Cluster Automorphisms and Homogeneous Spaces Joint work with Alastair King

Matthew Pressland

University of Bath

ICRA 2014, 清华三亚国际数学论坛 25th August 2014

Labelled Seeds

• Let
$$I = \{1, \dots, n\}.$$

• Let $\mathbb{F} \cong \mathbb{Q}(x_1, \dots, x_n)$ be a purely transcendental field extension of \mathbb{Q} .

Definition

A labelled seed is a pair (Q,β) consisting of

- a quiver Q with vertex set I and without loops or 2-cycles, and
- a free generating set $\beta = (\beta_1, \dots, \beta_n)$ (labelled by I) for \mathbb{F} over \mathbb{Q} .
- The constant vertex set allows us to talk about *equality* of quivers; two quivers are equal if they have the same adjacency matrix.
- For example, $1 \rightarrow 2$ and $2 \rightarrow 1$ are *not* equal.
- The data of the *n*-tuple β is equivalent to the choice of an isomorphism $\beta : \mathbb{Q}(x_1, \ldots, x_n) \xrightarrow{\sim} \mathbb{F}$, via $\beta(x_i) = \beta_i$.

Mutations and Permutations

• Given $i \in I$, let $Q\mu_i$ be the Fomin–Zelevinsky mutation of Q at i. Let $\beta \mu_i$ be defined by

$$(\beta\mu_i)_j = \begin{cases} \beta_j, & j \neq i \\ \frac{\prod_{k \to i} \beta_k + \prod_{i \to k} \beta_k}{\beta_i}, & j = i \end{cases}$$

- Given $\sigma \in \mathfrak{S}_n$, let $(Q\sigma)_{ij} = Q_{\sigma(i)\sigma(j)}$ and $(\beta\sigma)_i = \beta_{\sigma(i)}$. (Here Q_{ij} is the number of arrows $i \to j$).
- Thus we obtain a right action of the *mutation group*

$$M_n = \mathfrak{S}_n \ltimes \langle \mu_1, \dots, \mu_n : \mu_i^2 = 1 \rangle$$

(where $\sigma \mu_i = \mu_{\sigma(i)} \sigma$) on the set of all labelled seeds.

• The orbits are called *mutation classes*, and are homogeneous spaces for M_n .

Clusters

• Let S be a mutation class of labelled seeds; we abuse notation and write $Q \in S$ and $\beta \in S$ when $(Q, \beta) \in S$.

Define

$$\mathcal{X}(\mathcal{S}) = \bigcup_{\beta \in \mathcal{S}} \{\beta_1, \dots, \beta_n\}.$$

• The cluster algebra $\mathcal{A}(S) \subseteq \mathbb{F}$ is the subalgebra of \mathbb{F} generated by $\mathcal{X}(S)$, and the set $\mathcal{X}(S)$ is the set of cluster variables of $\mathcal{A}(S)$.

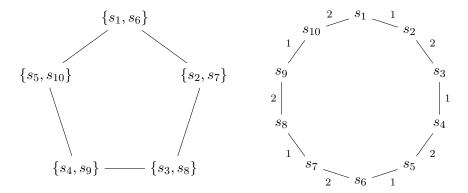
Compare and Contrast

- Let $\mathbb{F} = \mathbb{Q}(x, y)$, and $s_1 = (Q, \beta)$ be the labelled seed with $Q = 1 \rightarrow 2$, $\beta_1 = x$ and $\beta_2 = y$.
- The seed $(Q', \gamma) = s_1 \cdot (1 \ 2) = s_1 \cdot \mu_1 \mu_2 \mu_1 \mu_2 \mu_1$ has quiver $Q' = 1 \leftarrow 2$, $\gamma_1 = y$ and $\gamma_2 = x$.
- We never identify this with s_1 , but keep both labelled seeds and remember that they are related by the action of \mathfrak{S}_2 .
- In total there are ten labelled seeds in the mutation class of s_1 .

Compare and Contrast

In the unlabelled case, we obtain the familiar pentagon.

By labelling, we get a less familiar, but 'more homogeneous', decagon.



Regular Equivalence Relations

• Let X be a homogeneous space for a group G acting on the right, and let \sim be an equivalence relation on X.

Definition

The equivalence relation \sim is *regular* if whenever $x \sim y$, we have $x \cdot g \sim y \cdot g$ for all $g \in G$, and $\operatorname{Stab}_G(x) = \operatorname{Stab}_G(y)$.

Example

- The coarsest regular equivalence relation has $x \sim y \iff \operatorname{Stab}_G(x) = \operatorname{Stab}_G(y).$
- Let S be a mutation class of labelled seeds, and say $(Q_1, \beta_1) \simeq (Q_2, \beta_2) \iff Q_1 = Q_2$. This relation is regular.
- For S as above, say $(Q_1, \beta_1) \approx (Q_2, \beta_2)$ if and only if Q_1 is obtained from Q_2 by reversing the orientation of some connected components (we say the quivers and seeds are *similar* in this case). This relation is regular.

G-Automorphisms

• The group $Aut_G(X)$ of automorphisms of X commuting with the G-action acts on the left of X.

Proposition

A relation \sim is regular if and only if there exists $W \leq \operatorname{Aut}_G(X)$ such that the \sim -classes are the W-orbits.

Example

The equivalence classes of the relation $x \sim y \iff \operatorname{Stab}_G(x) = \operatorname{Stab}_G(y)$ are the $\operatorname{Aut}_G(X)$ -orbits.

Cluster Automorphisms

After Assem–Schiffler–Shramchenko

• For the rest of the talk, fix a mutation class S, and write $\mathcal{A} = \mathcal{A}(S)$.

Definition/Proposition (Assem–Schiffler–Shramchenko)

An automorphism $f: \mathcal{A} \to \mathcal{A}$ is a *cluster automorphism* if for some (equiv. every) $(Q, \beta) \in \mathcal{S}$, there exists $(Q', \gamma) \in \mathcal{S}$ such that $f(\beta_i) = \gamma_i$ for all i, and $Q \approx Q'$. If Q = Q', the cluster automorphism f is *direct*.

• So we obtain a group $\operatorname{Aut} \mathcal{A}$ of cluster automorphisms of \mathcal{A} , and a subgroup $\operatorname{Aut}^+(\mathcal{A})$ of direct cluster automorphisms.

Cluster Automorphisms

- Let $W \leq \operatorname{Aut}_{M_n}(S)$ be the group corresponding to the relation \approx (similarity of quivers) and $W^+ \leq W$ the group corresponding to the relation \simeq (equality of quivers).
- For $w \in W$, define $\alpha(w) \colon \mathbb{F} \to \mathbb{F}$ to be the unique automorphism extending $\alpha(w)(\beta_i) = \gamma_i$, where $w \cdot (Q, \beta) = (Q', \gamma)$.

Theorem (King–P)

The restriction of $\alpha(w)$ to \mathcal{A} is a cluster automorphism, direct if and only if $w \in W^+$. Moreover α induces an isomorphism $W \xrightarrow{\sim} \operatorname{Aut} \mathcal{A}$, restricting to an isomorphism $W^+ \xrightarrow{\sim} \operatorname{Aut}^+ \mathcal{A}$.

• Each subgroup $H \leq \operatorname{Aut}_{M_n}(S)$ also defines a groupoid $H \setminus S$ with point groups isomorphic to H. The groupoid $W^+ \setminus S$ is Fock–Goncharov's cluster modular groupoid.

Small Mutation Classes

Definition

A mutation class S is *small* if it contains only finitely many quivers.

Theorem (King-P)

If S is small, then two seeds of S have similar quivers if and only if they have the same M_n -stabilizer, so $\operatorname{Aut}_{M_n}(S) = W \cong \operatorname{Aut} A$.

- If S contains a Dynkin type quiver (so S is finite) then the isomorphism class of $\operatorname{Aut}_{M_n}(S) \cong \operatorname{Aut} A$ has been computed by Assem–Schiffler–Shramchenko.
- It would be interesting to know if the property $W = \operatorname{Aut}_{M_n}(\mathcal{S})$ is equivalent to \mathcal{S} being small.