Chrysostomos Psaroudakis (NTNU Trondheim)

Gorenstein-projective modules over trivial extension algebras

Abstract:

Gorenstein-projective modules over any (non-commutative) ring were introduced by Enochs-Jenda, generalizing the notion of Gorenstein-dimension zero finitely generated modules over noetherian rings due to Auslander. It is known that the homological study of the category of Gorenstein-projective modules reflects properties of the ring itself, and therefore it is an interesting problem to describe this class of modules. In this talk we show how to construct Gorenstein-projective modules over a class of trivial extension rings arising from Morita contexts. This is joint work with Nan Gao (arXiv:1508.02843).