,C]

B*Ma, 5

UoMags VioMyg i vav
( ) (v )

with tnverse

roillA x B,C] — R—lin[A B,C]

(F5G) — (F5G)

If unambiguous, we often write W := W pe = Wi ;..

Proof. Ad (1). This follows from Definition 127 and Definition 129.
Ad (2). This follows from (1). O

3.1.3 Functoriality

In this §3.1.3, we define the tensor product for R-linear functors between preadditive cate-
gories over R and for transformations between them. Furthermore, we establish functoriality
properties of the tensor product, which could be expressed by saying that it is turned into

a 2-bifunctor.

For this §3137 let (A> 90«4)7 (Ba 903)7 (Ca SOC)a (Da SOD)a (87 905> and (‘F7 90.7:) be preadditive
categories over R.

Definition 131 (and Lemma). Let F': A — C and G : B — D be R-linear functors. We
have the R-linear functor

AX B CXD
R R

Zie[l,n] a;®b; ie[1,n] (FCLJ@(GZ)Z

<A1 Bl A2 Bg) [ (FAl GBl Z ) FAQ GBQ) .

So, we have
(FXIG)AXIB) = FAX FG

for AXI B € Ob(AB).

Furthermore, we have
(FRG) | >, ai®bi | = > (Fa;)® (Gby)

for Xiepn @i @b; € Mor(A B).
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Proof. Suppose given A; [x] By and As [X] By in Ob A X B.

Since F' and GG are R-linear functors, we have

(Fay,A5,GB;,By)

(A(A1,A42), p(B1,B2))

C(FAl ,FAQ) X D(GBl GBQ)

in (R-Mod)*2.
By Definitions 20 and 123, we have

Fa,,4,®GBy B,
e Sl it St

AxB(A1 X By, Ay X By)
> ai®b; — > (Fa) ®(Gb)

i€[1,n] i€[1,n]

cp FAIRIGBy, FA; [ GBy)

in R-Mod.
Thus, F' [X] G is welldefined on morphisms.
Now we show that F'[X] G is a functor.

=y 1, A n=; 1,k aj @b .
2 el T Ay K By — < I, AL ) By in AXIB. We have

Suppose given A;[X] B,

(FRG)(Cn) = (FRG) Y, (dd) b))

(4,9)e[1,m] x[1,k]

- > F(aia)) @ G(;b))

= ) (Fa)(Fd) ® (GH)(GY))
(3,5)€[1,m] x[1,k]

D (Fa) @ (GY) - ) (Fa)) ® (GY))
i€[1,m] je[1,k]

(FXRG)C- (FXG)n.

Suppose given AX] B € Ob AX B. We have

(FXIG)lame = (FRIG)(14®1p)
=F1,®Glg
=1ra®lgn
= lragcs

= 1(r=ec)(4=B) -

Thus, F' [X] G is indeed a functor.

Since (F' X G)a,mB,.4.58, = Fa,.a, ® Gp, B, is R-linear for A; X B; and Ay X] By in
Ob A X B, we conclude that F'[x] G is R-linear. m
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Lemma 132. Suppose given R-linear functors A e eandBE DL F The
following assertions (1, 2) hold.

(1) We have 14X 15 = 14x5 -
(2) We have (HXII)o (FXIG) =(Ho F)X (I oQ).
Proof. Ad (1). Suppose given A[X] B € Ob(AX B). We have
(14X 1)(AKI B) = 14AK 1gB = AKX B = 1 sx5(AX B).
Suppose given A; X By and Ay X By in Ob(A X B). We have

(1A 1B)A131 , AoX1Bo )Al Az ® (13)31 B2

A(A1, A2) ® ]‘B(Bl Bs)

AxB(A1XB1 , A2X1B2)

(1
1
= 1 A(A1,A2)® 5(B1,B2)
1
(1AIB)A1.31 AsXIBs -

Ad (2). Suppose given AX] B € Ob(AX B). We have

(HXI)o (FNG))(AXIB) = (HXI)(FAX GB)
(HoF)A)®((I0G)B)
—(HoF)® (IoG))(AR B).

Suppose given A; [X] By and A; [X] By in Ob(A[X B). We have

((H I) © (F G))AlBl , AoXIB2
= (FG)A1317A2BZ (H-[)(FAl X(GB1), (FA2)X(GB2)
= (Fa,,4,®Gp, B)(Hra, ra, ®Iap, cB,)

(Fa, 4,  Hra, ra,) ®(Gp, B, - IaB, cB,)
= (HoF)a 4,®{[oG)g g,
(H o F)X (I oG))ams,, AxmB;
O
Definition 133 (and Lemma). Let F,F' : A — C and G,G’ : B — D be R-linear
functors. Let F = F’ and G 2 ¢ be transformations.

We have the transformation
FRGZE Frra

with
(aXB)amp = 0a® Bp € CD((FG)(AB>7 (F'XG")(AX B))

for AKIB e Ob A[X B.
R
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Proof. Suppose given AxX] B € Ob(AX B). We have

FASS A and GB 25 G'B

Since we have (F[XIG)(AXIB) = FAXIGB and (F'XIG")(AXI B) = F'AXIG' B, we obtain

(FRG)(AX B) 22%%, (FF®G') (AR B).

We have to show that «/[x] § is natural.

C=Zz’e[1,n] ai®b;
_ >

Suppose given A X By Ay X] By in AX] B. We have

i€[1,n]

(FRG)C - (X B) amp, = ( >, (Fa)® (sz’)) (aa, ® Bp,)

= Y (Fai-a,) ® (Gb- )

i€[1,n]

- Z (aq, - F'a;) ® (B, - G'b;)

i€[1,n]

= (az‘h ®631) ( Z (F/&i) ® (G/bl)>

1€[1,n]

= (a /B)AIBI ’ (F/ G/)C
]
Lemma 134. Let F, F', F" : A — C and G, G’ G": B D be R-linear functors. Suppose

given transformations F = F' = P and G2 a2 o,

The following assertions (1, 2) hold.

(1) We have 1p X 1¢ = lpge -

(2) We have (a X B)(o' & 3') = (aa’) & (BS").
Proof. Ad (1). Suppose given AX B € Ob(AX B). We have

(1rX¥1lg)ams = (1r)a® (1g)p = 1rpa ® lap = lraxes = Lrme)(4amB) = (1rxa) AxB -
Ad (2). Suppose given AX] B € Ob(AX B). We have

(e B)(a'® ) amp = (X B) azp - (& K B') 4z
= (a4 ® BB) () ® Bp)

= (aaaly) ® (BpPp)

= (ad)a® (B4

= (

(/) B (B5)) A -
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Lemma 135. Suppose given R-linear functors F, F' : A — C and G,G" : B — D. Suppose

given isotransformations F = F' and G=E>G' . Then (FXG) (F'XI1G") is an

—~1xgg—1
isotransformation with inverse (F' X G") (FXG) .

Proof. We have

L134.(2) L134.(1)

(@R B) (e '=A7) (RPN =1rKle = lrmkc

and

L134.(1)

L134.(2) , _ _
2@ ()R (B7'8) =1lpRle =" lpge.

(@' =B (aXp)
]

Lemma 136. Suppose given R-linear equivalences F : A — C and G : B — D. Then
FXIG: AXIB — CXID is an R-linear equivalence.
R R

Proof. By Definition 131, it suffices to show that F'[x] G is an equivalence.

Since F' : A — C is an equivalence, there exists F’ : C — A and isotransformations
(FloF)=2>14 and (FoF')==1¢ .

Since GG : B — D is an equivalence, there exists G' : D — B and isotransformations
(G'oG)=L>15 and (GoG')==1p .

By Corollary 31, F’ and G’ are R-linear.

By Lemma 135, we have isotransformations

(FRG)o(FRG) "2 (Fom®(G o6) 222 1,115 "2 Ligs
and
(F G) o (F/ G/) L13i.(2) (F 5 F/) (G o G/) 1o 1p L13i.(1) Lesp -
Thus, F'[X] G is an equivalence. O

Lemma 137. Suppose given
AECe wd B0 F
F' H' G r

with R-linear functors F, F' G, G',H,H',I and I'.

We have
(vxa) K (6 ) = (v 9) = (< B).
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Proof. Suppose given AX B € Ob AKX B.
R

We have

((y*a)X (0= ﬁ))AB

(v*a)a® (6= B)p
(ypa-H'aa) ® (0gp - 1I'6B)
(YPa®dgp) - (Haa®1'Bp)

(Y%0) pawan - (H' B 1) (4 ® Bp)

(7 50) (rmeyams) - (H' R (aX 3) axs

(VX16) = (aﬁ))AB :
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3.2 The tensor product of additive categories over a
commutative ring

For this §3.2, let R be a commutative ring. Furthermore, let (A, 4) and (B, pp) be
additive categories over R.

3.2.1 Definition

Definition 138 (and Lemma). We call

A%&h:&ﬁ(AEB)

the additive tensor product over R of A and B.

add add
If unambiguous, we often write A X B := A [x] B.
R

add

This defines an additive category (.A B, ((pAch)wAB) over R; cf. Lemmas 124
R R

and 115.

Proof. By Lemma 124, (AX B, p4 X ¢g) is a preadditive category over R. By Propo-
sition 92, Add(A X B) is additive. By Lemma 115, (Add(AX B), (¢4 X ¢5)txs) is a
preadditive category over R. [
3.2.2 Universal property

Definition 139 (and Lemma). Define

dd . .
M = [AB oMup;

cf. Definitions 96 and 125.

If unambiguous, we often write M := M3Ig.

add
We have the R-bilinear functor deg AxB—> AKX B.
’ R

Proof. By Definition 125, M = M 4 5 is R-bilinear. By Lemma 117, I = I 4z is R-linear.
Thus, M4 = J o M is R-bilinear; cf. Remark 29. O

Definition 140 (and Lemma). We have the functor
F,}Z,B,C add
roi A x B,Cl —  pu[AX B,C]
(F%G) o (ﬁiﬁy
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cf. Definitions 110, 127 and 129.
If unambiguous, we often write I' := Ty e := I'% 5.

Suppose given F > G in gy A x B,C]. Suppose given

[ > fk,i,j@gk,i,j]

ke[l,miyj]

A X By e Ay ;X1 By

ie[1,m] Je[1,n]

add
m A X B. We have

L [12 ]fk,i,j@gk,i,j
— ElL,my 4 L
F A X By = Ay i X By

i€[1,m] j€[1,n]

(k [12 ]F(fk-,i,j 791@,1',]'))
e[1,m; ; i
=| @ F(Ai;.Bi,) > @ F(Asy, Bay) |

i€[1,m] Jje[l,n]

add
Suppose given A; X B; € Ob(A [x] B). We have
R

i€[1,m]

@ (4,38 B(AnEB.) = diag(aa, B,))ie[1,m] -

Proof. By Definition 127.(1), F is R-linear. By Lemma 120, F is R-linear. Therefore,
we obtain a welldefined map on objects.

Consider the functor ‘IJ;t,lB,c; cf. Theorem 130. Consider the restriction of the functor
from Definition 110; cf. Lemma 120. Then I is the composition of these functors.

We have

[ > fk,i,j@gk,i,j]

ke[lnni’j]

F A X By m’ Ay ;X1 By

ie[1,m] 7€lln]
(F(}C [12. .]fk,i,j®gk,i7j))
P @ F(ALR B : @ F(Ay; 8 Byy)
ie[1,m] jeltn]
(k [12. V]F(fk,i,j ,gk,m‘))
D127.(1) @ F(Ai;,Bi,) - 5 @ F(Asy, Bay) |
1€[1,m] seltn]
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Furthermore, we have

_, D]._O d. — .

@ (AEB)E - E(AmEB,) = iag(@a,mB; )i
D129.(1) ..

= dlag(a(Ai ,Bi)>i .

[

[\

O

Lemma 141. Suppose given F € Ob pypu[A x B,C]. The following assertions (1, 2) hold.
(1) If F is full, so is F.
(2) If F is dense, so is F .

Proof. Ad (1). This follows from Lemma 128.(1) and Lemma 111.(1).
Ad (2). This follows from Lemma 128.(2) and Lemma 111.(3). O

Lemma 142. Suppose given F = G in gy A x B,C]. The following assertions (1, 2)
hold.

(1) We have F/oMj{?g =F.

(2) We have @ + M35 = a.

Proof. Recall that M®4 = [ 405 0 M 4 55 cf. Definition 139.
Ad (1). We have

F'o M9 = (F/ o Iazp) o Mas HMEZO F My PIEe
Ad (2). We have
@ M = (@ L)« Map = @ Mas = a

O

Theorem 143. Recall that (A, ¢4) and (B, pp) are additive categories over R. Recall
add

that (A X B, (v X ¢5)Yaxgs) is an additive category over R; cf. Definition 138.
R R

Suppose given an additive category (C,pc) over R.
The following assertions (1, 2, 3) hold.

(1) We have M5 € Ob gualA x B,C]; ¢f. Definition 139.

) = add

Suppose given F = G in g A x B,C]. We have F5G in Riin[A X B, C| with
R

F’oMjﬁlg = I, a/oMj‘}g = G and @ = M3'§ = a; cf. Definition 140 and Lemma 142.
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Suppose given [ € [AadB,C](F/7E/) with 3 = Mj‘fg = «. Then we have 8 = «.

M3 add

A x B ’ AB

=/

7 éé/

add
(2) Suppose given U,V € Ob gy[A X1 B,C] with U o Mj‘fg =Vo j(}g,. Then U = V.

(3) We have the equivalence of categories

Qf .. add
rbilA x B,C] «——— pulAX B,C|

ﬂ*Madd

L o)) o« U,

(U o Mxg)

that is surjective on objects.

If unambiguous, we often write 0 := Qape = QU 5.

Proof. Ad (1). This follows from (3).
Ad (2). This follows from (3).

Ad (3). We have equivalences of categories

add
rain[A X B,C| rain[AX B, C] SELIN rbit| A x B, Cl;
cf. Proposition 121.(3) and Theorem 130.(2).

add
Suppose given U 2 Vin Rrin[A X B,C].

To visualize the situation, we give the following diagram.

s,
M.A,B I.AB add
AxB AX B = A X1 B

UOI.AB

UO(IABOMAJ;)
=UoM3ld
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We have

(Vasco Paxse) (U LS V) =Vanc <(U o I ap) (Vo IB))
_ <((U o Ligs) © M) ((V o Lugs) o MAB))
_ <(U o (Luggs © Mu ) (V o (Lugs o MA,B)))
- (wonsh 2 (v o nry)
— Quse (USV)

Thus, we have the equivalence of categories Q2 = Q4p¢c = VY apc o Paxse-

Now ® = & sz is surjective on objects; cf. Proposition 121.(3). Moreover, ¥ = W 4 ¢
is bijective on objects; cf. Theorem 130.(2). Thus, 2 = ¥ o ® is surjective on objects. [
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Chapter 4

Counterexamples for compatibility
relations

4.1 Additive envelope and Karoubi envelope

Lemma 144. There exists an idempotent complete preadditive category A such that
Add A is not idempotent complete.

More precisely, consider the subring A := {(a,b) € Z x Z : a =5 b} of Z x Z and the
full preadditive subcategory A of A-free with Ob A := {A,0}. Then A is preadditive and
idempotent complete, but Add A is not idempotent complete.

Proof. For x € A we also write x for the A-linear map A — A,y — yz.

Suppose given an idempotent (a,b) € 4A, A). We have
(@, 0%) = (a,b)? = (a, )

Since a,b € Z, we have a,b € {0,1}. Thus, we have (a,b) € {(1,1),(0,0)} because a =5 b.
Therefore, we have
Idem A = {A 2% A A 9% A 02 01,
Furthermore,
(A, (1,1),(1,1)) is an image of A &D, A,
(0,04,0,004) is an image of A 00, A,
(0,19,19) is an image of 0 =% 0.
Thus, A is idempotent complete.

We want to show that Add.A is not idempotent complete. By Remarks 48 and 95, it
suffices to show that A -free is not idempotent complete.

._( (1,26)  (0,10) )
¢=1(0,-65) (0,—25)

Consider A2 A2 in A -free. We have

2 { 126 (0,10 (1,26) (0,000 \ _ [ (1,26) (0,10) \ _
e = ((0,765) (0,45)) <(0,765) (0,725)) = ((0,765) (0,725)> =€
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Thus, e is an idempotent.
Assume (X, 1) to be an image of e in A -free.

Consider
A-free & Z-free

(Am (aij,bij)i,j An) L (Zm (@ij)i,j Zn)

We show that G is a functor.
Suppose given A™ (@isbis)is, pm (Cgtdi )ik AP in A -free. We have
G(1am) = G(((0i5,0i))ig) = (0ij)ij = lzm = lg@am) .

Furthermore, we have

G (((aig,big))ig - ((Cips dig))in) = G | D (aig, bij) (Crs dy)

:G Z aijcjku Z bijdjk

jeltn] jeltn] -

= | 2 awen

JjE[1,n]

ik
= (azy)z J (C]k)Jk‘

G(((ais big))ig) - G(((c5s djk)) )

Thus, G is a functor. Furthermore, G is bijective on objects.

By Remark 47, (GX,G7,Gt) is an image of Ge in Z-free. We have
Ge =G (675 &%) = (68).
Therefore, we have GX = Z. Thus, we have X = A.

In consequence, we have

m= () and L= (@) @)
for some (u/,v"), (u”,v"), (2, ), (", y") € A.
Since (A, ,¢) is an image of e, the following diagram commutes.

(1,26) (010)
<(o, 65) (0, 25

A2

(u' ) )
((x/ y x// y// u// //)

(v '
(u” v/l
(1,1)
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Therefore, we have
(Wa'w'y') (Wa"w'y") \ _ ([ (1,26)  (0,10)
(e ") ("2 ") (0,-65) (0,-25)

/s

(@'u + 2"y + ") = (1,1).

and

Thus, u/z’ = 1. Since we may multiply = and ¢ by (—1), we may assume that v’ = 2/ = 1.
We have ¢y =5 2/ = 1 and v =5 v/ = 1.
Since we have v'y’ = 26, we obtain (v',y") = (1,26) or (v',y’) = (26, 1).
Since we have v'y” = 10, we obtain v = 1 and therefore y' = 26.
.,

But we have v"y’ = —65, in contradiction to 3y’ = 26.

Thus, e has no image in A -free. Therefore, A -free is not idempotent complete.

Proposition 145. There exists a preadditive category A such that
Add(Kar A) # Kar(Add A).

More precisely, consider the subring A := {(a,b) € Z x Z : a =5 b} of Z x Z and the full
preadditive subcategory A of A-free with Ob A := {A, 0}.

Then Add(Kar A) % Kar(Add A).

Proof. Assume that Add(Kar A) ~ Kar(Add A).

By Lemma 144, A is idempotent complete. Thus, A T4, Kar A is an equivalence; cf.
Proposition 56.

Since J4 is an additive equivalence, cf. Lemma 44, so is Add A AddUA), Add(Kar A); cf.
Definition 100 and Lemma 101.
Thus, we have Add A ~ Add(Kar A) ~ Kar(Add A).

By Lemma 54, Kar(Add.A) is idempotent complete. Therefore, Add.A is idempotent
complete, cf. Remark 48, in contradiction to Lemma 144.

Thus, Add(Kar A) # Kar(Add A). O

4.2 Additive envelope and tensor product

Lemma 146. There exists a commutative ring R and additive categories (A, @) and
(B, vp) over R such that (AXI B, o4 [X1¢g) is not additive.
R

More precisely, consider R = Q and the full subcategory A of Q-mod with
ObA:={VeObQ-mod:dimV # 1}.

Then A is Q-linear; cf. Remark 32.

Furthermore, A is an additive category over Q, but .A A is not additive.

109



Proof. Suppose given A, B € Ob.A. Then dim A # 1 # dim B. Since Q-mod is additive,
there exists a direct sum C of A and B in Q-mod. Since dim A # 1 # dim B, we have
dim C = dim A + dim B # 1. Thus, we have C' € Ob A. Therefore, A is additive.

We have the Q-linear functor
A 5 Q-mod
(AL B) —» (4L B)
Furthermore, we have the Q-bilinear functor

(Q —mod) X (Q—mod) E) Q_mod
(f,9) f®g
()92 D)) ~ (agBL=cgD),

By Remark 29, we have the Q-bilinear functor

Go(FxF)

Ax A

Q-mod
«&mﬁ@wapw — <A®B££C®D)
Q Q
By Definition 127, we have the R-linear functor
A A 5L Q -mod

Zie[l,n] [i®gi ic[1,n] fi®gi
_> _

OAH& (CEDO = <A%BZ c@p),

Q
Assume Q?* X Q? and Q3 X Q3 to have a direct sum X XY in AX A.
Q

Since H is additive, H( X XY ) = X % Y is a direct sum of
HQ'XQ?) = Q2C§Q2 and H(Q'XQ’) = QgCgQ?’
in Q-mod.
We have
(dim X)(dimY") = dim(X % Y)
= dim(Q*®Q?%) + dim(Q’®Q’)
Q Q
—4+9
= 13.

We obtain dim X =1 or dimY = 1, in contradiction to X,Y € Ob A.
Thus, Q? X Q? and Q? X Q? have no direct sum in A X A.
Q

Therefore, A[x] A is not additive. ]
Q
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Proposition 147. There exists a commutative ring R and preadditive categories (A, @.4)
and (B, ) over R such that (Add A) Xl (Add B) # Add(AX B).
R R

More precisely, consider R = Q and the full subcategory A of Q-mod with
ObA:={VeObQ-mod:dimV # 1};
Then A is Q-linear; cf. Remark 32.
Furthermore, (Add A) [x] (Add A) # Add(AX.A).
Proof. Assume that (Add A) X (Add . A) ~ Add(AX A).
Q Q
By Lemma 146, A is additive. Thus, A4 Add Ais an equivalence; cf. Proposition 99.

By Lemma 117, 14 is Q-linear. Therefore, we have the equivalence

AA (AddA)(AddA);

cf. Lemma 136.

Thus, we have A A~ (Add A) X (Add A) ~ Add(.A A).

By Proposition 92, Add(.Al A) is additive. Therefore, Al A is additive, in contradiction
to Lemma 146.

Thus, (Add A) & (Add A) % Add(AR A). O

4.3 Karoubi envelope and tensor product

Lemma 148. There exists a commutative ring R and idempotent complete preadditive

categories (A, o) and (B,pg) over R such that (AXIB,p4 X 1) is not idempotent
R

complete.

More precisely, consider R = Q and the full subcategory of Q(i)-mod with
Ob A :={Q(i),0}.
Then A is Q-linear; cf. Remark 32.

Furthermore, A is idempotent complete, but AX A is not idempotent complete.
Q

Proof. For x € Q(i) we also write z for the map Q(i) — Q(i),y — yz.
Since Q(i) is a field, we have

Idem A = {Q(i) - Q(1), Qi) = Q(i), 0 - 0}.

Furthermore,
(Q(),1,1) is an image of Q(i) > Q(i),
(0,0Q¢),0,00,qa)) 1s an image of Q(i) 9, Q(i),
(0, 10, 19) is an image of 0% 0,
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Thus, A is idempotent complete.
We have
0b (A1g.4) = Q01 Q). QU 0,009 Q(0).0 690}

Since 0 is a zero object in A, we have zero objects
Qi) X0 =0XxQ®{H) =0X0
in AXA; cf. Definition 123.
Q

Consider Q(i) X Q(i) e=1(1®1+i®i)

Q(i) X Q(i) in A. We have

e’ = }1(1 ®1+iRi+i®i+(-1)®(-1)) = %(2(1 ®1)+2(1®i)) =e.

Thus, e is an idempotent.

Since Q is a field and (1,7) is a Q-linear basis of Q(i), we have 1 ® 1 # e # 0.
In particular, Q(i) x10, 0 X] Q(i) and 0 X0 cannot be images of e.

Assume X = Q(i) X1 Q(i) to be an image of e.

There exist X = X and X - X such that the following diagram commutes.

X e

N

— = X

Since g4 X, X) = Q(i) ® Q(i) is commutative, we conclude
Q Q

e=m=1m=1x=1Q1,

a contradiction.

Thus, e has no image in A [xX] A. Therefore, A[X] A is not idempotent complete. O
Q Q

Proposition 149. There exists a commutative ring R and preadditive categories (A, p4)
and (B, pg) over R such that (Kar A) X (Kar B) # Kar(AX B).
R R

More precisely, consider R = Q and the full subcategory of Q(i)-mod with ObA :=
{Q(i),0}. Then A is Q-linear; cf. Remark 32.

Furthermore, (Kar A) (Kar A) # Kar(AA).

Proof. Assume that (Kar A) Xl (Kar A) ~ Kar(.AA).

By Lemma 148, A is idempotent complete. Thus, 4 24, Kar A is an equivalence; cf.
Proposition 56.

By Lemma 84, J4 is Q-linear.
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By Lemma 136, we have the Q-linear equivalence

AA (Kar.A)(Kar.A).

Thus, AX A ~ (Kar A) ] (Kar A) ~ Kar(A[X.A).

Since Kar(A [x].A) is idempotent complete, cf. Lemma 54, so is A Xl A; cf. Remark 48.
Q Q
This is a contradiction to Lemma 148.

Thus, (Kar A) X (Kar A) # Kar(AX A). O
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Zusammenfassung

Karoubihulle

Wir beschreiben die Konstruktion der Karoubihiille einer additiven Kategorie, wie von
Max Karoubi in [3, II.1] eingefiihrt; siehe auch [4, Theorem 6.10].

Sei A eine additive Kategorie. Wir konstruieren eine idempotentvollstandige additive
Kategorie Kar A und einen additiven Funktor J4 : A — Kar A so, dass jeder additive
Funktor F' von A in eine idempotentvollstindige additive Kategorie B eindeutig, bis auf
Isomorphie, iiber J4 als F' o J4 = I faktorisiert.

A i Ka:rA
N v
B

Genauer erhalten wir folgende Aquivalenz von Kategorien.
add[A, B] <= aaa[Kar A, B]

Uods 2224 Vo) — ULV

Diese Aquivalenz ist surjektiv auf Objekten; cf. Theorem 78.

Additive Hiulle

Wir beschreiben die Konstruktion der additiven Hiille einer praadditiven Kategorie. Diese
Konstruktion wird in [5, VIL.2, ex. 6.(a)] und in [2, Def. 1.1.15] erwéhnt.

Sei A eine praadditive, nicht notwendigerweise additive Kategorie. Wir konstruieren eine
additive Kategorie Add A und einen additiven Funktor 74 : A — Add A so, dass jeder
additive Funktor F' von A in eine additive Kategorie B eindeutig, bis auf Isomorphie,
iber I4 als F' o [ 4 = I faktorisiert.

A~ Add A
F v
B

Genauer erhalten wir folgende Aquivalenz von Kategorien.
add[ A, B] <= .q[Add A, B]
Uols 224 Vol ~— (UL,
Diese Aquivalenz ist surjektiv auf Objekten; cf. Theorem 113.
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Tensorprodukt praadditiver Kategorien

Wir beschreiben die Konstruktion des Tensorproduktes praadditiver Kategorien, wie in
[6, 16.7.4] erwahnt.

Seien A und B praadditive Kategorien. Wir konstruieren eine praadditive Kategorie AXB
und einen Z-bilinearen Funktor M5 : A x B — AX B so, dass jeder Z-bilineare Funktor

F von A x B in eine praadditive Kategorie C eindeutig tiber M4 5 als F o Map = F

faktorisiert.
Ma,s

AxB AX B

v
C

Genauer erhalten wir folgenden Isomorphismus von Kategorien.

zbill A x B,C] <~ L AXB,C]|

BxMa,B

(U o Mag VoMug) ~— (U-L-V):

cf. Theorem 130.

Tensorprodukt additiver Kategorien

Wir beschreiben die Konstruktion des Tensorproduktes additiver Kategorien, wie in [2,
Def. 1.1.15] erwéhnt.

dd
Seien A und B additive Kategorien. Wir konstuieren eine additive Kategorie .A B und

add
einen Z-bilinearen Funktor M j{?g AxB—- A B so, dass jeder Z-bilineare Funktor
F von A x B in eine additive Kategorie C eindeutig, bis auf Isomorphie, tiber M j‘?g als
F o 48 = F faktorisiert.

MEA add

Ax B X B
F v
C

Genauer erhalten wir folgende Aquivalenz von Kategorien.

add

zoil A x B,C] <= LA X B,C]

IB Madd
(Uo Mz —5 VoMl ~— (ULV).

Diese Aquivalenz ist surjektiv auf Objekten; cf. Theorem 143.
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Gegenbeispiele fiir Kompatibilitatsrelationen

Fiir praadditive Kategorien A gilt im Allgemeinen
Kar(Add A) # Add(Kar A).

Genauer, betrachte den Teilring A := {(a,b) € Z x Z : a =5 b} von Z x Z und die volle
praadditive Teilkategorie A von A-free mit Ob A := {A, 0}.

Dann gilt Add(Kar A) # Kar(Add.A); cf. Proposition 145.

Fiir kommutative Ringe R und praadditive Kategorien (A, ¢ 4) und (B, pp) tiber R gilt
im Allgemeinen

Add(AX B) # (Add A) X1 (Add B).
Genauer, betrachte R = Q und die volle Teilkategorie A von Q-mod mit
ObA:={VeObQ-mod:dimV # 1}.

Dann ist A Q-linear; cf. Remark 32. Auflerdem gilt (Add.A) X (Add.A) # Add(AX A);
cf. Proposition 147.

Fiir kommutative Ringe R und priaadditive Kategorien (A, ¢4) und (B, ¢p) iber R gilt
im Allgemeinen

Kar(A B) # (Kar A) X (Kar B).

Genauer, betrachte R = Q und die volle Teilkategorie A von Q(i)-mod mit Ob.A :=
{Q(i),0}. Dann ist A Q-linear; cf. Remark 32.

Auflerdem gilt (Kar A)x (Kar A) # Kar(AX.A); cf. Proposition 149.
Q Q
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stand eines anderen Priifungsverfahrens gewesen ist und
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