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Frieze patterns (Conway–Coxeter)
A frieze pattern of height n consists of n ` 2 rows of positive integers

¨ ¨ ¨ 1 1 1 1 1 1 1 1 1 1 ¨ ¨ ¨

3 1 2 3 2 2 2 1 5 3 1
¨ ¨ ¨ 2 1 5 5 3 3 1 4 14 2 ¨ ¨ ¨

9 1 2 8 7 4 1 3 11 9 1
¨ ¨ ¨ 4 1 3 11 9 1 2 8 7 4 ¨ ¨ ¨

3 3 1 4 14 2 1 5 5 3 3
¨ ¨ ¨ 2 2 1 5 3 1 2 3 2 2 ¨ ¨ ¨

1 1 1 1 1 1 1 1 1 1 1

such that

(1) every entry in the first and final row is 1, and

(2) the entries satisfy the SL2 diamond rule, meaning that every local
configuration b

a d
c

satisfies ad ´ bc “ 1.

We call the first and last row of the frieze, consisting only of 1s, trivial rows.
The height measures the number of non-trivial rows.



Lightning bolts
Because of the SL2 diamond rule, we can compute friezes recursively from
appropriate initial conditions.

In these lectures, we are most interested in starting with the entries of a
lightning bolt: one entry per row, with entries in successive rows in the same
diamond.

1 1 1 1 1 1 1 1 1 1
1

1
1

1
1

1
1 1 1 1 1 1 1 1 1 1 1

Starting from the values in a lightning bolt, we can compute all entries, but
this requires division

b
a d

c
ùñ d “ 1` bc

a
so we need not obtain integers as we require.
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Integrality

Phenomenon (Integrality)
Given a lightning bolt, setting its entries equal to 1 determines a unique frieze
pattern. More concretely, we can compute all other entries via the diamond
rule, and all of them are positive integers, as the definition requires.

We will explain this phenomenon via cluster algebras in Lecture II.

Q: Do all friezes arise from lightning bolts in this way?
A: No.

1 1 1 1 1 1 1 1
¨ ¨ ¨ 1 3 1 3 1 3 1 ¨ ¨ ¨

2 2 2 2 2 2 2 2
¨ ¨ ¨ 3 1 3 1 3 1 3 ¨ ¨ ¨

1 1 1 1 1 1 1 1



Periodicity

Phenomenon (Periodicity)
All frieze patterns are periodic under a glide reflection. In particular, each row
is periodic with period (dividing) n ` 3.

A fundamental domain for the glide reflection is as shown.

¨ ¨ ¨ 1 1 1 1 1 1 1 1 1 1 ¨ ¨ ¨

3 1 2 3 2 2 2 1 5 3 1
¨ ¨ ¨ 2 1 5 5 3 3 1 4 14 2 ¨ ¨ ¨

9 1 2 8 7 4 1 3 11 9 1
¨ ¨ ¨ 4 1 3 11 9 1 2 8 7 4 ¨ ¨ ¨

3 3 1 4 14 2 1 5 5 3 3
¨ ¨ ¨ 2 2 1 5 3 1 2 3 2 2 ¨ ¨ ¨

1 1 1 1 1 1 1 1 1 1 1

We will explain this phenomenon via cluster categories in Lecture III.



Quiddity sequences
Definition
The pn ` 3q-periodic sequence of integers in the first row of a frieze is called
its quiddity sequence.

As with lightning bolts, a frieze is determined by its quiddity sequence using
the diamond rule.

¨ ¨ ¨ 1 1 1 1 1 1 1 1 1 1 ¨ ¨ ¨

3 1 2 3 2 2 2 1 5 3 1

Thus we can start with any pn ` 3q-periodic sequence and try to construct a
frieze from it, but there are many obstructions.

b
a d

c
ùñ c “ ad ´ 1

b

This computation could give non-integer entries or 0. There is also no reason
why the process should terminate with a trivial row of 1s at the expected time.
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b
a d
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why the process should terminate with a trivial row of 1s at the expected time.



Triangulations

Consider a convex polygon with n ` 3 sides.

We choose a triangulation of this polygon—in other words, a maximal
collection of pairwise non-crossing diagonals.

From this data, we can write an pn ` 3q-periodic sequence, by recording the
number of triangles incident with each vertex of the polygon, taken in
clockwise order.

. . . , 1, 2, 3, 2, 2, 2, 1, 5, 3, . . .



Classification
Theorem (Conway–Coxeter ’71)
An pn` 3q-periodic sequence is the quiddity sequence of a height n frieze if and
only if it arises from a triangulation of an pn` 3q-gon as on the preceding slide.

This gives a bijection between triangulations of polygons (up to rotation) and
frieze patterns (up to horizontal translation).

If we break the rotational symmetry of the polygon (e.g. by numbering its
vertices), we get a classification of friezes up to the glide symmetry from the
periodicity phenomenon.

. . . , 1, 3, 1, 3, 1, 3, . . .

1 1 1 1 1 1 1 1
¨ ¨ ¨ 1 3 1 3 1 3 1 ¨ ¨ ¨

2 2 2 2 2 2 2 2
¨ ¨ ¨ 3 1 3 1 3 1 3 ¨ ¨ ¨

1 1 1 1 1 1 1 1



An experiment
Instead of filling a lightning bolt with integers, we can use formal variables.

1 1 1 1 1

¨ ¨ ¨ x1
1` x2
x1

1` x1
x2

x2 ¨ ¨ ¨

1` x1
x2

x2
1` x1 ` x2

x1x2
x1

1` x2
x1

¨ ¨ ¨ 1 1 1 1 ¨ ¨ ¨

All the entries surprisingly turn out to be Laurent polynomials.

1` 1` x1 ` x2
x1x2

1` x2
x1

“
x1p1` x1 ` x2 ` x1x2q

x1x2p1` x2q
“
p1` x1qp1` x2q

x2p1` x2q
“

1` x1
x2

This Laurent phenomenon implies integrality, by setting each xi “ 1.

The Laurent polynomials appearing are cluster variables in a cluster algebra (of
type An, with n the height of the frieze) – more on this next time.
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Quivers
A cluster algebra is a commutative algebra (with extra combinatorial structure)
defined starting from some combinatorial initial data.

For us, this combinatorial data will be a quiver, although more generality is
possible.

A quiver is a directed graph—formally, it is a tuple Q “ pQ0,Q1, h, tq, where
Q0 “ t1, . . . , nu is the vertex set, Q1 the arrow set, and h, t : Q1 Ñ Q0 specify
the heads and tails of arrows.

1 2 3 4

5

1

2 3

4

2

1 3

Definition
A cluster quiver is a quiver Q without oriented cycles of length 1 or 2. In other
words, no arrow a P Q1 can have hpaq “ tpaq (there are no loops) and the
configuration i j is not permitted (there are no 2-cycles).



Mutation

Definition
Let Q be a cluster quiver and pick k P Q0. The mutation µkQ of Q at k is
obtained via the following procedure.

(1) For each length 2 path i ÝÑ k ÝÑ j , add an arrow i ÝÑ j .

(2) Reverse the direction of all arrows incident with k.

(3) Choose a maximal set of 2-cycles, and remove all arrows appearing in them.

For example, we mutate the following quiver at vertex 1:

1

2 3

4

(1)
ùñ

1

2 3

4

(2)
ùñ

1

2 3

4

(3)
ùñ

1

2 3

4

Mutating twice at the same vertex recovers the original quiver.
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Cluster algebras
Let Qpx1, . . . , xnq be the field of rational functions in xi , i P t1, . . . , nu.

A seed is a cluster quiver Q with vertex set Q0 “ t1, . . . , nu, together with a
free generating set tf1, . . . , fnu Ď Qpx1, . . . , xnq indexed by Q0.

Define µkpQ, tfiuq “ pµkQ, tf 1i uq where

f 1i “

$

’

’

&

’

’

%

fi , i ‰ k,

1
fk

´

ź

kÑj
fj `

ź

`Ñk
f`
¯

, i “ k.

Mutating twice at the same vertex recovers the original seed.

A cluster quiver Q with Q0 “ t1, . . . , nu has initial seed s0 “ pQ, txiuq. Let
SQ be the set of all seeds obtained from s0 by a finite sequence of mutations.

Definition
The cluster algebra AQ of Q is the Q-subalgebra of Qpx1, . . . , xnq generated by
all functions appearing in all seeds in SQ .



Cluster algebras

Definition
The cluster algebra AQ of Q is the Q-subalgebra of Qpx1, . . . , xnq generated by
all functions appearing in all seeds in SQ .

AQ is a commutative algebra, with extra structure:

(1) A distinguished set of generators, the rational functions appearing in seeds
in SQ : these are called cluster variables.

(2) A grouping of these generators into the (overlapping) n element sets tfiu in
the seeds in SQ : these sets are called clusters.

While the definition is weird, many interesting rings are isomorphic to cluster
algebras: coordinate rings of the Grassmannian, more general flag varieties,
cells in decompositions of these, etc.

In that context Q is replaced by C, and some vertices of Q are declared frozen.

Mutations are not performed at frozen vertices, and so the corresponding
variables xi appear in all clusters.



A2 example

For Q “ 1 ÝÑ 2, the seeds of AQ are

´

1 ÝÑ 2,
!

x1, x2
)¯



A2 example

For Q “ 1 ÝÑ 2, the seeds of AQ are

´

1 ÝÑ 2,
!

x1, x2
)¯

ˆ

1ÐÝ 2,
"

1` x2
x1

, x2
*˙



A2 example

For Q “ 1 ÝÑ 2, the seeds of AQ are

´

1 ÝÑ 2,
!

x1, x2
)¯

ˆ

1ÐÝ 2,
"

1` x2
x1

, x2
*˙

ˆ

1ÐÝ 2,
"

x1,
1` x1
x2

*˙



A2 example

For Q “ 1 ÝÑ 2, the seeds of AQ are

´

1 ÝÑ 2,
!

x1, x2
)¯

ˆ

1ÐÝ 2,
"

1` x2
x1

, x2
*˙

ˆ

1ÐÝ 2,
"

x1,
1` x1
x2

*˙

ˆ

1 ÝÑ 2,
"

1` x2
x1

,
1` x1 ` x2

x1x2

*˙



A2 example

For Q “ 1 ÝÑ 2, the seeds of AQ are

´

1 ÝÑ 2,
!

x1, x2
)¯

ˆ

1ÐÝ 2,
"

1` x2
x1

, x2
*˙

ˆ

1ÐÝ 2,
"

x1,
1` x1
x2

*˙

ˆ

1 ÝÑ 2,
"

1` x2
x1

,
1` x1 ` x2

x1x2

*˙

ˆ

1 ÝÑ 2,
"

1` x1 ` x2
x1x2

,
1` x1
x2

*˙



A2 example

For Q “ 1 ÝÑ 2, the seeds of AQ are

´

1 ÝÑ 2,
!

x1, x2
)¯

ˆ

1ÐÝ 2,
"

1` x2
x1

, x2
*˙

ˆ

1ÐÝ 2,
"

x1,
1` x1
x2

*˙

ˆ

1 ÝÑ 2,
"

1` x2
x1

,
1` x1 ` x2

x1x2

*˙

ˆ

1 ÝÑ 2,
"

1` x1 ` x2
x1x2

,
1` x1
x2

*˙ ˆ

1ÐÝ 2,
"

1` x1
x2

,
1` x1 ` x2

x1x2

*˙



A2 example

For Q “ 1 ÝÑ 2, the seeds of AQ are

´

1 ÝÑ 2,
!

x1, x2
)¯

ˆ

1ÐÝ 2,
"

1` x2
x1

, x2
*˙

ˆ

1ÐÝ 2,
"

x1,
1` x1
x2

*˙

ˆ

1 ÝÑ 2,
"

1` x2
x1

,
1` x1 ` x2

x1x2

*˙

ˆ

1 ÝÑ 2,
"

1` x1 ` x2
x1x2

,
1` x1
x2

*˙

–

ˆ

1ÐÝ 2,
"

1` x1
x2

,
1` x1 ` x2

x1x2

*˙



A2 example
For Q “ 1 ÝÑ 2, the seeds of AQ are

´

1 ÝÑ 2,
!

x1, x2
)¯

ˆ

1ÐÝ 2,
"

1` x2
x1

, x2
*˙

ˆ

1ÐÝ 2,
"

x1,
1` x1
x2

*˙

ˆ

1 ÝÑ 2,
"

1` x2
x1

,
1` x1 ` x2

x1x2

*˙

ˆ

1 ÝÑ 2,
"

1` x1 ` x2
x1x2

,
1` x1
x2

*˙

–

ˆ

1ÐÝ 2,
"

1` x1
x2

,
1` x1 ` x2

x1x2

*˙

The five cluster variables are the Laurent polynomials that appeared in our
experiment at the end of the last lecture, expressing frieze entries in terms of
the entries in a lightning bolt.



Laurent phenomenon

Theorem (Fomin–Zelevinsky ’02)
Let Q be a cluster quiver. Then every cluster variable in AQ is a Laurent
polynomial in any cluster, and in particular in the initial variables tx1, . . . , xnu.

Proof.
A combinatorial proof is given in Fomin–Zelevinsky’s original 2002 paper. In
2015, Gross–Hacking–Keel gave an alternative proof by realising cluster
variables as regular functions on a somewhat complicated geometric object.

This means that if we evaluate the initial cluster variables xi to 1, all cluster
variables take integer values.

In a frieze of height n, we can write formulae for arbitrary entries in terms of
the entries in a given lightning bolt.

If we can prove that these formulae are cluster variables in a cluster algebra,
the Laurent phenomenon will imply integrality of friezes.



Finite type classification
Theorem (Fomin–Zelevinsky ’03)
A cluster algebra AQ has finitely many cluster variables (finite type) if and only
if Q is related by a sequence of mutations to a quiver obtained by choosing an
orientation of one of the following graphs (simply laced Dynkin diagrams).

An : 1 2 ¨ ¨ ¨ n ´ 1 n Dn : 1 2 ¨ ¨ ¨ n ´ 1

n

E6 :
1 2 3 4 5

6
E7 :

1 2 3 4 5 6

7

E8 :
1 2 3 4 5 6 7

8

Dynkin diagrams also classify finite root systems (among many other things).

The number of non-initial cluster variables in a finite type cluster algebra is the
number of positive roots in the root system with matching Dynkin diagram.



Integrality for friezes

Theorem
Given a frieze of height n, the formulae expressing arbitrary entries in terms of
those in a lightning bolt are given by cluster variables in AQ for Q a quiver of
type An.

Corollary
Starting from a lightning bolt with entries set to 1, we will always obtain a
valid frieze pattern, i.e. the other entries will be positive integers. Moreover,
the entries of a frieze pattern take only finitely many different values.

In the rest of the lecture, we give a sketch of the proof of theorem. The first
step is to choose the right quiver.



The quiver
Our quiver has vertices 1, . . . , n, with vertex i corresponding to the i-th
non-trivial row of the frieze.

For each i ă n, we draw an arrow i Ñ i ` 1 if the lightning bolt entry in row
i ` 1 is to the right of that in row i , and i ` 1Ñ i otherwise.

This quiver Q has underlying graph An, and we consider the cluster algebra AQ .

¨ ¨ ¨ 1 1 1 1 1 ¨ ¨ ¨

3 1 2 3 2 2
¨ ¨ ¨ 2 1 5 5 3 ¨ ¨ ¨

9 1 2 8 7 4
¨ ¨ ¨ 4 1 3 11 9 ¨ ¨ ¨

3 3 1 4 14 2
¨ ¨ ¨ 2 2 1 5 3 ¨ ¨ ¨

1 1 1 1 1 1

x1
x2

x3
x4

x5
x6

Since Q has no oriented cycles, it must have a source, say k.

This corresponds to three lightning bolt (or trivial) entries forming the
left-hand part of a diamond.



Mutation

We mutate at the source: this amounts to reversing the incident arrows,
creating a sink, and obtaining the new variable

x 1k “
xk´1xk`1 ` 1

xk
,

where if k “ 1 or k “ n we interpret the undefined variable on the right-hand
side as 1.

Key observation:
xk´1

xk x 1kxk`1
satisfies the SL2 diamond rule.

This means that if we specialise each xj to the entry in the j-th row of the
lightning bolt, the cluster variable x 1k will be specialised to the entry directly to
the right of the lightning bolt entry in row k.

Changing our lightning bolt by moving the entry in the k-th row to the right
(which is legal since k is a source in the quiver), we get a new lightning bolt
whose quiver is µkQ.



Mutation

Continuing in this way, we see that all entries to the right of our lightning bolt
are cluster variables in AQ .

x1

x2

x3

x4

x5

x6



Mutation

Continuing in this way, we see that all entries to the right of our lightning bolt
are cluster variables in AQ .

x1

x2

x3 x 13

x4

x5

x6



Mutation

Continuing in this way, we see that all entries to the right of our lightning bolt
are cluster variables in AQ .

x1 x 11

x2

x3 x 13

x4 x 14

x5

x6



Mutation

Continuing in this way, we see that all entries to the right of our lightning bolt
are cluster variables in AQ .

x1 x 11

x2 x 12

x3 x 13

x4 x 14

x5 x 15

x6



Mutation

Continuing in this way, we see that all entries to the right of our lightning bolt
are cluster variables in AQ .

x1 x 11 x21

x2 x 12 ¨ ¨ ¨

x3 x 13 x23

x4 x 14 ¨ ¨ ¨

x5 x 15

x6 x 16

Mutating at sinks instead of sources gives the argument for entries to the left.
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Introduction

Our aim in the last lecture is to describe a category which can be used to
study cluster algebras.

To keep technicality to a minimum, we stick to the cluster category CQ of an
acyclic quiver Q, as introduced by Buan, Marsh, Reineke, Reiten and Todorov.

More general cluster categories, defined from a quiver with cycles (and some
extra data) are defined by Amiot.

We will be most interested in the case that Q has underlying graph An, in
which case CQ was also constructed, in a slightly different way, by Caldero,
Chapoton and Schiffler.

This construction will explain the second phenomenon from the first lecture,
namely that frieze patterns are periodic under a glide reflection.

It will also give us a second classification of frieze patterns, explaining the
origin of friezes not obtained by setting lightning bolt entries to 1.



Categories

A category C consists of

(1) a set of objects ObpCq (we write X P C for X P ObpCq),

(2) a set HomCpX ,Y q of morphisms X Ñ Y for any pair of objects X ,Y P C,
and

(3) an associative composition law consisting of maps
˝ : HomCpY ,Z q ˆ HomCpX ,Y q Ñ HomCpX ,Z q for each triple X ,Y ,Z P C.

Each object X has an identity morphism 1X P HomCpX ,X q such that
1X ˝ f “ f and g ˝ 1X “ g whenever these compositions are defined.

Our categories will be K-linear for a field K, meaning that each HomCpX ,Y q
is a K-vector space, and the composition maps are K-bilinear.

We fix an acyclic quiver Q for the rest of the lecture.

We will describe three associated categories, each constructed from the
previous one: the category of representations of Q, the bounded derived
category of Q, and finally the cluster category of Q.



Quiver representations
Definition
A representation pV , f q of Q consists of a finite-dimensional K-vector space Vi
for each i P Q0, and a K-linear map fa : Vtpaq Ñ Vhpaq for each a P Q1.

A morphism ϕ : pV , f q Ñ pW , gq of representations consists of linear maps
ϕi : Vi ÑWi for i P Q0 such that the diagram

Vtpaq Vhpaq

Wtpaq Whpaq

fa

ϕtpaq ϕhpaq

ga

commutes for any a P Q1.

The direct sum pV , f q ‘ pW , gq has vector spaces pV ‘W qi “ Vi ‘Wi and
linear maps pf ‘ gqa “

` fa 0
0 ga

˘

.

We say pV , f q is indecomposable if it is non-zero and pV , f q is not isomorphic
to a direct sum of two non-zero representations.



The category of representations
The category repQ has representations of Q as objects, with morphisms the
morphisms of representations as defined on the previous slide.

This category is abelian: this includes the properties that

(1) its morphism spaces are abelian groups, and it has a well-defined direct
sum operation on objects,

(2) morphisms have well-defined kernels and cokernels, and

(3) every injective morphism is a kernel, and every surjective morphism is a
cokernel.

These properties mean that we can apply a general construction of Verdier to
repQ: we can take its bounded derived category.

This construction can get complicated. Since we will only apply it to repQ,
which is quite a simple category, we will cheat and give an ad hoc definition for
this special case.

A fuller description of the construction in general can be found in the appendix
of the lecture notes.



The bounded derived category
For each object V P repQ and integer i P Z, introduce the formal symbol ΣiV .

The bounded derived category DbpQq of Q has as objects formal direct sums
of these symbols.

We define morphisms between the symbols using extension groups in repQ

HomDbpQqpΣiV ,ΣjW q :“ Extj´i
Q pV ,W q,

and extend to direct sums via the formulae

HomDbpQqpX1 ‘ X2,Y q “ HomDbpQqpX1,Y q ‘ HomDbpQqpX2,Y q,
HomDbpQqpX ,Y1 ‘ Y2q “ HomDbpQqpX ,Y1q ‘ HomDbpQqpX ,Y2q.

Composition is given by cup product of extensions.

As our notation suggests, there is an autoequivalence Σ of DbpQq which takes
ΣiV to Σi`1V and is the identity on morphisms.

HomDbpQqpΣi`1V ,Σj`1W q “ Extj´i
Q pV ,W q “ HomDbpQqpΣiV ,ΣjW q



The repetition quiver
Now assume Q is a Dynkin quiver (i.e. its underlying graph is a Dynkin
diagram). In this case we can describe DbpQq more combinatorially.

Let ZQ be the repetition quiver of Q: its vertices are pi , nq for i P Q0 and
n P Z, and its arrows are

an : ptpaq, nq Ñ phpaq, nq
a˚n : phpaq, nq Ñ ptpaq, n ` 1q

for a P Q1 and n P Z.
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When Q has type An, it is natural to think of a height n frieze pattern
(excluding trivial rows) as a function on the vertices of ZQ.

Note that ZQ is independent of the orientation of Q in this case.



Meshes
Each vertex pi , nq of ZQ gives rise to the mesh relation

ÿ

a:hpaq“i
an`1a˚n ´

ÿ

b:tpaq“i
b˚n bn,

a formal linear combination of paths (which we read from right to left).

1

4 3

2

a

c

b

p1, nq

p2, nq

p3, nq p3, n ` 1q

p4, n ` 1q

an`1a˚n ´ b˚n bn ´ c˚n cn

b˚n

c˚n

bn

cn

a˚n an`1



The mesh category
The mesh category DQ has as objects formal direct sums of vertices of the
repetition quiver ZQ.

Given vertices pi , nq and pj ,mq, the vector space HomDQ ppi , nq, pj ,mqq is
spanned by paths pi , nq Ñ pj ,mq in ZQ, subject to mesh relations.

p1, `q

pi , nq p2, `q pj ,mq

p3, `q p3, `` 1q

p4, `` 1q

b˚
`

p
c˚

`

b`

c`

a˚
`

q

a``1

ùñ qpa``1a˚` ´ b˚` b` ´ c˚` c`qp “ 0 in HomDQ ppi , nq, pj ,mqq.

Morphisms between direct sums are defined as in DbpQq.



Translation
The quiver ZQ has a symmetry τ , with

τ : pi , nq ÞÑ pi , n ´ 1q,
τ : an ÞÑ an´1,

τ : a˚n ÞÑ a˚n´1.

This symmetry respects mesh relations, and so is an autoequivalence of DQ .

Theorem (Happel)
If Q is a Dynkin quiver, there is an equivalence of categories DbpQq „Ñ DQ .

This means τ can be made into an autoequivalence of DbpQq.

This auto-equivalence can also be defined intrinsically—DbpQq has almost
split sequences in the sense of Auslander–Reiten theory, and τ is the resulting
Auslander–Reiten translation.

We will be most interested in quivers of type An, for which we can use the
easier description DQ of the bounded derived category.



Computing morphisms
There are two kinds of mesh relation in type An.

First, each square ‚

‚

‚

‚ commutes or anti-commutes.

At the edges of the strip, compositions
‚

‚

‚
and

‚

‚

‚

are zero.

This allows us to combinatorially compute all morphism spaces between
indecomposables.
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The object ˝ has a 1-dimensional space of morphisms to each object in the
rectangle.



Symmetry
Since DbpQq „Ñ DQ , we can make Σ into an autoequivalence of DQ .

In type An, the equivalence Σ acts on ZQ as a glide reflection to the right
with fundamental domain as shown.
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Thus Σ´1 ˝ τ acts by a glide reflection with fundamental domain
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Orbit category
Thinking of a frieze as a function on vertices of ZQ (or indecomposable
objects of DQ , or of DbpQq), we want to see that it is invariant under Σ´1 ˝ τ .

This means it should be a function on indecomposable objects of the following
orbit category.

Definition (BMRRT)
For an acyclic quiver Q, the cluster category CQ is the orbit category

CQ :“ DbpQq{pΣ´1 ˝ τq.

This has the same objects as DbpQq, with morphisms

HomCQ pX ,Y q “
à

nPZ
HomDbpQqpX , pΣ´1 ˝ τqnY q.

While CQ has the same objects as DbpQq and more morphisms, there are fewer
isomorphism classes, so it is ‘smaller’.

An isomorphism class in CQ is a pΣ´1 ˝ τq-orbit of isomorphism classes in
DbpQq.



Categorification
The symmetries Σ and τ descend to autoequivalences of CQ , where they
coincide.

Definition
We say objects X ,Y P CQ are compatible if HomCQ pX ,ΣY q “ 0.

An object X P CQ is rigid if it is compatible with itself.

An object X is cluster-tilting if the set of objects compatible with X is addX ,
the closure of tXu under direct sums, direct summands and isomorphisms.

Theorem (BMRRT, Caldero–Keller)
There is a bijection between the indecomposable rigid objects of CQ and the
cluster variables of AQ .

This bijection sends compatible pairs of indecomposable rigid objects to cluster
variables appearing in the same cluster.

In particular, it induces a bijection between cluster-tilting objects of CQ and
clusters of AQ .



Periodicity

Implicit in the proof of theorem is the fact that, in type An, objects in a mesh
give cluster variables satisfying the SL2 diamond rule.

A

B

C

D ùñ ϕAϕD ´ ϕBϕC “ 1

We take ϕB “ 1 if B is missing in the mesh, and similarly for C .

We can read the previous theorem as giving an assignment of cluster variables
to indecomposables of DbpQq, in such a way that values are constant on
pΣ´1 ˝ τq-orbits, and the values on a mesh satisfy the SL2 diamond rule.

From the previous lecture, we know that any frieze is obtained by specialising
these cluster variables, and conclude that friezes are periodic under the glide
reflection Σ´1 ˝ τ .



Classification
Theorem
Let Q be any An quiver. Then the friezes of height n are in bijection with the
cluster-tilting objects of the cluster category CQ .

Indeed, given a cluster tilting object T , there is a unique frieze pattern taking
the value 1 on each indecomposable summand of T .

Each lightning bolt gives a cluster-tilting object, but there are more.

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚

‚ ‚ ‚

˝ ˝ ˝

˝ ˝ ˝ ˝

¨ ¨ ¨
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¨ ¨ ¨

¨ ¨ ¨

1 1 1 1 1 1 1 1
¨ ¨ ¨ 1 3 1 3 1 3 1 ¨ ¨ ¨

2 2 2 2 2 2 2 2
¨ ¨ ¨ 3 1 3 1 3 1 3 ¨ ¨ ¨

1 1 1 1 1 1 1 1



Final remarks
Since clusters can be mutated, so can cluster-tilting objects. This mutation
can be defined intrinsically (BMRRT, Iyama–Yoshino) using that CQ is a
2-Calabi–Yau triangulated category.

Comparing to the first classification of friezes, cluster-tilting objects in CQ , for
Q of type An, are in bijection with triangulations of the pn ` 3q-gon.

This bijection can be made explicit, and the endomorphism algebra of a
cluster-tilting object can be computed combinatorially from its triangulation
(Caldero–Chapoton–Schiffler).

There is a generalisation to more general surfaces with boundary
(Fomin–Shapiro–Thurston, Labardini-Fragoso).

Translating the mutation operation to triangulations, it becomes flipping.

flip
ÐÑ


