
SCHUR ALGEBRAS OF BRAUER ALGEBRAS, IIANNE HENKE, STEFFEN KOENIGAbstra
t. A 
lassi
al problem of invariant theory and of Lie theory is to determineendomorphism rings of representations of 
lassi
al groups, for instan
e of tensor powersof the natural module (S
hur-Weyl duality) or of full dire
t sums of tensor produ
tsof exterior powers (Ringel duality). In this arti
le, the endomorphism rings of fulldire
t sums of tensor produ
ts of symmetri
 powers over symple
ti
 and orthogonalgroups are determined. These are shown to be isomorphi
 to S
hur algebras of Braueralgebras as de�ned in [24℄. This implies stru
tural properties of the endomorphismrings, su
h as double 
entraliser properties, quasi-hereditary, and a universal property,as well as a 
lassi�
ation of simple modules.1. Introdu
tionLet G be a 
lassi
al group de�ned over an algebrai
ally 
losed �eld k, E its naturalmodule and E⊗r the r-fold tensor produ
t. Classi
al S
hur-Weyl duality determinesthe 
entraliser algebra EndG(E
⊗r). When G equals the general linear group GLn, the
entraliser is a quotient of the group algebra kΣr of the symmetri
 group. When Gis orthogonal or symple
ti
, the 
entraliser algebra is a quotient of a Brauer algebra.For n ≥ r, the symmetri
 group a
ts faithfully on the tensor spa
e; the Brauer algebraa
ts faithfully on the tensor spa
e for n ≥ 2r. In su
h a situation, 
lassi
al invarianttheory and its 
hara
teristi
-free versions, in parti
ular, work by S
hur, Brauer, Weyl, DeCon
ini and Pro
esi, and others, provides mu
h information. Additional work is neededto determine the stru
ture of the 
entraliser algebras and their representation theory,whi
h are far from being known.Keep G, but repla
e the tensor spa
e E⊗r by a (full) dire
t sum of tensor produ
ts ofeither exterior or symmetri
 powers of the natural module. When 
hoosing a full dire
tsum of tensor produ
ts of exterior powers in type A, Donkin [12℄ has shown that theendomorphism algebra is a type A S
hur algebra; in fa
t, for n ≥ r this assertion isthe Ringel self-duality of the 
lassi
al S
hur algebra. Adamovi
h and Rybnikov [1℄ haveextended this result about the endomorphism ring of a dire
t sum of tensor produ
ts ofexterior powers to 
over also 
ertain orthogonal and symple
ti
 situations. The 
ase ofsymmetri
 powers has remained open.The main result of this arti
le determines the endomorphism rings of a full dire
t sumof tensor produ
ts of symmetri
 powers, for all 
lassi
al groups over an algebrai
ally
losed �eld of any 
hara
teristi
. While in type A the 
entraliser algebra of a dire
tsum of tensor produ
ts of symmetri
 powers is again the 
lassi
al type A S
hur algebra,unexpe
tedly a di�erent algebra is 
oming up in the orthogonal and symple
ti
 
ase:Theorem 1.1. Let G ⊂ GLn be an orthogonal or symple
ti
 group, over an algebrai
ally
losed �eld k. Assume n ≥ 2r when G is a symple
ti
 group, and n > 2r when G isDate: September 18, 2013. 1



2 ANNE HENKE, STEFFEN KOENIGan orthogonal group. Denote by Br = Br(δ) the Brauer algebra with non-zero parameter
δ ∈ k. Fix the parameter δ = −n ∈ k when G is a symple
ti
 group, and δ = n ∈ k when
G is an orthogonal group.Then the 
entraliser algebra

C := EndG(
⊕

λ⊢r−2l,0≤l≤ r
2

SymλE)is isomorphi
 to the S
hur algebra SB(n, r) of the Brauer algebra Br.The S
hur algebra SB(n, r) has been de�ned in [24℄ as the endomorphism algebra
SB(n, r) = EndBr(

⊕

λ⊢r−2l,0≤l≤ r
2

M(l, λ))of the permutation modules (introdu
ed by Hartmann and Paget [22℄) of the 
orrespond-ing Brauer algebra Br. Both algebras, Br and SB(n, r), are de�ned 
ombinatorially, andthey are related by a S
hur-Weyl duality. The inverse S
hur fun
tor (see Lemma 3.4)sends permutation modules M(l, λ) to symmetri
 powers SymλE. Using this, Theorem1.1 establishes a dire
t 
onne
tion between SB(n, r) and the representation theory of
lassi
al groups. Here and throughout, when G is the orthogonal or symple
ti
 groupinside GLn, the parameter δ of the Brauer algebra is taken to be non-zero in k and �xedas ±n. Moreover, when dealing with an orthogonal group, we assume the ground �eld kto have 
hara
teristi
 di�erent from two.When the group G is even orthogonal or symple
ti
, its a
tion on tensor spa
e and on thesymmetri
 powers is via a generalised S
hur algebra that is asso
iated with a saturatedset of highest weights. In general, the a
tion fa
tors through the enveloping algebra of
G in Endk(E

⊗r). This algebra will be denoted by Senv(G), see Se
tion 2.1; in the 
aseof even orthogonal or symple
ti
 groups, Senv(G) equals the generalised S
hur algebrajust mentioned.Corollary 1.2. Let G, n and δ be as in 1.1. Then there is a S
hur-Weyl duality betweenthe algebra Senv(G) and the algebra C ≃ SB(n, r), on the bimodule
M :=

⊕

λ⊢r−2l,0≤l≤ r
2

SymλE,that is, the following two equations hold true:
C = EndSenv(G)(M) and Senv(G) = EndC(M).With the tensor spa
e E⊗r being a dire
t summand ofM , this S
hur-Weyl duality on thebimoduleM extends the 
lassi
al S
hur-Weyl duality (due to Brauer [2℄ in 
hara
teristi
zero and [8, 9, 16, 35℄ in general) on tensor spa
e.Apart from relating two di�erent situations, the isomorphism in Theorem 1.1 moreovertransports mu
h stru
ture and information (developed in [24℄ and also in [22, 21℄) fromthe S
hur algebra SB(n, r) to the 
entraliser algebra C � see Se
tion 3.10 for a moredetailed formulation:



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 3Corollary 1.3. Let C be de�ned as in Theorem 1.1.(a) The algebra C has an integral form with an expli
it basis, whi
h is independentof the ground �eld k and of its 
hara
teristi
.(b) The algebra C 
arries a quasi-hereditary stru
ture, that is, mod-C is a highestweight 
ategory.(
) The global (
ohomologi
al) dimension of C is �nite.(d) There is a S
hur-Weyl duality between C and the Brauer algebra Br.(e) When the 
hara
teristi
 is di�erent from two or three, the algebra C satis�esa universal property that makes it unique up to Morita equivalen
e: It is thequasi-hereditary 1-
over of the Brauer algebra Br in the sense of Rouquier [33℄.(f) The simple C-modules are parametrised by the disjoint union of all partitions ofthe non-negative integers of the form r, r − 2, r − 4, . . . .These properties are shared by the members of a mu
h larger family of algebras
SB(n, r, δ)δ∈k , spe
ialising to the symple
ti
 and the orthogonal 
ase for δ = −n and
δ = n, respe
tively.From the point of view of invariant theory and of Lie theory, the results of this arti
ledes
ribe the previously unknown endomorphism ring of a 
lassi
al obje
t, as well asits ring stru
ture, its representation theory and its homologi
al properties. From thepoint of view of the more re
ent � and now qui
kly expanding � theory of Braueralgebras and their S
hur algebras, Theorem 1.1 gives a Lie theoreti
al meaning to theseS
hur algebras, whi
h turn out to be the third players in a triangle of six S
hur fun
torsmutually relating Brauer algebras, their S
hur algebras, and the enveloping algebras oforthogonal or symple
ti
 groups, on the full dire
t sum of tensor powers of symmetri
powers. This triangle repla
es the familiar type A situation of just two algebras beingin S
hur-Weyl duality, whi
h provides a 
lassi
al 
onne
tion between Lie theory and
ombinatori
s.This arti
le is organised as follows: Se
tion 2 
olle
ts de�nitions and notation as wellas some results on S
hur-Weyl duality for 
lassi
al groups, Brauer algebras and variousS
hur algebras. Se
tion 3 is devoted to the proof of Theorem 1.1. Se
tions 3.9 and 3.10explain and prove Corollaries 1.2 and 1.3, respe
tively. Finally, Subse
tion 3.11 putsthe various S
hur fun
tors, and three di�erent algebras, together into one 
ommutingtriangle.2. S
hur-Weyl duality, Brauer algebras and S
hur algebrasA main theme of this arti
le is S
hur-Weyl duality and its various manifestations. Thisis motivated by 
lassi
al S
hur-Weyl duality. Here, G = GLn(k) a
ts on tensor spa
e
E⊗r by diagonal extension of its a
tion on the natural module E. The symmetri
 group
Σr a
ts by pla
e permutation on tensor spa
e. The two a
tions 
ommute and do, in fa
t,
entralise ea
h other. When n ≥ r, this means

EndG(E
⊗r) = kΣr and EndΣr(E

⊗r) = Senv(G),where the enveloping algebra Senv(G) of G in Endk(E
⊗r) is isomorphi
 to the 
lassi
altype A S
hur algebra S(n, r). When n < r, the group algebra kΣr has to be repla
ed by



4 ANNE HENKE, STEFFEN KOENIGa 
ertain known quotient algebra. In 
hara
teristi
 zero, 
lassi
al S
hur-Weyl duality isdue to S
hur [34℄, in general it follows from results of Carter and Lusztig [5℄, De Con
iniand Pro
esi [8℄, and Green [19, Theorem 2.6
℄.The inje
tive modules over S(n, r) are dire
t summands of dire
t sums of tensor produ
tsof symmetri
 powers. Indeed, the 
oalgebra A(n, r) = S(n, r)∗ dual to the S
hur algebrais for n ≥ r a full sum of tensor produ
ts of symmetri
 powers, see [19℄. Therefore,the endomorphism ring of a full dire
t sum of tensor powers of symmetri
 powers (theanalogue of the algebra C in type A) is Morita equivalent, for a suitable 
hoi
e ofmultipli
ities even isomorphi
, to the S
hur algebra S(n, r) itself. Moreover, tensor spa
e
E⊗r is a full dire
t sum of permutation modules Mλ = k ↑kΣr

kΣλ
(with λ running throughall 
ompositions of r) over the symmetri
 group Σr. Therefore, the type A analogue ofthe algebra SB(n, r) is the (type A) S
hur algebra S(n, r) itself. In types di�erent fromA, there is no su
h 
oin
iden
e any more.2.1. Brauer algebras and S
hur-Weyl dualities. Let k be a 
ommutative domain,and 
hoose a parameter δ ∈ k. Let r be a natural number. The Brauer algebra Br(δ) ofdegree r for parameter δ is de�ned to be the ve
tor spa
e with k-basis given by the setof all Brauer diagrams on 2r verti
es. A Brauer diagram is a diagram whose verti
es arearranged in two rows of r verti
es ea
h, and there are r edges between the verti
es su
hthat ea
h vertex is in
ident to pre
isely one edge. Brauer diagrams are 
onsidered up tohomotopy, thus the dimension of Br(δ) is (2r−1)!! = (2r−1)·(2r−3) · · · 3·1. To multiplytwo Brauer diagrams, say b1 and b2, the diagrams are 
on
atenated, with b1 drawn ontop of b2, and any 
losed loops appearing are removed, to give a Brauer diagram d. Theresult of the multipli
ation then is, by de�nition, b1 · b2 = δcd, where c is the numberof 
losed loops removed. Typi
ally the parameter δ is understood from the 
ontext, andwe will denote the Brauer algebra by Br or just B. Brauer algebras were introdu
edin [2℄ in the 
ontext of generalising S
hur-Weyl duality from general linear groups toorthogonal and symple
ti
 subgroups. For more details and examples see for instan
e[2, 3, 21, 22, 25, 27℄. The restri
tion of the parameter δ = ±n is ne
essary to obtainan a
tion of the Brauer algebra Br(δ) on the generalised symmetri
 powers SymλE. In
hara
teristi
 zero, Brauer algebras are semisimple for non-integral parameter.Let k be an algebrai
ally 
losed �eld of 
hara
teristi
 p ≥ 0 and let n, r be positiveintegers. Let E be an n-dimensional k-ve
tor spa
e and let ω be a non-degeneratesymmetri
 bilinear form on E. The orthogonal group relative to ω isOn = {g ∈ GLn | ω(gx, gy) = ω(x, y) for all x, y ∈ E }.Similarly for n = 2m even positive integer, let ω be a non-degenerate skew-symmetri
bilinear form on E. The symple
ti
 group relative to ω isSpn = {g ∈ GLn | ω(gx, gy) = ω(x, y) for all x, y ∈ E }.In the following, we let G ∈ {Spn,On}. The 
lassi
al groups GLn, Spn and On operateon E by matrix multipli
ation. This a
tion extends diagonally to an a
tion on the tensorspa
e E⊗r.Brauer diagrams 
an be interpreted as G-homomorphisms in the following way: Assume

E has basis {v1, . . . , vn}, and let {v1, . . . , vn} be the dual basis of E with respe
t to the



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 5invariant form ω. De�ne
ϑ =

n∑

i=1

vi ⊗ vi.Then ϑ is G-invariant (see [18, 4.3.2.℄). For 1 ≤ i, j ≤ n, de�ne the (i, j)th 
ontra
tionoperator Ci,j : E⊗r → E⊗r−2 by
Ci,j(x1 ⊗ · · · ⊗ xr) = ω(xi, xj)x1 ⊗ · · · ⊗ x̂i ⊗ · · · ⊗ x̂j ⊗ · · · ⊗ xrwhere we omit the ith ve
tor xi and the jth ve
tor xj in the tensor produ
t. Moreover,the (i, j)th expansion operator Di,j : E

⊗r−2 → E⊗r is de�ned by
Di,j(x1 ⊗ · · · ⊗ xr−2) =

n∑

t=1

x1 ⊗ · · · ⊗ vt ⊗ · · · ⊗ vt ⊗ · · · ⊗ xr−2.Here vt is in the ith position and vt is in the jth position. Setting bij = Di,j ◦ Ci,j , itis easily 
he
ked that bi,j = bj,i. By (1) below, all elements in EndG(E
⊗r) 
oin
ide withelements in the Brauer algebra Br. In parti
ular, the element bi,j 
oin
ides with theBrauer diagram

bi,j =

• · · · • • • · · · • • • · · · •

• · · · • •i • · · · • •j • · · · •with the horizontal edges between verti
es i and j. Here the top row horizontal ar

orresponds to the 
ontra
tion operator, and the ar
 in the bottom row 
orresponds tothe expansion operator.Diagrams 
onsisting of r − 2l through strings 
onne
ting top and bottom verti
es (and
l ar
s at 
orresponding top and bottom pla
es), naturally 
orrespond to elements of asymmetri
 group Σr−2l. Su
h elements are G-endomorphisms of tensor spa
e fa
toringthrough the smaller tensor spa
e E⊗r−2l. Every Brauer diagram 
an be fa
torised asa produ
t of 
ontra
tion operators, an element of a symmetri
 group Σr−2l and then aprodu
t of expansion operators. This fa
torisation is the basi
 ingredient of the 
ellularstru
ture of the Brauer algebra, for details see [27℄.From now on, we assume n ≥ 2r in 
ase G is a symple
ti
 group and n > 2r in the orthog-onal 
ase. Then the Brauer algebra with parameter ±n a
ts faithfully on tensor spa
e
E⊗r. Results by Brauer [2℄ in 
hara
teristi
 zero, and in general by De Con
ini�Pro
esi[8℄, Oehms [31℄, Dipper�Doty�Hu [9, 16℄ and Tange [35℄ extend 
lassi
al S
hur-Weyl du-ality to orthogonal and symple
ti
 subgroups, implying in parti
ular the following twoisomorphisms:(1) Br(n) = EndOn(E

⊗r), Br(−n) = EndSpn(E
⊗r).(2) Senv(O(n)) = EndBr(n)(E

⊗r), Senv(Sp(n)) = EndBr(−n)(E
⊗r).Re
all that here Senv(G) denotes the enveloping algebra in Endk(E

⊗r) of the respe
tivegroup. A version of S
hur-Weyl duality involving HomG(E
⊗s, E⊗t) with s and t notne
essarily equal 
an be found in [35℄: In this version, tensor spa
e E⊗r is repla
edby a dire
t sum ⊕r

s=0E
⊗s. In Theorem 3 of [35℄, S
hur-Weyl duality is shown for thissituation; the statement and the 
onditions 
oin
ide with those of usual S
hur-Weyl



6 ANNE HENKE, STEFFEN KOENIGduality. (This also works in the orthogonal 
ase, see Remark 3 in [35℄.) Here, basiselements of G-homomorphisms between tensor spa
es of di�erent degrees are representedby generalised Brauer diagrams (
alled (u, v)-diagrams in [35℄) with u verti
es in the toprow and t verti
es in the bottom row. See [35, Se
tion 3℄ for explanations and details.Generalised Brauer diagrams with not ne
essarily equal numbers of verti
es in top andbottom row are the morphisms in the 
ategory of Brauer diagrams, as des
ribed indetail in [28℄, where 
lassi
al results of invariant theory are also dis
ussed in detail, andextended.When G is a symple
ti
 or an even orthogonal group, the enveloping algebra Senv(G) isa generalised S
hur algebra in the sense of Donkin, whi
h gives it additional relevan
e, asfollows: The 
lassi
al type A S
hur algebra de�ned by Green [19℄ provides a frameworkto study the polynomial representation theory of the general linear group GLn. Infa
t, the algebra Senv(G) in this 
ase 
oin
ides with Green's algebra S(n, r), and themodules over S(n, r) are the polynomial representations of G that are homogeneous ofdegree r. Donkin [11℄ generalised this 
on
ept to rational representations of redu
tivegroups asso
iated with �nite saturated sets of weights. Generalised S
hur algebras arequasi-hereditary, so their module 
ategories are highest weight 
ategories in the sense ofCline�Parshall�S
ott [6℄. The union of these module 
ategories exhausts the 
ategoryof rational representations of the given group. When G is a symple
ti
 group, the setof weights o

uring in E⊗r is saturated, and Senv(Spn) 
oin
ides with the generalisedS
hur algebra asso
iated with this set of weights. A similar result holds true for evenorthogonal groups. In the 
ase of odd orthogonal groups, the set of weights in E⊗r is notsaturated. Hen
e for n odd, Senv(On) is in general not a generalised S
hur algebra. Itis, however, a dire
t summand of a generalised S
hur algebra. Our assumption n > 2r inthe orthogonal 
ase ensures that the enveloping algebras Senv(On) and Senv(SOn) of theorthogonal and the spe
ial orthogonal group, both a
ting on tensor spa
e, do 
oin
ide.The same is true for the 
orresponding generalised S
hur algebras. See [15, Se
tion 4℄and [29, 30℄ for details. This will allow us in Subse
tion 3.3 to use Brundan's results [4℄on restri
tion from general linear to spe
ial orthogonal groups in order to get informationon restri
tion to orthogonal groups.2.2. S
hur algebras of Brauer algebras. S
hur algebras SB(n, r) of Brauer algebrashave been studied in the pre
eding arti
le [24℄. These algebras are endomorphism alge-bras of dire
t sums of permutation modules of Brauer algebras, whi
h have been de�nedby Hartmann and Paget [22℄. For l ≤ r
2 and λ ⊢ r− 2l, the permutation module M(l, λ)is de�ned as

M(l, λ) =Mλ ⊗kΣr−2l
elBrwhere

el =
1

δl
·

• · · · • • • · · · • •

• · · · • • • · · · • •
(3)with l ar
s in top and bottom row, respe
tively, and Mλ is the permutation module(indexed by λ) asso
iated with the symmetri
 group Σr−2l.By de�nition, for any �xed parameter δ 6= 0, the S
hur algebra SB(n, r) := SB(n, r, δ) isthe endomorphism ring of the dire
t sum ⊕l,λM(l, λ) of all permutation modules of the



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 7Brauer algebra:
SB(n, r) = EndBr(

⊕

λ⊢r−2l,0≤l≤ r
2

M(l, λ)).We drop the parameter δ in notation; later on, it will be assumed to be n or −n whenwe work with the orthogonal or the symple
ti
 group, respe
tively.In [24, Theorem 7.1℄ it has been shown, in parti
ular, that SB(n, r) is a quasi-hereditaryalgebra. So its module 
ategory is a highest weight 
ategory. Moreover, SB(n, r) isrelated to the Brauer algebra Br by a S
hur-Weyl duality on the dire
t sum ⊕M(l, λ)of the permutation modules. This S
hur-Weyl duality is di�erent from that stated inCorollary 1.2, but related to it; see Se
tion 3.11 below for more information.In [24, Theorem 5.3℄ an expli
it basis of the S
hur algebra SB(n, r) has been 
onstru
ted,
onsisting of B-homomorphisms
φu,π,σ :M(l, λ) →M(m,µ)(4)with

π ∈ Σr−2m a representative of Σµ\Σr−2m/(Σr−2u ×Hu−m),

σ ∈ Σr−2l a representative of (Σν ×Hu−l)\Σr−2l/Σλ,where Σν = Σr−2u ∩ π
−1Σµπ.Then the B-homomorphism

φu,π,σ :M(l, λ) −→M(m,µ)is expli
itly given on a generator of M(l, λ) by
φu,π,σ(Σλ · id⊗ el) =

∑

α∈Σλ∩σ−1(Σν×Hu−l)σ\Σλ

(Σµ · id⊗ eπ,u)σ · α(see [24, Subse
tion 5.3℄).By [24, Se
tion 10℄, su
h a basis element φu,π,σ 
orresponds to a triple, say (v,w, ξ(σ̂)),de�ned as follows:
v ∈ V r−2m

u−m / ∼kΣµ
is a partial (bottom) ar
 
on�guration, 
orresponding to π;

w ∈ V r−2l
u−l / ∼kΣλ

is a partial (top) ar
 
on�guration, 
orresponding to σ;
ξ(σ̂) is the S
hur algebra element 
orresponding to the double 
oset Σρσ̂Σν .In the third datum, Σρ = Σr−2u ∩ σΣλσ

−1. The element σ̂ has been de�ned in [24,Notation 8.3℄ as the restri
tion of σ to the 'free' verti
es not atta
hed to horizontal ar
s.This way of writing the basis uses [24, Se
tion 8℄, whi
h asserts that the 
lassi
al S
huralgebra S(n, r − 2l), for ea
h l, is a non-unital subalgebra of SB(n, r).For the proof of Proposition 3.8 we need the following formula that expresses the dimen-sion of HomBr(M(l, λ),M(m,µ)) in terms of generalised Brauer diagrams by indexingand 
ounting basis elements of SB(n, r) as explained above.Proposition 2.1. Fix a partition λ of r − 2l and a partition µ of r − 2m. Denote by
Xr−2l
r−2m the set of all Brauer diagrams with r − 2l verti
es in the top row and r − 2mverti
es in the bottom row. Let the group Σλ × Σµ a
t on Xr−2l

r−2m by the �rst 
omponent



8 ANNE HENKE, STEFFEN KOENIGof its elements permuting the verti
es in the top row and the se
ond 
omponent permutingthe verti
es in the bottom row.Then the dimension of HomBr(M(l, λ),M(m,µ)) equals the number of orbits in
Σλ\X

r−2l
r−2m/Σµ := Xr−2l

r−2m/(Σλ × Σµ).Proof. By the des
ription above, a homomorphism φu,π,σ : M(l, λ) −→ M(m,µ) isrepresented by a triple 
onsisting of a top ar
 
on�guration, a bottom ar
 
on�gurationand a permutation de�ning the through strings, that is, by a Brauer diagram, modulothe a
tion of Σλ on the top verti
es and of Σµ on the bottom verti
es. �3. Proof of Main Theorem, and 
onsequen
es3.1. Outline. The proof of the Main Theorem 1.1 o

upies the following seven sub-se
tions. Subse
tion 3.2 re
alls basi
 material on symmetri
 powers and �xes notation.Subse
tion 3.3 
olle
ts several abstra
t results from the literature, on 
ategories of rep-resentations of 
lassi
al groups and on restri
tion from general linear to orthogonal orsymple
ti
 groups. We are going to use these results to show that 
ertain dimensionsof homomorphism spa
es do not depend on the 
hara
teristi
 of the underlying �eld k.In Se
tion 4, an alternative 
ombinatorial proof of this fa
t and a dire
t 
ombinatorialdes
ription of these morphism spa
es will be given in 
ase of 
hara
teristi
 zero or largeprime 
hara
teristi
.Subse
tion 3.4 introdu
es S
hur fun
tors and de�nes the algebra homomorphism φ :
SB(n, r) → C that will be shown to be an isomorphism. Moreover, an alternativedes
ription of tensor produ
ts of symmetri
 powers will be given, as images of an inverseS
hur fun
tor. In Subse
tion 3.5, a 
hara
teristi
 free 
ombinatorial des
ription will begiven for the spa
e of G-module homomorphisms from tensor spa
e to tensor produ
tsof symmetri
 powers. This is used in Subse
tion 3.6 to des
ribe permutation modules ofBrauer algebras as images under a S
hur fun
tor, providing a 
ounterpart to the resultin Subse
tion 3.5. In Subse
tion 3.7, inje
tivity of Φ is shown, and in Subse
tion 3.8,proving surje
tivity �nishes the proof of the Main Theorem 1.1. Subse
tions 3.9 and 3.10prove and explain Corollaries 1.2 and 1.3. Finally, Subse
tion 3.11 dis
usses 
onne
tionsbetween several S
hur fun
tors and puts the information together.3.2. Symmetri
 powers. Let E be an n-dimensional k-ve
tor spa
e and λ =
(λ1, . . . , λn) a 
omposition of r into n parts some of whi
h possibly are zero. For anatural number m, de�ne the mth symmetri
 power

SymmE = E⊗m/Imwith Im = 〈x1 ⊗ · · · ⊗ xm − xτ(1) ⊗ · · · ⊗ xτ(m) | τ ∈ Σm, xi ∈ E〉. The symmetri
 power
SymmE 
an be identi�ed with the ve
tor spa
e of all polynomials in n variables that arehomogeneous of degree m. Denoting by {v1, . . . , vn} a basis of E, the spa
e SymmE hasbasis

{vi11 · · · vinn |

n∑

j=1

ij = m}.



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 9We write πr for the natural proje
tion πr : E⊗r → SymrE. For the 
omposition λ =
(λ1, . . . , λn) of r, de�ne SymλE = Symλ1E ⊗ · · · ⊗ SymλnE. We will refer to SymλEas symmetri
 powers. Let πλ = πλ1 ⊗ · · · ⊗ πλn . For x = x1 ⊗ · · · ⊗ xr write xλ for theelement

xλ = x1 · · · xλ1 ⊗ xλ1+1 · · · xλ1+λ2 ⊗ · · · ⊗ · · · xr ∈ SymλE.Then πλ(x) = xλ. More generally, we use the following notation: Let x = x1⊗· · ·⊗xr−2land λ = (λ1, λ2, . . .) be a 
omposition of r − 2l. Write xλ for the element
xλ = x1 · · · xλ1 ⊗ xλ1+1 · · · xλ1+λ2 ⊗ · · · ⊗ · · · xr−2l ∈ SymλE.De�ne the G-homomorphism πλ,l as 
omposition

πλ,l : E
⊗r → E⊗r−2l ⊗ ϑl → SymλE ⊗ ϑlwhere the �rst map is given by l 
ontra
tions on adja
ent pla
es on the last 2l pla
esin the tensor produ
t, and the se
ond map is given by the natural proje
tion x 7→ xλ,tensored with the identity map on the last 2l pla
es of the tensor produ
t. We say that

xi and xj are in the same λ-
omponent of the tensor x, if for some t ≥ 0,
t∑

s=1

λs < i, j ≤

t+1∑

s=1

λs.Then the kernel of the map πλ is spanned by elements of the form
xij := x(id− (i, j)) = · · · ⊗ xi ⊗ · · · ⊗ xj ⊗ · · · − · · · ⊗ xj ⊗ · · · ⊗ xi ⊗ · · ·where xi and xj lie in the same λ-
omponent.3.3. Categories of �ltered modules. The endomorphism ring C to be determined inthis arti
le depends, by de�nition, on the underlying �eld k and its 
hara
teristi
. TheS
hur algebra SB(n, r) of the Brauer algebra, whi
h will be shown to be isomorphi
 to

C, has been shown in [24℄ not to depend on k, in the sense that it has a 
ombinatoriallyde�ned basis that is independent of k. The stru
ture 
onstants of this basis and thering stru
ture of SB(n, r) - for instan
e, whether it is semisimple or not - do howeverheavily depend on k. The dimensions of the Brauer algebras and of the generalisedS
hur algebras of 
lassi
al groups also do not depend on k. Hen
e the dimensions ofthe endomorphism rings o

uring in S
hur-Weyl duality are independent of k, too. Inthis subse
tion we re
all results from representation theory of 
lassi
al groups that implysu
h 
hara
teristi
 independen
e and we 
olle
t fa
ts to be used later on to show thatalso the dimension of C does not depend on k.Rational representations of 
lassi
al groups G form highest weight 
ategories. There-fore, Donkin's generalised S
hur algebras [11℄ are quasi-hereditary algebras as de�nedby Cline, Parshall and S
ott in [6℄. Their proje
tive modules are �ltered by standardmodules ∆(λ) and their inje
tive modules are �ltered by 
o-standard modules ∇(λ). Thestandard modules are pre
isely the Weyl modules and the 
o-standard modules are dualWeyl modules, where dual refers to the 
ontravariant duality in the 
ategory of rationalrepresentations.The 
ategory F(∆) is the full sub
ategory of the 
ategory of rational representations
onsisting of the modules that admit a �ltration whose se
tions are Weyl modules. The
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ategory F(∇) is de�ned dually, using 
ostandard modules. Cru
ial homologi
al infor-mation is provided by the following orthogonality property:(5) ExtjG(∆(λ),∇(µ)) =

{
k, if j = 0andλ = µ,

0, otherwise.Using long exa
t 
ohomology sequen
es, a similar Ext-orthogonality is obtained betweenobje
ts in F(∆) and obje
ts in F(∇). An important 
onsequen
e is that obje
ts in theinterse
tion of these two 
ategories have no self-extensions. More pre
isely, F(∆)∩F(∇)equals add(T ), the 
ategory of dire
t summands of dire
t sums of Ringel's 
hara
teristi
tilting module T , see [32℄ or, for instan
e, [14℄. Up to a 
hoi
e of multipli
ities of dire
tsummands, the equality add(T ) = F(∆) ∩ F(∇) 
an be taken as de�nition of T . The
hara
teristi
 tilting module T is an inje
tive obje
t in F(∆) and a proje
tive one in
F(∇). By the orthogonality property (5), the fun
tors HomG(−,∇(µ)) are exa
t onshort exa
t sequen
es in F(∆) and the fun
tors HomG(∆(λ),−) are exa
t on shortexa
t sequen
es in F(∇). Indu
tively, it follows that the dimension of HomG(X,Y ) for
X in F(∆) and Y in F(∇) only depends on the multipli
ities in the ∆-�ltration of
X and in the ∇-�ltration of Y . Su
h �ltrations, and the multipli
ities, are preservedunder modular redu
tion from 
hara
teristi
 zero to prime 
hara
teristi
. Therefore,dimensions of HomG(X,Y ) are 
hara
teristi
 independent: More pre
isely, when X isa module with standard �ltration and Y is a module with 
o-standard �ltration, thenthe spa
e of homomorphisms HomG(X,Y ) has dimension ∑

λ aλbλ, where aλ is themultipli
ity of ∆(λ) in any standard �ltration of X and bλ is the multipli
ity of ∇(λ)in any 
o-standard �ltration of Y . These multipli
ities are well-de�ned, by generaltheory of quasi-hereditary algebras, and independent of k. Hen
e the dimension of
EndG(E

⊗r) does not depend on k or its 
hara
teristi
. In order to establish 
hara
teristi
independen
e of dimensions of 
ertain morphism spa
es, we will use that the relevantobje
ts are in the sub
ategories F(∆) and F(∇), respe
tively, see Proposition 3.2 below.An example is S
hur-Weyl duality for general linear groups. Over G = GLn with n ≥ r,tensor spa
e E⊗r is proje
tive and inje
tive and therefore a dire
t summand of the
hara
teristi
 tilting module. When dropping the assumption n ≥ r, tensor spa
e isnot proje
tive any more, but still a dire
t summand of the 
hara
teristi
 tilting module.Even in this general 
ase, S
hur-Weyl duality 
an be derived using su
h arguments, see[26℄ for details.Proposition 3.1. Let G be a 
lassi
al group. Let n ≥ r when G = GLn is a generallinear group and let n and r be as in Theorem 1.1 when G is orthogonal or symple
ti
.Then tensor spa
e E⊗r is relative inje
tive in F(∆) and relative proje
tive in F(∇).Here, relative proje
tive or inje
tive means exa
tness of the respe
tive Hom-fun
tor onshort exa
t sequen
es in the sub
ategory, and thus vanishing of �rst extension groups.For example, P ∈ F(∇) is relative proje
tive in F(∇) if and only if Ext1G(P,−) vanisheson F(∇), whi
h is an extension 
losed sub
ategory.Proof. When G = GLn and n ≥ r, then tensor spa
e E⊗r is a proje
tive module overthe 
lassi
al S
hur algebra. Sin
e it is self-dual, it is also inje
tive. See [19℄ for details.Proje
tive modules are ∆-�ltered and inje
tive modules are ∇-�ltered. Therefore, E⊗r



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 11has both �ltrations and must be a dire
t summand of a dire
t sum of 
opies of the
hara
teristi
 tilting module T , whi
h is relative inje
tive in F(∆) and relative proje
tivein F(∇).Now let G be the symple
ti
 or the orthogonal group a
ting on tensor spa
e by restri
t-ing the GLn-a
tion. When restri
ting representations from general linear to symple
ti
or orthogonal groups, the 
ategories F(∆) and F(∇) are mapped into the 
orrespond-ing 
ategories for the smaller groups by results of Donkin and Brundan, see [13, 4℄.More pre
isely, Proposition 3.3 in [4℄ states in parti
ular that the pairs (SLn, SPn) and
(SLn, SOn) (the latter only in 
ase of 
hara
teristi
 di�erent from two) are good pairs.This means restri
ting from the �rst group to the se
ond sends modules with∇-�ltrationsover the �rst group to modules with ∇-�ltrations over the se
ond group. The �rst 
ase,involving the symple
ti
 group, follows from a result of Donkin, in Appendix A of [13℄.Hen
e, tensor spa
e is a dire
t summand of a 
hara
teristi
 tilting module over every
lassi
al group, and thus it is relative inje
tive in F(∆) and relative proje
tive in F(∇).

�Over G = GLn, the full tensor powers of the symmetri
 powers are inje
tive and thereforethey are obje
ts in F(∇). Be
ause of the 
ompatibility with restri
tion just quoted thisimplies:Proposition 3.2. Let G be a 
lassi
al group, n and r as in Proposition 3.1 and λ apartition of some s ≤ r. Then the dimension of HomG(E
⊗r,SymλE) does not dependon the ground �eld k.When working with sub
ategories and using 
ohomology it is important to know thatkernels of 
ertain surje
tive maps belong to the given sub
ategory. We will need:Lemma 3.3. In the short exa
t sequen
e

0 → kernel → E⊗|λ| πλ−→ SymλE → 0the kernel is in F(∇).This short exa
t sequen
e gives the relative proje
tive 
over of SymλE in the sub
ategory
F(∇). Lemma 3.3 has been shown by Donkin in [14, 
laim 2.1.(15((ii)(b)℄ in the 
aseof quantum general linear groups. As remarked there, the proof given there works forredu
tive algebrai
 groups as well.3.4. S
hur fun
tors. From now on, G is a symple
ti
 or orthogonal group and theassumptions of Theorem 1.1 are valid. Following [15℄, we de�ne the S
hur fun
tor f0 andthe inverse S
hur fun
tor g0 for the symple
ti
 and orthogonal groups as follows:

f0 : mod-G→ mod-Br, f0(−) = HomG(E
⊗r,−),

g0 : mod-Br → mod-G, g0(−) = −⊗Br E
⊗r.with G = Spn or G = On respe
tively. Here, as throughout, module 
ategories are
ategories of �nite dimensional right modules. Unlike in [15℄, we assume here that thea
tion of the Brauer algebra Br on the tensor spa
e is without a twist by a sign (sin
e we



12 ANNE HENKE, STEFFEN KOENIGare using Br = Ar as explained above). Moreover, we use G-modules instead of modulesover a generalised S
hur algebra, to simplify notation.Lemma 3.4. For all l and all λ ⊢ r − 2l there is an isomorphism of G-modules
g0(M(l, λ)) ≃ SymλE ⊗ ϑl.This has been shown in [15, Prop 2.2℄. In our notation it 
an be seen as follows:Proof. Let πλ = πλ,0. In the following, g : mod-Σr → mod-S(n, r), de�ned by g(−) =

−⊗kΣr
E⊗r denotes the usual 
lassi
al (type A) inverse S
hur fun
tor asso
iated to GLn.Then there is a 
hain of G-module isomorphisms, whose 
omposition we denote by κ:

g0(M(l, λ)) = M(l, λ)⊗Br E
⊗r

≃ Mλ ⊗kΣr−2l
elBr ⊗Br E

⊗r

≃ Mλ ⊗kΣr−2l
elE

⊗r

≃ Mλ ⊗kΣr−2l
(E⊗r−2l ⊗ ϑl)

≃ (Mλ ⊗kΣr−2l
E⊗r−2l)⊗ ϑl

≃ g(Mλ)⊗ ϑl

≃ SymλE ⊗ ϑl.The latter is isomorphi
 to SymλE as G-module sin
e ϑ is the trivial G-module.Here, as G-modules,
̂ : elE⊗r = E⊗r−2l ⊗ ϑl ≃ E⊗r−2l, x 7→ x̂,given by ẑ ⊗ ϑl = z, and Σr−2l operates by pla
e permutations (without sign) on thetensor spa
e E⊗r−2l. Given x ∈ E⊗r, the isomorphism κ above is realised by mapping

Σλσ ⊗ elb⊗ x 7→ πλ(σ̂elbx)⊗ ϑl,with well-de�ned inverse map given by
πλ(x̂)⊗ ϑl 7→ Σλid⊗ el ⊗ x.

�The inverse S
hur fun
tor g0 indu
es an algebra homomorphism(6) Φ : SB(n, r) → C, α 7→ g0(α)where SB(n, r) = EndBr(⊕M(l, λ)) and
C = EndG(

⊕

l≤ r
2
,λ⊢r−2l

(SymλE ⊗ ϑl)) ≃ EndG(
⊕

l≤ r
2
,λ⊢r−2l

(SymλE)).It is this map Φ that will be shown to be an isomorphism, when proving Theorem 1.1.
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e to symmetri
 powers. By Proposition 3.2, the di-mension of HomG(E
⊗s ⊗ ϑl,SymµE ⊗ ϑm) does not depend on k. We will now give a
ombinatorial des
ription of these homomorphisms in terms of Brauer diagrams.Proposition 3.5. Let s = r−2l, t = r−2m and µ a partition of t. Then in the diagram

E⊗s ⊗ ϑl
γ

//

β
''O

O

O

O

O

O

E⊗t ⊗ ϑm

πµ

��

SymµE ⊗ ϑm

,


omposition with πµ provides a surje
tive map
πµ ◦ − : γ 7→ πµ ◦ γ = βindu
ing an isomorphism

α : HomG(E
⊗s ⊗ ϑl, E⊗t ⊗ ϑm)/Σµ ≃ HomG(E

⊗s ⊗ ϑl,SymµE ⊗ ϑm).By S
hur-Weyl duality (as formulated in [35℄), the maps γ are linear 
ombinations of
(s, t)-Brauer diagrams, whose rows have s and t verti
es, respe
tively. Ea
h β is of theform β = πµ ◦γ. Moreover, γ1 and γ2 de�ne the same β if and only if there exists σ ∈ Σµsu
h that γ2 = σ ◦ γ1.Proof. Composition with πµ de�nes a map πµ ◦ − as stated. This map is surje
tive:Indeed, the map β : E⊗s ⊗ ϑl → SymµE ⊗ ϑm starts and ends in obje
ts of F(∇) andthe surje
tive map πµ : E⊗t ⊗ ϑm → SymµE ⊗ ϑm is part of a short exa
t sequen
e in
F(∇), by Lemma 3.3. By Proposition 3.1, module E⊗t ≃ E⊗s⊗ ϑl is relative proje
tivein F(∇). Being relative proje
tive is equivalent to having the lifting property:

E⊗s ⊗ ϑl

∃γ

ww

∀β

��
�

�

�

kernel(πµ) // E⊗t ⊗ ϑm
πµ

// SymµE ⊗ ϑmThus, β = πµ ◦ γ for some γ. Note that the lifting property requires the kernel of thesurje
tive map πµ to belong to the sub
ategory F(∇).Certainly, γ1 and γ2 de�ne the same β if there exists σ ∈ Σµ su
h that γ2 = σ ◦ γ1.We have to show the 
onverse, whi
h implies inje
tivity of α. By Proposition 3.2, thedimension of HomG(E
⊗s⊗ϑl,SymµE⊗ϑm) does not depend on the 
hoi
e of the ground�eld k.Therefore, it is enough to 
he
k inje
tivity of α in 
hara
teristi
 zero.In that 
ase, SymµE⊗ϑm is a dire
t summand of E⊗t⊗ϑm through the split epimorphism

πµ. More pre
isely, this provides an isomorphism SymµE⊗ ϑm ≃ (E⊗t⊗ ϑm)/Σµ. Over
GLn, S
hur-Weyl duality implies an isomorphism

HomGLn(E
⊗t ⊗ ϑm,SymµE ⊗ ϑm) ≃ HomGLn(E

⊗t ⊗ ϑm, (E⊗t ⊗ ϑm)/Σµ)

≃ HomGLn(E
⊗t ⊗ ϑm, (E⊗t ⊗ ϑm))/Σµ

≃ kΣt/Σµ.



14 ANNE HENKE, STEFFEN KOENIGIndeed, by S
hur-Weyl duality the GLn-maps between the tensor spa
es are linear 
om-binations of group elements in Σt. Thus the GLn-maps into the symmetri
 power are the
ompositions of these maps with the split epimorphism πµ, whi
h identi�es the elementsin ea
h 
oset of Σt/Σµ. This shows that HomGLn(E
⊗t ⊗ ϑm,SymµE ⊗ ϑm) ⊂ kΣt/Σµ.Sin
e tensor spa
e is isomorphi
 to a full dire
t sum of 
opies of symmetri
 powers (the
ontragredient dual of the S
hur algebra, whi
h is a full set of inje
tive modules), thein
lusion must be equality. The multipli
ation map

HomG(E
⊗s ⊗ ϑl, E⊗t ⊗ ϑm)⊗kΣt

HomGLn(E
⊗t ⊗ ϑm,X) → HomG(E

⊗s ⊗ ϑl,X)is an isomorphism for X = E⊗t ⊗ ϑm, again by S
hur-Weyl duality. Thus it is anisomorphism for X a dire
t summand of E⊗t ⊗ ϑm, too, hen
e in parti
ular for X =
SymµE ⊗ ϑm. This assertion is a spe
ial 
ase of [15, Lemma 2.3(ii)℄. This provesinje
tivity of α. �3.6. The image of SymλE under the S
hur fun
tor. We next apply the S
hurfun
tor f0 to symmetri
 powers. The following result restates parts of [15, Theorem 2.1and Theorem 4.1℄ in our notation:Lemma 3.6. For all l and all λ ⊢ r − 2l there is a right B-module isomorphism

f0(Sym
λE ⊗ ϑl) ≃M(l, λ).Proof. First we show that the two ve
tor spa
es have the same dimension, and then weprovide an expli
it G-module isomorphism. By [22, 24℄, the ve
tor spa
e dimension of

M(l, λ) does not depend on the 
hoi
e or 
hara
teristi
 of k. More pre
isely, by de�nition
M(l, λ) =Mλ ⊗ elBr has a basis 
onsisting of Σλ-orbits on elBr; so, the basis elementsare represented by Σλ-orbits of Brauer diagrams with rows of r and r − 2l verti
es,respe
tively, the remaining 2l verti
es being reserved for l �xed ar
s.By Proposition 3.2 in Subse
tion 3.3, the dimension of

f0(Sym
λE ⊗ ϑl) = HomG(E

⊗r,SymλE ⊗ ϑl)does not depend on k either. By Proposition 3.5, this ve
tor spa
e has a basis 
onsistingof Σλ-orbits of Brauer diagrams also having rows of r and r − 2l verti
es with l �xedar
s on the remaining 2l verti
es; hen
e this basis is in bije
tion with the above basis of
M(l, λ).An expli
it isomorphism ψ : M(l, λ) → f0(Sym

λE ⊗ ϑl) with x 7→ ψx is given by thefollowing map: Given an element x = Σλσ⊗elb ∈Mλ⊗elB =M(l, λ), then x is mappedto
ψx : E⊗r b·

−→ E⊗r el·−→ E⊗r−2l ⊗ ϑl
σ·
−→ E⊗r−2l ⊗ ϑl

πλ−→ SymλE ⊗ ϑl,that is, ψx(v) = πλ(σelbv). By S
hur-Weyl duality, see (1), this is a right G-module homomorphism. Map ψ sends the above basis of M(l, λ) to the above basisof f0(SymλE ⊗ ϑl); hen
e ψ is an isomorphism. �
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tivity of Φ : SB(n, r) → C. By Lemma 3.4, the inverse S
hur fun
tor sendspermutation modules M(l, λ) to symmetri
 powers SymλE ⊗ ϑl. Moreover, there existsa homomorphism of algebras
Φ : SB(n, r) −→ C, φu,π,σ 7→ g0(φu,π,σ).Under the homomorphism Φ, the basis element φu,π,σ :M(l, λ) →M(m,µ) of SB(n, r),see (4), is mapped to a G-homomorphism

g0(φu,π,σ) = φu,π,σ ⊗ id : SymλE ⊗ ϑl → SymµE ⊗ ϑmin the algebra C.Proposition 3.7. The map Φ is inje
tive, that is, SB(n, r) is a subalgebra of C.Proof. By Lemma 3.6 and Lemma 3.4, there are the following two isomorphisms of B-modules:
M(l, λ) → HomG(E

⊗r,SymλE ⊗ ϑl), Σλid⊗ elb 7→ πλ ◦mel ◦mb,and HomG(E
⊗r,SymλE ⊗ ϑl) → HomG(E

⊗r,M(l, λ) ⊗B E
⊗r) with

πλ ◦mel ◦mb 7→ κ−1 ◦ πλ ◦mel ◦mb.Here ma denotes multipli
ation by the element a from left, and
κ :M(l, λ)⊗B E

⊗r → SymλE ⊗ ϑl, Σλid⊗ elb⊗ x 7→ πλ(êlbx)⊗ ϑl.The 
omposition of these two isomorphisms is denoted as α(l, λ), that is
α(l, λ) :M(l, λ) → HomG(E

⊗r,M(l, λ) ⊗B E
⊗r), z 7→ (x 7→ z ⊗ x).Let ϕ :M(l, λ) →M(m,µ) be some B-homomorphism. Then applying the inverse S
hurfun
tor g0 and the S
hur fun
tor f0, we obtain:

Φ(ϕ) = g0(ϕ) = ϕ⊗ id : M(l, λ) ⊗ E⊗r →M(m,µ)⊗B E
⊗r,

f0(g0(ϕ)) = (ϕ⊗ id) ◦ − : HomG(E
⊗r,M(l, λ) ⊗B E

⊗r) → Hom(E⊗r,M(m,µ)⊗B E
⊗r).We 
he
k that the following diagram is 
ommutative:

M(l, λ)

ϕ

��

α(l,λ)
// Hom(E⊗r,M(l, λ) ⊗ E⊗r)

f0(g0(ϕ))
��

M(m,µ)
α(m,µ)

// Hom(E⊗r,M(m,µ) ⊗ E⊗r).Indeed, it is enough to 
he
k 
ommutativity by evaluating the maps on a generator
Σλid⊗ el of M(l, λ). By the de�nition of M(l, λ),

f0(g0(ϕ)) ◦ α(l, λ)(Σλid⊗ el) : x 7→ ϕ(Σλid⊗ el)⊗ x.Similarly,
α(m,µ)(ϕ(Σλid⊗ el)) : x 7→ ϕ(Σλid⊗ el)⊗ x.Assume that Φ(ϕ) = 0, that is g0(ϕ) = 0. Then f0(g0(ϕ)) = 0 and sin
e α(m,µ) is anisomorphism, it follows that

ϕ = α(m,µ)−1 ◦ f0(g0(ϕ)) ◦ α(l, λ) = 0.



16 ANNE HENKE, STEFFEN KOENIGThis implies that the map Φ : SB(n, r) → C is inje
tive. �Composing the S
hur fun
tor f0 with the isomorphisms κ−1 and α−1 de�nes an algebrahomomorphism
Ψ : C −→ SB(n, r), β 7→ β ◦ −,and the 
ommutative diagram in the proof shows that Ψ ◦ Φ is the identity.The map α(l, λ) 
an be produ
ed as an adjun
tion unit. In fa
t, the natural isomorphism

HomG(M(l, λ)⊗B E
⊗r,M(l, λ) ⊗B E

⊗r) ≃ HomB(M(l, λ),HomG(E
⊗r,M(l, λ) ⊗ E⊗r)sends the identity map on M(l, λ) to the map α(l, λ) : m 7→ [x 7→ m ⊗ x]. Thus,
ommutativity of the diagram in the above proof also follows from adjun
tion beingnatural.3.8. Surje
tivity of Φ : SB(n, r) → C. In Proposition 3.5, a basis of HomG(E

⊗s ⊗
ϑl,SymµE ⊗ ϑm) has been given 
ombinatorially, in terms of Brauer diagrams. Nextwe produ
e from this basis a 
ombinatorial basis of HomG(Sym

λE ⊗ ϑl,SymµE ⊗ ϑm).Counting basis elements yields surje
tivity of Φ, �nishing the proof of Theorem 1.1.Proposition 3.8. Fix s = r − 2l, t = r − 2m, λ a partition of s and µ a partition of t.Then in the diagram
E⊗s ⊗ ϑl

πλ
�� β

((P

P

P

P

P

P

P

SymλE ⊗ ϑl α
// SymµE ⊗ ϑm

,

pre-
omposition with πλ provides an inje
tive map
− ◦ πλ : α 7→ α ◦ πλ = βindu
ing an isomorphism

HomG(Sym
λE ⊗ ϑl,SymµE ⊗ ϑm) ≃ Σλ\HomG(E

⊗s ⊗ ϑl,SymµE ⊗ ϑm)Thus Φ is surje
tive, and hen
e an isomorphism.Proof. Given α, we 
an de�ne β := α ◦ πλ. Conversely β fa
tors in this way if and onlyif its kernel is 
ontained in the kernel of πγ , whi
h means β ◦ σ = β for all σ ∈ Σλ.This gives an upper bound for the number of maps α: The ve
tor spa
e dimension of
HomG(Sym

λE⊗ϑl,SymµE⊗ϑm) is bounded above by the dimension of Σλ\HomG(E
⊗s⊗

ϑl,SymµE⊗ϑm). By Proposition 3.5, the dimensions of the ve
tor spa
es HomG(E
⊗s⊗

ϑl,SymµE ⊗ ϑm) and HomG(E
⊗s ⊗ ϑl, E⊗t ⊗ ϑm)/Σµ are equal. Hen
e

dim HomG(Sym
λE ⊗ ϑl,SymµE ⊗ ϑm) ≤ dim Σλ\HomG(E

⊗s ⊗ ϑl, E⊗t ⊗ ϑm)/Σµ.The latter spa
e has a basis 
onsisting of orbits of Brauer diagrams with r−2s verti
es inthe top row and r−2t verti
es in the bottom row, under the a
tion of the group Σλ×Σµ onthe top verti
es through proje
tion of group elements on the �rst 
omponent, and on thebottom verti
es through the se
ond 
omponent. By Proposition 2.1, this is exa
tly the



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 17dimension of HomBr(M(s, λ),M(t, µ)). Hen
e dim C ≤ dim SB(n, r). By Proposition3.7 the map Φ is inje
tive, implying the 
onverse inequality. �Summarising the 
ombinatorial des
ription of maps obtained so far, we get the following
ommutative diagram:
E⊗s ⊗ ϑl

γ
//

πλ
�� β

((P

P

P

P

P

P

P

E⊗t ⊗ ϑm

πµ

��

SymλE ⊗ ϑl α
// SymµE ⊗ ϑm

,

The maps α have now been determined in terms of maps β, whi
h in turn have beendetermined in terms of maps γ. In all 
ases, 
ombinatorial des
riptions have been foundthat show that the dimensions of these morphism spa
es do not depend on the 
hara
-teristi
 of the underlying �eld. Moreover, the maps α have been shown to 
orrespond todouble 
osets of Brauer diagrams, similar to the des
ription in Proposition 2.1.3.9. Proof of Corollary 1.2. Re
all the de�nition of M := ⊕l,λ⊢n−2lSym
λE. Thereare two 
laims:

C = EndSenv(G)(M) and Senv(G) = EndSB(n,r)(M)The �rst 
laim is true by de�nition; we are going to prove the se
ond 
laim.Proof. The group algebra of the orthogonal or symple
ti
 group G a
ts on the ve
torspa
e M = ⊕l,λSym
λE via its �nite dimensional quotient algebra Senv(G). The algebra

Senv(G) a
ts faithfully on tensor spa
e and thus a fortiori on M . Sin
e the a
tions of
G on M and of SB(n, r) = EndG(M) on M 
ommute, those of Senv(G) on M and of
SB(n, r) on M 
ommute as well. Hen
e Senv(G) ⊂ E := EndSB(n,r)(M) and we have toshow the 
onverse in
lusion.Let e be the proje
tion from the G-module M to its G-dire
t summand E⊗r. Viewedas an endomorphism of M , the element e is an idempotent in SB(n, r) and it 
ommuteswith the elements of E . This implies that E⊗r = Me is an E-module and the a
tionof E on E⊗r 
ommutes with the a
tion of eSB(n, r)e. Sin
e tensor spa
e E⊗r is theimage of M(0, 1r) = Br under the inverse S
hur fun
tor g0, the 
entraliser algebra
eSB(n, r)e 
oin
ides with the Brauer algebra Br. By de�nition, E a
ts faithfully on
M = ⊕l,λ⊢n−2lSym

λE. As ea
h SymλE is a quotient of the tensor spa
e E⊗r, the a
tionof E on E⊗r is faithful. Thus E is 
ontained in EndBr(E
⊗r) = Senv(G) by Equation(2). �3.10. Proof of Corollary 1.3. Here, we give additional information on, and a proof ofCorollary 1.3.Proof. (a) The algebra C has an integral form with an expli
it basis, whi
h is independentof the ground �eld k and its 
hara
teristi
.The basis in assertion (a) 
orresponds under the isomorphism C ≃ SB(n, r) to the basisof SB(n, r) mentioned in Se
tion 2.2 and des
ribed in Equation (4); it has been shown



18 ANNE HENKE, STEFFEN KOENIGto be a basis in [24, Theorem 5.3℄. This basis is indexed by 
ertain double 
osets ofsymmetri
 groups. Hen
e it does not depend on the 
hara
teristi
 of the �eld. In fa
t,the ground ring need not even be a �eld.(b) The algebra C 
arries a quasi-hereditary stru
ture, that is C−mod is a highest weight
ategory.The quasi-heredity 
laimed in (b) follows from [24, Theorem 7.1℄, whi
h states the 
or-responding result for the algebra SB(n, r) in general. The 
ategory of �nite dimensionalmodules over a quasi-hereditary algebra always is a highest weight 
ategory.(
) The global (
ohomologi
al) dimension of C is �nite.Cline, Parshall and S
ott, and Dlab and Ringel have shown that quasi-hereditary algebrasover �elds have �nite global dimension, whi
h implies (
). See [7, Theorem 4.4℄ and [10,Appendix, Statement 9℄. More pre
isely, Dlab and Ringel have shown that the globaldimension is bounded above by 2s − 2, where s is the number of simple modules upto isomorphism. By statement (f) below, s equals the number of all partitions of allnumbers r − 2l ≥ 0.(d) There is a S
hur-Weyl duality between C and the Brauer algebra Br(±n).S
hur-Weyl duality between SB(n, r, δ) and Br(δ) on the bimodule ⊕M(l, λ) has beenshown in [24, Theorem 11.4(a)℄ for any parameter δ. It uses n ≥ 2r.Note that the 
laims on C are just spe
ial 
ases of known results for SB(n, r, δ). In fa
t,the assertions (a), (b) and (d) are all true for SB(n, r, δ) over any ground ring, and (
)is true over any ground �eld, and for any 
hoi
e of the parameter δ. The assertion (e),however, needs the ground ring to be a �eld, and n to be at least greater than or equalto r.(e) When the 
hara
teristi
 is di�erent from two or three, the algebra C satis�es a uni-versal property that makes it unique up to Morita equivalen
e: It is the quasi-hereditary1-
over of the Brauer algebra in the sense of Rouquier.The 
laim is [24, Theorem 11.4 (b) and (
)℄. Under these assumptions, the Brauer algebra
Br is of the form eSB(n, r)e for some idempotent e ∈ SB(n, r) and the two algebras Brand SB(n, r) are in S
hur�Weyl duality on the bimodule e · SB(n, r). A

ording toRouquier's de�nition [33℄, the algebra SB(n, r) is a 0-
over of Br. For a quasi-hereditary1-
over, an additional 
ondition is required: The exa
t S
hur fun
tor e ·− has to identifyextension spa
es between modules with standard �ltration over SB(n, r) with extensionspa
es over Br:

Ext1SB(n,r)(X,Y ) ≃ Ext1Br
(eX, eY ).These latter isomorphisms hold by [22℄, needing the 
hara
teristi
 being di�erent fromtwo and three. See [21, Se
tions 11, 12 and 13℄ for expli
it statements, and for moreinformation.



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 19(f) The simple C-modules are parametrised by the disjoint union of all partitions λ ⊢ r−2lof the non-negative integers of the form r, r − 2, r − 4, . . . .This is a 
onsequen
e of the quasi-hereditary stru
ture of the algebra SB(n, r) as exhib-ited in [24℄. The isomorphism 
lasses of simple modules of a quasi-hereditary algebra
orrespond bije
tively to the standard modules or equivalently to the ideals in a heredity
hain. The heredity 
hain is 
onstru
ted in [24℄ by �rst forming a 
oarse 
hain of ideals,indexed by non-negative integers of the form r−2l, and then re�ning this into a heredity
hain. The 
oarse 
hain imitates the 
hain of ideals in the Brauer algebra obtained by
ounting horizontal ar
s in top and bottom row. Within the 
oarse layer indexed by
r − 2l the heredity 
hain is indexed by all the partitions of r − 2l. Indeed, in a sensemade pre
ise in [24℄ this part of the heredity 
hain is 'indu
ed up' from a heredity 
hainof the 
lassi
al S
hur algebra S(n, r − 2l). �3.11. A triangle of S
hur fun
tors. Finally, we summarise the 
urrent situation withrespe
t to S
hur fun
tors for orthogonal and symple
ti
 groups, whi
h shows a markeddi�eren
e to the type A situation. In type A, Green's S
hur algebra is both a generalisedS
hur algebra and an endomorphism ring of permutation modules over kΣr. In typesB, C and D, tensor spa
e is di�erent from the sum of permutation modules over Br, see[25℄. We get the following triangle of fun
tors with non-trivial fun
tors between mod-G(or mod-Senv(G)) and mod-SB(n, r):mod-Senv(G) ⊂ mod-G � GS mod-SB(n, r)-

FS

R

f0

I

g0 mod-Br �
FM

	

GMwith
g0 = −⊗Br E

⊗r, f0 = HomG(E
⊗r,−),

GS = −⊗SB(n,r) (⊕SymλE), FS = HomG(⊕SymλE,−),

GM = −⊗SB(n,r) (⊕M(l, λ)), FM = HomBr(⊕M(l, λ),−).This triangle 
ommutes in the sense that GS = g0 ◦ GM and similarly for the adjoints.Indeed, there are isomorphims of left SB(n, r)-modules
M(l, λ)⊗Br E

⊗r ≃Mλ ⊗kΣr−2l
elBr ⊗Br E

⊗r ≃ SymλE ⊗ ϑl ≃ SymλEas in Se
tion 3.4. Uniqueness of adjoints then implies FS = FM ◦ f0.When the ground �eld k has 
hara
teristi
 di�erent from two and three, the fun
tors
FM and GM are mutually inverse equivalen
es between the exa
t 
ategories of ∆-�ltered
SB(n, r)-modules and 
ell �ltered Br-modules, by [22℄; this uses and extends a similarequivalen
e, due to Hemmer and Nakano [23℄, between Weyl �ltered modules of GLnand Spe
ht �ltered modules of kΣr. See also [21, 24℄ for further stru
tural propertiesand relations between mod-SB(n, r) and mod-Br. It is not known how well these two
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tors 
ompare or identify 
ohomology in higher degrees. By [17℄ this is equivalent tosaying that the dominant dimension of SB(n, r) is not known. The other two pairs offun
tors are not known to restri
t to equivalen
es between 
orresponding 
ategories of�ltered modules. The dominant dimensions of generalised S
hur algebras or of envelopingalgebras Senv(G) are not known.4. A dire
t 
ombinatorial des
ription of morphisms between symmetri
powersIn this Se
tion, we give a dire
t 
ombinatorial des
ription of the morphism spa
es be-tween symmetri
 powers assuming that the underlying �eld has 
hara
teristi
 zero orbigger than r. Under this assumption Theorem 1.1 
an be shown without using theresults 
olle
ted in Subse
tion 3.3.We use S
hur-Weyl duality for symple
ti
 and orthogonal S
hur algebras (stated abovein Equations (1) and (2)), whi
h in parti
ular implies that every G-endomorphism of thetensor spa
e E⊗r is given by multipli
ation with a Brauer algebra element ∑b λbb where
b runs through Brauer diagrams and λb ∈ k. Let πλ = πλ,l.For a 
omposition µ of r − 2m, the G-module homomorphism ιµ is de�ned to be the
omposition:

ιµ : SymµE ⊗ ϑm → E⊗r−2m ⊗ ϑm → E⊗r, xµ 7→
1

| Σµ |
·
∑

σ∈Σµ

(xσ)⊗ ϑm.Here the symmetri
 group a
ts by pla
e permutation.Under the assumption of the underlying �eld k having 
hara
teristi
 zero or larger than r,map ιµ is a split monomorphism, 
omposing with the split epimorphim πµ to the identityon SymµE ⊗ ϑm. For the following proof, the fa
tor 1
|Σµ|

may as well be omitted. The
ru
ial point is that under our assumptions, ιµ is inje
tive, whi
h is not true in general.Using the notation introdu
ed in Se
tion 3.2, the result is as follows:Proposition 4.1. Fix λ, µ and πλ, ιµ as above. Let ψ : E⊗r → E⊗r be a G-modulehomomorphism. Then ψ fa
tors as ψ = ιµ ◦ ϕ ◦ πλ = πλϕιµ,
E⊗r

ψ
//

πλ
��

E⊗r

SymλE ⊗ ϑl ϕ
// SymµE ⊗ ϑm

ιµ

OO
,

for some G-homomorphism ϕ : SymλE⊗ϑl → SymµE⊗ϑm, if and only if ψ =
∑

D λDDwith λD ∈ k. Here the sum runs over some elements D of the Brauer algebra, whi
h areof the form
Db =

∑

b′∈Tb

b′, with Tb = {σbτ | σ ∈ Σλ, τ ∈ Σµ}(7)



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 21where ea
h b is a Brauer diagram with l horizontal ar
s of adja
ent verti
es on the last
2l verti
es in the top row and with m horizontal ar
s of adja
ent verti
es on the last 2mverti
es in the bottom row. The fa
torisation of ψ is unique, if it exists.This proposition says in parti
ular that there is a k-linear bije
tion between the spa
e ofmaps ψ =

∑
D λDD and the maps ϕ. With the elements D being linearly independent,and their number being independent of the �eld k, it follows:Corollary 4.2. The dimension of the spa
e HomG(Sym

λE,SymµE) does not depend onthe 
hara
teristi
 of k, as long as this is zero or larger than r, more pre
isely, as long asthe map ιµ is inje
tive.Proof of Proposition4.1. Sin
e the Brauer algebra a
ts from the right, we write πλϕιµfor ψ = ιµ ◦ ϕ ◦ πλ.(a) By S
hur-Weyl duality for the tensor spa
e (see (1)), every G-endomorphism ψ ofthe tensor spa
e E⊗r is given by multipli
ation with a Brauer algebra element, say∑
b λbb, where the sum runs through some Brauer diagrams b ∈ Br(δ). Assume su
h ahomomorphism ψ =

∑
b λbb of the tensor spa
e E⊗r fa
tors through a homomorphism

SymλE ⊗ ϑl → SymµE ⊗ ϑm, that is ψ =
∑

b λbb = πλϕιµ for some ϕ : SymλE ⊗ ϑl →
SymµE ⊗ ϑm.(i) Sin
e el and em are the identity maps on elE

r = E⊗r−2l ⊗ ϑl and emE
r =

E⊗r−2m ⊗ ϑm, respe
tively, it follows that
el(

∑

b

λbb)em = (elπλ)ϕ(ιµem) = πλϕιµ =
∑

b

λbb.Sin
e Brauer diagrams form a basis of the Brauer algebra, the diagrams b allhave l ar
s on adja
ent verti
es on the last 2l verti
es in the top row, and m ar
son adja
ent verti
es on the last 2m verti
es in the bottom row.(ii) An arbitrary ve
tor in the image of ιµ is a linear 
ombination of ve
tors of theform ∑

σ∈Σµ

(xσ)⊗ ϑm.These ve
tors are invariant under the a
tion of Σµ. Let mτ be multipli
ationwith a permutation τ ∈ Σµ. Then ιµmτ = ιµ, and hen
e
(
∑

b

λbb)mτ = πλϕιµmτ = πλϕιµ =
∑

b

λbb.Note that ∑

b

λbb =
∑

b

λbbτ =
∑

b

λbτ−1b,and hen
e λb = λbτ−1 for all τ ∈ Σµ, that is the 
oe�
ients λb are 
onstant on
Σµ-orbits.(iii) Similarly as in the previous step, we 
an post
ompose with multipli
ation by
σ ∈ Σλ. Then mσπλ = πλ for any σ ∈ Σλ. Hen
e

mσ(
∑

b

λbb) =
∑

b

λbb.
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∑

b

λbb = σ
∑

b

λbb =
∑

b

λσ−1bb,and hen
e λb = λσ−1b for all σ ∈ Σλ. That is, the 
oe�
ients are 
onstant on
Σλ-orbits.It follows that we 
an write ψ as a linear 
ombination of elements D as 
laimed.(b) Conversely, given ψ =

∑
λDD as de�ned in the proposition. We show that ker πλ ⊆

kerψ and imψ ⊆ imιµ. If so, then ψ fa
tors as ψ = πλgιµ for some G-homomorphism
ϕ : SymλE ⊗ ϑl → SymµE ⊗ ϑm.By de�nition, πλ is a 
omposition πλ : E⊗r → E⊗r−2l → SymλE of �rst multipli
ationby the idempotent el and then 
anoni
al proje
tion onto SymλE.The elements D by de�nition satisfy D = Del. Hen
e ψ annihilates the kernel of mul-tipli
ation by el, and thus fa
tors through E⊗r−2l; denote the indu
ed map on residue
lasses by ψ : E⊗r−2l ⊗ ϑl → SymλE ⊗ ϑl. We have to 
he
k that the kernel of the
anoni
al proje
tion Er−2l → SymλE gets annihilated by ψ. This kernel is generated byelements of the form xij := x(id−(i, j)) = · · ·⊗xi⊗· · ·⊗xj⊗· · · − · · ·⊗xj⊗· · ·⊗xi⊗· · · .Let b be a Brauer diagram with l adja
ent horizontal ar
s on the last 2l verti
es in the toprow of b. By the de�nition of ψ, we have ψ = σψ for all σ ∈ Σλ. Hen
e, xi,jψ = xi,j ·σψ.Choose σ = (i, j) to be the transposition ex
hanging the positions of xi and xj . Then
xi,jσ = −xi,j and hen
e xi,jψ = −xi,jψ. If char(k) 6= 2, it follows that xi,jψ = 0. In
ase char(k) = 2, use that

(xi,j + xj,i)ψ = xi,jψ + xi,jσψ = 2xi,jψ = 0.Hen
e, the kernel of πλ is 
ontained in that of ψ.Next, note that
imιµ = {x | xτ = x for all τ ∈ Σµ} ⊗ ϑm.Let Db =

∑
b′ be as de�ned in the proposition. Then for a tensor x ∈ E⊗r and τ ′ ∈ Σµ,

x(
∑

b′)τ ′ = x(
∑

b′)and thus
xψτ ′ = xψ.By de�nition of ψ, for x ∈ E⊗r, there exists y ∈ E⊗r−2m with xψ = y ⊗ ϑm. As

yτ ′ ⊗ ϑm = (y ⊗ ϑm)τ ′ = xψτ ′ = xψ = y ⊗ ϑmit follows that yτ ′ = y. Hen
e xψ ∈ imιµ, that is imψ ⊆ imιµ.(
) Finally, for uniqueness, assume that πλϕ1ιµ = πλϕ2ιµ. Sin
e ιµ is inje
tive, it followsthat πλϕ1 = πλϕ2. Sin
e πλ is surje
tive, ϕ1 = ϕ2. It is in this last step, where we usethe assumption on the 
hara
teristi
, ensuring that ιµ is inje
tive. �
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