Internally Calabi-Yau Algebras

Matthew Pressland

Universität Bielefeld

Cluster Algebras and Geometry, Universität Münster $11^{\rm th}$ March 2016

Main Definition

- Let A be a (not necessarily finite dimensional) \mathbb{C} -algebra, and let e be an idempotent of A.
- Throughout, we will write $\underline{A} = A/AeA$ (the interior algebra) and B = eAe (the boundary algebra).

Definition

The algebra A is internally d-Calabi–Yau with respect to e if

- (i) gl. dim $A \leq d$, and
- (ii) for any finite dimensional $\underline{A}\text{-module }M\text{, and any }A\text{ module }N\text{, there is a duality}$

$$\operatorname{D}\operatorname{Ext}_A^i(M,N) = \operatorname{Ext}_A^{d-i}(N,M)$$

for all i, functorial in M and N.

Voidology

Definition

The algebra ${\cal A}$ is internally $d ext{-Calabi-Yau}$ with respect to e if

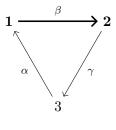
- (i) gl. dim $A \leq d$, and
- (ii) for any finite dimensional \underline{A} -module M, and any A module N, there is a duality

$$\operatorname{D}\operatorname{Ext}_A^i(M,N) = \operatorname{Ext}_A^{d-i}(N,M)$$

for all i, functorial in M and N.

- Setting e=0 recovers the (naïve) definition of a d-Calabi–Yau algebra.
- Setting e = 1, (ii) becomes vacuous.
- If $e \neq 1$, (ii) \implies gl. dim $A \geq d$, and so gl. dim A = d in this case.

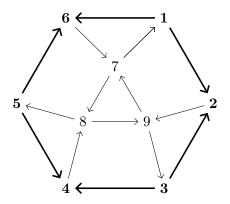
Example 1 (finite dimensional, d = 3)



$$\beta \alpha = 0 = \gamma \beta$$
$$e = e_1 + e_2$$

- $\underline{A} = \mathbb{C}$.
- B = eAe is the preprojective algebra of type A_2 .

Example 2 (infinite dimensional, d = 3)



The two paths back along any internal arrow are equal.

$$e = \sum_{i=1}^{6} e_i$$

Origins

- Let $\mathcal E$ be a Frobenius category: an exact category with enough projectives and enough injectives, and such that projective and injective objects coincide.
- Then $\underline{\mathcal{E}} = \mathcal{E}/\operatorname{proj}\mathcal{E}$ is triangulated.
- Assume that \mathcal{E} is Krull–Schmidt, and $\underline{\mathcal{E}}$ is d-Calabi–Yau.
- Let $T \in \mathcal{E}$ be d-cluster-tilting, i.e.

$$\operatorname{add} T = \{ X \in \mathcal{E} : \operatorname{Ext}_{\mathcal{E}}^{i}(X, T) = 0, \ 0 < i < d \}.$$

Theorem (Keller-Reiten)

If $\operatorname{gl.dim} \operatorname{End}_{\mathcal{E}}(T)^{\operatorname{op}} \leq d+1$, then it is internally (d+1)-Calabi–Yau with respect to projection onto a maximal projective summand.

Bimodule version

• Write $A^{\varepsilon}=A\otimes_{\mathbb{C}}A^{\operatorname{op}}$, and $\Omega_A=\operatorname{RHom}_{A^{\varepsilon}}(A,A^{\varepsilon})$. Let $\mathcal{D}_{\underline{A}}(A)$ be the full subcategory of the derived category of A consisting of objects whose total cohomology is a finite-dimensional \underline{A} -module.

Definition

The algebra A is internally bimodule d-Calabi–Yau with respect to e if

- (i) p. $\dim_{A^{\varepsilon}} A \leq d$, and
- (ii) there is a triangle

$$A \to \Omega_A[d] \to C \to A[1]$$

in $\mathcal{D}(A^{\varepsilon})$, such that $\mathrm{RHom}_A(C,M)=0=\mathrm{RHom}_{A^{\mathrm{op}}}(C,N)$ for all $M\in\mathcal{D}_A(A)$ and $N\in\mathcal{D}_{A^{\mathrm{op}}}(A^{\mathrm{op}})$.

• If we can take C=0, then $A\cong \Omega_A[d]\in \operatorname{per} A^{\varepsilon}$ is bimodule $d ext{-Calabi-Yau}$.

Consequences

Definition

The algebra A is internally bimodule d-Calabi–Yau with respect to e if

- (i) p. $\dim_{A^{\varepsilon}} A \leq d$, and
- (ii) there is a triangle

$$A \to \Omega_A[d] \to C \to A[1]$$

in $\mathcal{D}(A^{\varepsilon})$, such that $\mathrm{RHom}_A(C,M)=0=\mathrm{RHom}_{A^{\mathrm{op}}}(C,N)$ for all $M\in\mathcal{D}_A(A)$ and $N\in\mathcal{D}_A(A^{\mathrm{op}})$.

- A is internally bimodule d-Calabi–Yau with respect to e if and only if the same is true for A^{op} .
- ullet If A is internally bimodule $d ext{-}\mathsf{Calabi-}\mathsf{Yau}$ with respect to e then

$$D\operatorname{Hom}_{\mathcal{D}(A)}(M,N) = \operatorname{Hom}_{\mathcal{D}(A)}(N,M[d])$$

for any $N \in \mathcal{D}(A)$ and any $M \in \mathcal{D}_{\underline{A}}(A)$.

ullet In particular, such an A is internally $d ext{-Calabi-Yau}$ with respect to e.

Main Theorem

Theorem (P, cf. Amiot-Iyama-Reiten)

Let A be a Noetherian algebra, and e an idempotent such that \underline{A} is finite dimensional. If A and A^{op} are internally (d+1)-Calabi–Yau with respect to e, then

(i) B is Iwanaga–Gorenstein of Gorenstein dimension at most d+1, and so

$$\operatorname{GP}(B) = \{X \in \operatorname{mod} B : \operatorname{Ext}_B^i(X,B) = 0, \ i > 0\}$$

is Frobenius,

- (ii) $eA \in GP(B)$ is d-cluster-tilting, and
- (iii) there are natural isomorphisms $A \cong \operatorname{End}_B(eA)^{\operatorname{op}}$ and $\underline{A} \cong \operatorname{End}_{\underline{\operatorname{GP}}(B)}(eA)^{\operatorname{op}}$.

If A is internally bimodule (d+1)-Calabi–Yau with respect to e, then additionally

(iv) $\underline{\mathrm{GP}}(B)$ is d-Calabi-Yau.

Frozen Jacobian algebras

- Let Q be a quiver, and F a (not necessarily full) subquiver, called frozen.
- ullet Let W be a linear combination of cycles of Q.
- For a cyclic path $\alpha_n \cdots \alpha_1$ of Q, define

$$\partial_{\alpha}(\alpha_n \cdots \alpha_1) = \sum_{\alpha_i = \alpha} \alpha_{i-1} \cdots \alpha_1 \alpha_n \cdots \alpha_{i+1}$$

and extend by linearity.

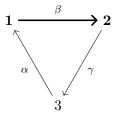
ullet The frozen Jacobian algebra J(Q,F,W) is

$$J(Q, F, W) = \mathbb{C}Q/\langle \partial_{\alpha}W : \alpha \in Q_1 \setminus F_1 \rangle,$$

where $\mathbb{C}Q$ denotes the complete path algebra of Q over \mathbb{C} .

• The frozen idempotent is $e = \sum_{i \in F_0} e_i$.

Example



F is the full subquiver on vertices 1 and 2.

$$W = \gamma \beta \alpha$$

$$e = e_1 + e_2$$

A bimodule resolution?

- Let A be a frozen Jacobian algebra, let $S = A/\mathfrak{m}(A)$ be the semisimple part of A, and write $\otimes = \otimes_S$. Write $\overline{Q}_i^{\mathrm{m}}$ for the dual S-bimodule to $Q_i \setminus F_i$.
- There is a natural complex

$$0 \to A \otimes \overline{Q}_0^{\mathrm{m}} \otimes A \to A \otimes \overline{Q}_1^{\mathrm{m}} \otimes A \to A \otimes Q_1 \otimes A \to A \otimes Q_0 \otimes A \to A \to 0$$

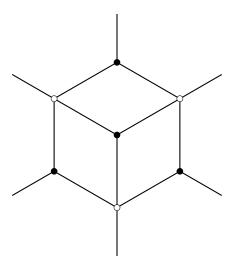
of A-bimodules (cf. Ginzburg and Broomhead for the case $F=\varnothing$).

Theorem (P)

If this complex is exact, then A is internally bimodule 3-Calabi-Yau with respect to the frozen idempotent e.

Dimer models

Definition by example (in the disk):



Associated frozen Jacobian algebra

Definition by example (in the disk):

