Extendable t-structure and finitistic dimension of small triangulated categories

Junhua Zheng

(joint work with R. Biswas, H. X. Chen, K. M. Rahul, and C. J. Parker)

Abstract

A good metric $\mathcal{M} = \{\mathcal{M}_n\}_N$ on a triangulated category (\mathcal{S}, Σ) is a sequence of additive extension-closed subcategories such that $\Sigma^i \mathcal{M}_{n+1} \subseteq \mathcal{M}_n \subseteq \mathcal{S}$, for all $n \in N$ and $i \in \{-1, 0, 1\}$. Whenever \mathcal{S} is small, Neeman has recently constructed, for any good metric \mathcal{M} , a new small triangulated category $S_{\mathcal{M}}(\mathcal{S})$ called the **completion** of \mathcal{S} (relative to \mathcal{M}), as a subcategory of Mod- $\mathcal{S} := [\mathcal{S}^{\text{op}}, \text{Ab}]$.

Starting from the observation that the assignment $S \mapsto S_{\mathcal{M}}(S)$ extends to a correspondence taking each subcategory $\mathcal{X} \subseteq S$ to a suitable $S_{\mathcal{M}}(\mathcal{X}) \subseteq S_{\mathcal{M}}(S)$, we will introduce a class of t-structures $t = (\mathcal{D}^0, \mathcal{D}^1)$ on S, called **extendable** (relative to \mathcal{M}), for which $S_{\mathcal{M}}(t) := (S_{\mathcal{M}}(\mathcal{D}^0), S_{\mathcal{M}}(\mathcal{D}^1))$ is a t-structure on $S_{\mathcal{M}}(S)$. We will then show that, in this case, the heart of $S_{\mathcal{M}}(t)$ is always equivalent to the one of t, and that $S_{\mathcal{M}}(t)$ is bounded above, if so is t.

In the second part of the talk, after recalling a construction by Neeman that associates to any object $G \in S$ a suitable good metric \mathcal{M}_G , we will concentrate on the new notion of **finitistic dimension** findim (\mathcal{T}, H) of a small triangulated category \mathcal{T} at the object $H \in$ \mathcal{T} , also comparing it to related invariants. Combining all these pieces, we will show that any bounded *t*-structures on S is extendable relative to \mathcal{M}_G , provided findim $(S^{\text{op}}, G) <$ ∞ . As a further application of the theory we will obtain that: If there is $G \in S$ such that findim $(S^{op}, G) < \infty$ then: either S admits no bounded *t*-structure or, when it does, they all are equivalent.

JUNHUA ZHENG, UNIVERSITY OF STUTTGART E-mail address: Zheng.Junhua@mathematik.uni-stuttgart.de.