SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II
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ABSTRACT. A classical problem of invariant theory and of Lie theory is to determine
endomorphism rings of representations of classical groups, for instance of tensor powers
of the natural module (Schur-Weyl duality) or of full direct sums of tensor products
of exterior powers (Ringel duality). In this article, the endomorphism rings of full
direct sums of tensor products of symmetric powers over symplectic and orthogonal
groups are determined. These are shown to be isomorphic to Schur algebras of Brauer
algebras as defined in [24]. This implies structural properties of the endomorphism
rings, such as double centraliser properties, quasi-hereditary, and a universal property,
as well as a classification of simple modules.

1. INTRODUCTION

Let G be a classical group defined over an algebraically closed field k, E its natural
module and E®" the r-fold tensor product. Classical Schur-Weyl duality determines
the centraliser algebra Endg(E®"). When G equals the general linear group GL,,, the
centraliser is a quotient of the group algebra kX, of the symmetric group. When G
is orthogonal or symplectic, the centraliser algebra is a quotient of a Brauer algebra.
For n > r, the symmetric group acts faithfully on the tensor space; the Brauer algebra
acts faithfully on the tensor space for n > 2r. In such a situation, classical invariant
theory and its characteristic-free versions, in particular, work by Schur, Brauer, Weyl, De
Concini and Procesi, and others, provides much information. Additional work is needed
to determine the structure of the centraliser algebras and their representation theory,
which are far from being known.

Keep G, but replace the tensor space E€" by a (full) direct sum of tensor products of
either exterior or symmetric powers of the natural module. When choosing a full direct
sum of tensor products of exterior powers in type A, Donkin [12] has shown that the
endomorphism algebra is a type A Schur algebra; in fact, for n > r this assertion is
the Ringel self-duality of the classical Schur algebra. Adamovich and Rybnikov [1] have
extended this result about the endomorphism ring of a direct sum of tensor products of
exterior powers to cover also certain orthogonal and symplectic situations. The case of
symmetric powers has remained open.

The main result of this article determines the endomorphism rings of a full direct sum
of tensor products of symmetric powers, for all classical groups over an algebraically
closed field of any characteristic. While in type A the centraliser algebra of a direct
sum of tensor products of symmetric powers is again the classical type A Schur algebra,
unexpectedly a different algebra is coming up in the orthogonal and symplectic case:

Theorem 1.1. Let G C GLy, be an orthogonal or symplectic group, over an algebraically
closed field k. Assume n > 2r when G is a symplectic group, and n > 2r when G is
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an orthogonal group. Denote by B, = B,(J) the Brauer algebra with non-zero parameter
0 € k. Fiz the parameter § = —n € k when G is a symplectic group, and § = n € k when
G is an orthogonal group.

Then the centraliser algebra

C:=Ende( € Sym'E)
A-r—21,0<1< 5

is isomorphic to the Schur algebra Sg(n,r) of the Brauer algebra B,.

The Schur algebra Sp(n,r) has been defined in [24] as the endomorphism algebra
Sp(n,r) =Endp,( @  M(1N)

AFr—21,0<I<E

of the permutation modules (introduced by Hartmann and Paget [22]) of the correspond-
ing Brauer algebra B,.. Both algebras, B, and Sg(n,r), are defined combinatorially, and
they are related by a Schur-Weyl duality. The inverse Schur functor (see Lemma 3.4)
sends permutation modules M (I, \) to symmetric powers SymAE. Using this, Theorem
1.1 establishes a direct connection between Sp(n,r) and the representation theory of
classical groups. Here and throughout, when G is the orthogonal or symplectic group
inside GL,,, the parameter § of the Brauer algebra is taken to be non-zero in k and fixed
as +n. Moreover, when dealing with an orthogonal group, we assume the ground field &
to have characteristic different from two.

When the group G is even orthogonal or symplectic, its action on tensor space and on the
symmetric powers is via a generalised Schur algebra that is associated with a saturated
set of highest weights. In general, the action factors through the enveloping algebra of
G in Endg(E®"). This algebra will be denoted by Seny(G), see Section 2.1; in the case
of even orthogonal or symplectic groups, Se,,(G) equals the generalised Schur algebra
just mentioned.

Corollary 1.2. Let G, n and d be as in 1.1. Then there is a Schur- Weyl duality between
the algebra Seny(G) and the algebra C ~ Sp(n,r), on the bimodule

M = EB Sym’E,
AFr—21,0<I<Z

that is, the following two equations hold true:

C = Endsenv(g)(M) and Sem)(G) = Endc(M).

With the tensor space E®" being a direct summand of M, this Schur-Weyl duality on the
bimodule M extends the classical Schur-Weyl duality (due to Brauer [2] in characteristic
zero and [8, 9, 16, 35| in general) on tensor space.

Apart from relating two different situations, the isomorphism in Theorem 1.1 moreover
transports much structure and information (developed in [24] and also in [22, 21]) from
the Schur algebra Sp(n,r) to the centraliser algebra C' — see Section 3.10 for a more
detailed formulation:
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Corollary 1.3. Let C be defined as in Theorem 1.1.

(a) The algebra C has an integral form with an explicit basis, which is independent
of the ground field k and of its characteristic.

(b) The algebra C carries a quasi-hereditary structure, that is, mod-C is a highest

weight category.

c) The global (cohomological) dimension of C' is finite.

(d) There is a Schur-Weyl duality between C and the Brauer algebra B,.

) When the characteristic is different from two or three, the algebra C satisfies
a universal property that makes it unique up to Morita equivalence: It is the
quasi-hereditary 1-cover of the Brauer algebra B, in the sense of Rouquier [33].
(f) The simple C-modules are parametrised by the disjoint union of all partitions of

the non-negative integers of the form r,r —2,r —4,....

These properties are shared by the members of a much larger family of algebras
Sp(n,r,d)sek, specialising to the symplectic and the orthogonal case for § = —n and
0 = n, respectively.

From the point of view of invariant theory and of Lie theory, the results of this article
describe the previously unknown endomorphism ring of a classical object, as well as
its ring structure, its representation theory and its homological properties. From the
point of view of the more recent — and now quickly expanding — theory of Brauer
algebras and their Schur algebras, Theorem 1.1 gives a Lie theoretical meaning to these
Schur algebras, which turn out to be the third players in a triangle of six Schur functors
mutually relating Brauer algebras, their Schur algebras, and the enveloping algebras of
orthogonal or symplectic groups, on the full direct sum of tensor powers of symmetric
powers. This triangle replaces the familiar type A situation of just two algebras being
in Schur-Weyl duality, which provides a classical connection between Lie theory and
combinatorics.

This article is organised as follows: Section 2 collects definitions and notation as well
as some results on Schur-Weyl duality for classical groups, Brauer algebras and various
Schur algebras. Section 3 is devoted to the proof of Theorem 1.1. Sections 3.9 and 3.10
explain and prove Corollaries 1.2 and 1.3, respectively. Finally, Subsection 3.11 puts
the various Schur functors, and three different algebras, together into one commuting
triangle.

2. SCHUR-WEYL DUALITY, BRAUER ALGEBRAS AND SCHUR ALGEBRAS

A main theme of this article is Schur-Weyl duality and its various manifestations. This
is motivated by classical Schur-Weyl duality. Here, G = GL, (k) acts on tensor space
E®" by diagonal extension of its action on the natural module E. The symmetric group
> acts by place permutation on tensor space. The two actions commute and do, in fact,
centralise each other. When n > r, this means

Endg(E®") = k%, and Endyg, (E®") = Seny(G),

where the enveloping algebra Se,,(G) of G in Endy(E®") is isomorphic to the classical
type A Schur algebra S(n,r). When n < r, the group algebra k3, has to be replaced by
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a certain known quotient algebra. In characteristic zero, classical Schur-Weyl duality is
due to Schur [34], in general it follows from results of Carter and Lusztig [5], De Concini
and Procesi [8], and Green [19, Theorem 2.6¢|.

The injective modules over S(n,r) are direct summands of direct sums of tensor products
of symmetric powers. Indeed, the coalgebra A(n,r) = S(n,r)* dual to the Schur algebra
is for n > r a full sum of tensor products of symmetric powers, see [19]. Therefore,
the endomorphism ring of a full direct sum of tensor powers of symmetric powers (the
analogue of the algebra C in type A) is Morita equivalent, for a suitable choice of
multiplicities even isomorphic, to the Schur algebra S(n,r) itself. Moreover, tensor space
E®" is a full direct sum of permutation modules M* = k Tﬁg; (with A running through
all compositions of r) over the symmetric group 3. Therefore, the type A analogue of
the algebra Sg(n,r) is the (type A) Schur algebra S(n,r) itself. In types different from
A there is no such coincidence any more.

2.1. Brauer algebras and Schur-Weyl dualities. Let k£ be a commutative domain,
and choose a parameter § € k. Let r be a natural number. The Brauer algebra B,(d) of
degree r for parameter § is defined to be the vector space with k-basis given by the set
of all Brauer diagrams on 2r vertices. A Brauer diagram is a diagram whose vertices are
arranged in two rows of r vertices each, and there are r edges between the vertices such
that each vertex is incident to precisely one edge. Brauer diagrams are considered up to
homotopy, thus the dimension of B,(9) is (2r—1)!! = (2r—1)-(2r—3)--- 3-1. To multiply
two Brauer diagrams, say b; and bo, the diagrams are concatenated, with b; drawn on
top of by, and any closed loops appearing are removed, to give a Brauer diagram d. The
result of the multiplication then is, by definition, by - by = §°d, where ¢ is the number
of closed loops removed. Typically the parameter § is understood from the context, and
we will denote the Brauer algebra by B, or just B. Brauer algebras were introduced
in 2] in the context of generalising Schur-Weyl duality from general linear groups to
orthogonal and symplectic subgroups. For more details and examples see for instance
[2, 3, 21, 22, 25, 27]. The restriction of the parameter § = +n is necessary to obtain
an action of the Brauer algebra B,.(d) on the generalised symmetric powers Sym*E. In
characteristic zero, Brauer algebras are semisimple for non-integral parameter.

Let k& be an algebraically closed field of characteristic p > 0 and let n,r be positive
integers. Let E be an n-dimensional k-vector space and let w be a non-degenerate
symmetric bilinear form on E. The orthogonal group relative to w is

O, ={g9 € GL, | w(gz, gy) = w(x,y) for all x,y € E }.

Similarly for n = 2m even positive integer, let w be a non-degenerate skew-symmetric
bilinear form on E. The symplectic group relative to w is

Sp, = {9 € GLy, | w(gz,9y) = w(z,y) forall z,y € E }.

In the following, we let G € {Sp,,, O, }. The classical groups GL,, Sp,, and O,, operate
on E by matrix multiplication. This action extends diagonally to an action on the tensor
space E®T.

Brauer diagrams can be interpreted as G-homomorphisms in the following way: Assume
F has basis {v1,...,v,}, and let {v!,..., 9"} be the dual basis of F with respect to the
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invariant form w. Define
n
¥ = Z v; @ v
i=1
Then 9 is G-invariant (see [18, 4.3.2.]). For 1 < i,j < n, define the (7, j)th contraction
operator Cj ; : E¥" — E®"2 by
Cz‘,j($1®“‘®$r) :W($i,$]’)$1®"'®fi®"'®fj®“‘®$r

where we omit the ith vector x; and the jth vector z; in the tensor product. Moreover,
the (i,7)th expansion operator D; ; : E®"~2 — E®" is defined by

n
D@'7‘7’($1®“‘®xr72):le®“‘®Ut®“‘®vt®“'®x7“*2'
t=1

Here v; is in the ith position and v’ is in the jth position. Setting b;; = D; j o C; j, it
is easily checked that b; ; = b;;. By (1) below, all elements in Endg(E®") coincide with
elements in the Brauer algebra B,. In particular, the element b;; coincides with the
Brauer diagram

° ° o_ o - o o ° °
bij =
7.]
—
. PEErY . .Z . PR . .j . PEErY .

with the horizontal edges between vertices ¢ and j. Here the top row horizontal arc
corresponds to the contraction operator, and the arc in the bottom row corresponds to
the expansion operator.

Diagrams consisting of r — 2[ through strings connecting top and bottom vertices (and
[ arcs at corresponding top and bottom places), naturally correspond to elements of a
symmetric group X,_9;. Such elements are G-endomorphisms of tensor space factoring
through the smaller tensor space E®"~%. Every Brauer diagram can be factorised as
a product of contraction operators, an element of a symmetric group ¥,_o; and then a
product of expansion operators. This factorisation is the basic ingredient of the cellular
structure of the Brauer algebra, for details see [27].

From now on, we assume n > 2r in case G is a symplectic group and n > 2 in the orthog-
onal case. Then the Brauer algebra with parameter +n acts faithfully on tensor space
E®". Results by Brauer [2] in characteristic zero, and in general by De Concini-Procesi
[8], Oehms [31], Dipper—Doty—Hu [9, 16] and Tange [35] extend classical Schur-Weyl du-
ality to orthogonal and symplectic subgroups, implying in particular the following two
isomorphisms:

(1) B,(n) = Endp,, (E*"), B.(—n) = Endg,, (E®").

(2) Senv(0O(n)) = EndBr(n)(E®T)= Senv(Sp(n)) = EndBr(fn)(Eg)T)-

Recall that here Se,,(G) denotes the enveloping algebra in Endy(E®") of the respective
group. A version of Schur-Weyl duality involving Homg(E®*, E®!) with s and t not
necessarily equal can be found in [35]: In this version, tensor space E®" is replaced
by a direct sum @©7_,E®S. In Theorem 3 of [35], Schur-Weyl duality is shown for this
situation; the statement and the conditions coincide with those of usual Schur-Weyl
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duality. (This also works in the orthogonal case, see Remark 3 in [35].) Here, basis
elements of G-homomorphisms between tensor spaces of different degrees are represented
by generalised Brauer diagrams (called (u,v)-diagrams in [35]) with u vertices in the top
row and t vertices in the bottom row. See [35, Section 3| for explanations and details.
Generalised Brauer diagrams with not necessarily equal numbers of vertices in top and
bottom row are the morphisms in the category of Brauer diagrams, as described in
detail in [28], where classical results of invariant theory are also discussed in detail, and
extended.

When G is a symplectic or an even orthogonal group, the enveloping algebra S, (G) is
a generalised Schur algebra in the sense of Donkin, which gives it additional relevance, as
follows: The classical type A Schur algebra defined by Green [19] provides a framework
to study the polynomial representation theory of the general linear group GL,. In
fact, the algebra Se,,(G) in this case coincides with Green’s algebra S(n,r), and the
modules over S(n,r) are the polynomial representations of G that are homogeneous of
degree r. Donkin [11] generalised this concept to rational representations of reductive
groups associated with finite saturated sets of weights. Generalised Schur algebras are
quasi-hereditary, so their module categories are highest weight categories in the sense of
Cline-Parshall-Scott [6]. The union of these module categories exhausts the category
of rational representations of the given group. When G is a symplectic group, the set
of weights occuring in E®" is saturated, and Se,,(Sp,,) coincides with the generalised
Schur algebra associated with this set of weights. A similar result holds true for even
orthogonal groups. In the case of odd orthogonal groups, the set of weights in E®" is not
saturated. Hence for n odd, Se,,(0;,) is in general not a generalised Schur algebra. It
is, however, a direct summand of a generalised Schur algebra. Our assumption n > 2r in
the orthogonal case ensures that the enveloping algebras Sy, (0,) and Se,,(SO,,) of the
orthogonal and the special orthogonal group, both acting on tensor space, do coincide.
The same is true for the corresponding generalised Schur algebras. See [15, Section 4]
and [29, 30| for details. This will allow us in Subsection 3.3 to use Brundan’s results [4]
on restriction from general linear to special orthogonal groups in order to get information
on restriction to orthogonal groups.

2.2. Schur algebras of Brauer algebras. Schur algebras Sg(n,r) of Brauer algebras
have been studied in the preceding article [24]. These algebras are endomorphism alge-
bras of direct sums of permutation modules of Brauer algebras, which have been defined
by Hartmann and Paget [22]. For [ < § and A - 7 — 21, the permutation module M (I, \)
is defined as
M(l,\) = M* @y, _,, e1B;,

where

° ce ° ° ° . ° °
(3) a==- | |

with [ arcs in top and bottom row, respectively, and M?* is the permutation module
(indexed by \) associated with the symmetric group 3, _o;.

By definition, for any fixed parameter ¢ # 0, the Schur algebra Sg(n,r) := Sg(n,r,d) is
the endomorphism ring of the direct sum @; \M (I, X) of all permutation modules of the
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Brauer algebra:
Sp(n,r) =Endp,( @  M(1N).
Arr—21,0<I< 2
We drop the parameter § in notation; later on, it will be assumed to be n or —n when
we work with the orthogonal or the symplectic group, respectively.

In [24, Theorem 7.1] it has been shown, in particular, that Sg(n,r) is a quasi-hereditary
algebra. So its module category is a highest weight category. Moreover, Sg(n,r) is
related to the Brauer algebra B, by a Schur-Weyl duality on the direct sum @M (I, \)
of the permutation modules. This Schur-Weyl duality is different from that stated in
Corollary 1.2, but related to it; see Section 3.11 below for more information.

In [24, Theorem 5.3] an explicit basis of the Schur algebra Sg(n,r) has been constructed,
consisting of B-homomorphisms
(4) Guro t M(L,A) = M(m, p)
with
TE Xr_om a representative of YA\Er—om/ (Br—2u X Hyu—m),
o€ X, _g a representative of (X X Hy )\Xr_91/%,

where X, = X, _9, N 77*12“77.

Then the B-homomorphism
¢u,7r,0 : M(l, )‘) — M(m, ,u)
is explicitly given on a generator of M (I, \) by

Gumo(En-id@e)) = > (B, id ® exu)o - a
(XEEAQO'_l(ZUXHU_l)U\Z)\

(see [24, Subsection 5.3]).

By [24, Section 10], such a basis element ¢, , corresponds to a triple, say (v,w,{(6)),
defined as follows:

veViim) ~kz, is a partial (bottom) arc configuration, corresponding to 7;
w E VJ:fl ~y, 1s a partial (top) arc configuration, corresponding to o;
£(6) is the Schur algebra element corresponding to the double coset ¥,6%,.

In the third datum, ¥, = 3, 2, N o¥yo~!. The element & has been defined in [24,
Notation 8.3 as the restriction of o to the 'free’ vertices not attached to horizontal arcs.
This way of writing the basis uses [24, Section 8], which asserts that the classical Schur
algebra S(n,r — 2l), for each [, is a non-unital subalgebra of Sg(n,r).

For the proof of Proposition 3.8 we need the following formula that expresses the dimen-
sion of Homp, (M(l,\), M (m,p)) in terms of generalised Brauer diagrams by indexing
and counting basis elements of Sp(n,r) as explained above.

Proposition 2.1. Fiz a partition X\ of r — 2l and a partition p of r — 2m. Denote by

Xf:gfn the set of all Brauer diagrams with r — 2l vertices in the top row and r — 2m

vertices in the bottom row. Let the group X\ X X, act on Xf:gfn by the first component
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of its elements permuting the vertices in the top row and the second component permuting
the vertices in the bottom row.

Then the dimension of Homp (M(l,\), M(m,un)) equals the number of orbits in
SANXIT2 8, = X2 /(B x 5,).

r—2m r—2m

Proof. By the description above, a homomorphism ¢y, @ M([,\) — M(m,p) is
represented by a triple consisting of a top arc configuration, a bottom arc configuration
and a permutation defining the through strings, that is, by a Brauer diagram, modulo
the action of ¥y on the top vertices and of ¥, on the bottom vertices. [

3. PROOF OF MAIN THEOREM, AND CONSEQUENCES

3.1. Outline. The proof of the Main Theorem 1.1 occupies the following seven sub-
sections. Subsection 3.2 recalls basic material on symmetric powers and fixes notation.
Subsection 3.3 collects several abstract results from the literature, on categories of rep-
resentations of classical groups and on restriction from general linear to orthogonal or
symplectic groups. We are going to use these results to show that certain dimensions
of homomorphism spaces do not depend on the characteristic of the underlying field k.
In Section 4, an alternative combinatorial proof of this fact and a direct combinatorial
description of these morphism spaces will be given in case of characteristic zero or large
prime characteristic.

Subsection 3.4 introduces Schur functors and defines the algebra homomorphism ¢ :
Sp(n,r) — C that will be shown to be an isomorphism. Moreover, an alternative
description of tensor products of symmetric powers will be given, as images of an inverse
Schur functor. In Subsection 3.5, a characteristic free combinatorial description will be
given for the space of G-module homomorphisms from tensor space to tensor products
of symmetric powers. This is used in Subsection 3.6 to describe permutation modules of
Brauer algebras as images under a Schur functor, providing a counterpart to the result
in Subsection 3.5. In Subsection 3.7, injectivity of ® is shown, and in Subsection 3.8,
proving surjectivity finishes the proof of the Main Theorem 1.1. Subsections 3.9 and 3.10
prove and explain Corollaries 1.2 and 1.3. Finally, Subsection 3.11 discusses connections
between several Schur functors and puts the information together.

3.2. Symmetric powers. Let E be an n-dimensional k-vector space and A =
(M,-..,Ay) a composition of r into n parts some of which possibly are zero. For a
natural number m, define the mth symmetric power

Sym™E = E®™/I,,

with I, = (21 ® -+ @ Ty — T7(1) @+ @ Ty() | T € Ly, 73 € E). The symmetric power
Sym™FE can be identified with the vector space of all polynomials in n variables that are
homogeneous of degree m. Denoting by {v1,...,v,} a basis of E, the space Sym" FE has
basis

n
o el | 30 = m.
j=1
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We write m, for the natural projection m, : E¥" — Sym"E. For the composition A =
(A,..., ) of 7, define Sym*E = SymME @ --- ® Sym™ E. We will refer to Sym*E
as symmetric powers. Let my =m\, ® --- @ my,,. Forx =21 ® --- ® x, write x> for the

element

A A

Then my(x) = x*. More generally, we use the following notation: Let = 21 ®- - - @z, _o
and A = (A1, A, ...) be a composition of r — 2I. Write 2* for the element

A A

Define the G-homomorphism ) ; as composition
AL E®" — E 2 9! — Sym*E @ ¢

where the first map is given by [ contractions on adjacent places on the last 2I places
in the tensor product, and the second map is given by the natural projection z — z*,
tensored with the identity map on the last 2[ places of the tensor product. We say that

x; and x; are in the same A-component of the tensor z, if for some ¢ > 0,

t t+1
D A<ii <Y A
s=1 s=1
Then the kernel of the map ) is spanned by elements of the form
Tij ::x(id—(i,j)) = RO LR — QTR OL; Q-

where x; and x; lie in the same A-component.

3.3. Categories of filtered modules. The endomorphism ring C' to be determined in
this article depends, by definition, on the underlying field k and its characteristic. The
Schur algebra Sg(n,r) of the Brauer algebra, which will be shown to be isomorphic to
C', has been shown in [24] not to depend on k, in the sense that it has a combinatorially
defined basis that is independent of k. The structure constants of this basis and the
ring structure of Sg(n,r) - for instance, whether it is semisimple or not - do however
heavily depend on k. The dimensions of the Brauer algebras and of the generalised
Schur algebras of classical groups also do not depend on k. Hence the dimensions of
the endomorphism rings occuring in Schur-Weyl duality are independent of k, too. In
this subsection we recall results from representation theory of classical groups that imply
such characteristic independence and we collect facts to be used later on to show that
also the dimension of C' does not depend on k.

Rational representations of classical groups G form highest weight categories. There-
fore, Donkin’s generalised Schur algebras [11] are quasi-hereditary algebras as defined
by Cline, Parshall and Scott in [6]. Their projective modules are filtered by standard
modules A(X\) and their injective modules are filtered by co-standard modules V(). The
standard modules are precisely the Weyl modules and the co-standard modules are dual
Weyl modules, where dual refers to the contravariant duality in the category of rational
representations.

The category F(A) is the full subcategory of the category of rational representations
consisting of the modules that admit a filtration whose sections are Weyl modules. The
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category F(V) is defined dually, using costandard modules. Crucial homological infor-
mation is provided by the following orthogonality property:

j | kK, if j =0and A = p,

®) EXtG(A(A)’V(M)) { 0, otherwise.

Using long exact cohomology sequences, a similar Ext-orthogonality is obtained between
objects in F(A) and objects in F(V). An important consequence is that objects in the
intersection of these two categories have no self-extensions. More precisely, F(A)NF(V)
equals add(T), the category of direct summands of direct sums of Ringel’s characteristic
tilting module 7', see [32] or, for instance, [14]. Up to a choice of multiplicities of direct
summands, the equality add(T) = F(A) N F(V) can be taken as definition of 7. The
characteristic tilting module 7" is an injective object in F(A) and a projective one in
F(V). By the orthogonality property (5), the functors Homg(—, V(1)) are exact on
short exact sequences in F(A) and the functors Homg(A(X),—) are exact on short
exact sequences in F(V). Inductively, it follows that the dimension of Homg(X,Y") for
X in F(A) and Y in F(V) only depends on the multiplicities in the A-filtration of
X and in the V-filtration of Y. Such filtrations, and the multiplicities, are preserved
under modular reduction from characteristic zero to prime characteristic. Therefore,
dimensions of Homg(X,Y') are characteristic independent: More precisely, when X is
a module with standard filtration and Y is a module with co-standard filtration, then
the space of homomorphisms Homg(X,Y) has dimension ), ayby, where ay is the
multiplicity of A()\) in any standard filtration of X and by is the multiplicity of V()
in any co-standard filtration of Y. These multiplicities are well-defined, by general
theory of quasi-hereditary algebras, and independent of k. Hence the dimension of
Endg(E®") does not depend on k or its characteristic. In order to establish characteristic
independence of dimensions of certain morphism spaces, we will use that the relevant
objects are in the subcategories F(A) and F(V), respectively, see Proposition 3.2 below.

An example is Schur-Weyl duality for general linear groups. Over G = GL,, with n > r,
tensor space E®" is projective and injective and therefore a direct summand of the
characteristic tilting module. When dropping the assumption n > r, tensor space is
not projective any more, but still a direct summand of the characteristic tilting module.
Even in this general case, Schur-Weyl duality can be derived using such arguments, see
[26] for detalils.

Proposition 3.1. Let G be a classical group. Let n > r when G = GL, is a general
linear group and let n and r be as in Theorem 1.1 when G is orthogonal or symplectic.
Then tensor space E®" is relative injective in F(A) and relative projective in F(V).

Here, relative projective or injective means exactness of the respective Hom-functor on
short exact sequences in the subcategory, and thus vanishing of first extension groups.
For example, P € F(V) is relative projective in F(V) if and only if Ext}, (P, —) vanishes
on F(V), which is an extension closed subcategory.

Proof. When G = GL,, and n > r, then tensor space E®" is a projective module over
the classical Schur algebra. Since it is self-dual, it is also injective. See [19] for details.
Projective modules are A-filtered and injective modules are V-filtered. Therefore, E®"
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has both filtrations and must be a direct summand of a direct sum of copies of the
characteristic tilting module T, which is relative injective in F(A) and relative projective

in F(V).

Now let G be the symplectic or the orthogonal group acting on tensor space by restrict-
ing the GL,-action. When restricting representations from general linear to symplectic
or orthogonal groups, the categories F(A) and F(V) are mapped into the correspond-
ing categories for the smaller groups by results of Donkin and Brundan, see [13, 4].
More precisely, Proposition 3.3 in [4] states in particular that the pairs (SL,,SP,) and
(SL,,SO,) (the latter only in case of characteristic different from two) are good pairs.
This means restricting from the first group to the second sends modules with V-filtrations
over the first group to modules with V-filtrations over the second group. The first case,
involving the symplectic group, follows from a result of Donkin, in Appendix A of [13].

Hence, tensor space is a direct summand of a characteristic tilting module over every
classical group, and thus it is relative injective in F(A) and relative projective in F(V).
O

Over G = G Ly, the full tensor powers of the symmetric powers are injective and therefore
they are objects in F(V). Because of the compatibility with restriction just quoted this
implies:

Proposition 3.2. Let G be a classical group, n and r as in Proposition 3.1 and A a
partition of some s < r. Then the dimension of Homg(E‘g’T,Sym)‘E) does not depend
on the ground field k.

When working with subcategories and using cohomology it is important to know that
kernels of certain surjective maps belong to the given subcategory. We will need:

Lemma 3.3. In the short exact sequence
0 — kernel — E®P 2 Sym*E — 0
the kernel is in F(V).

This short exact sequence gives the relative projective cover of Sym*E in the subcategory
F(V). Lemma 3.3 has been shown by Donkin in [14, claim 2.1.(15((ii)(b)] in the case
of quantum general linear groups. As remarked there, the proof given there works for
reductive algebraic groups as well.

3.4. Schur functors. From now on, G is a symplectic or orthogonal group and the
assumptions of Theorem 1.1 are valid. Following [15], we define the Schur functor fy and
the inverse Schur functor gg for the symplectic and orthogonal groups as follows:

fo:  mod-G — mod-B,, fo(=) = Homg(E®", —),
go:  mod-B, — mod-G, go(—) = —®p, E".
with G = Sp,, or G = O,, respectively. Here, as throughout, module categories are

categories of finite dimensional right modules. Unlike in [15], we assume here that the
action of the Brauer algebra B, on the tensor space is without a twist by a sign (since we
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are using B, = 2, as explained above). Moreover, we use G-modules instead of modules
over a generalised Schur algebra, to simplify notation.

Lemma 3.4. For all | and all X\t r — 21 there is an isomorphism of G-modules

go(M (1, \)) ~ Sym*E ® 9.
This has been shown in [15, Prop 2.2]|. In our notation it can be seen as follows:

Proof. Let my = my . In the following, ¢ : mod-%, — mod-S(n,r), defined by g(—) =
— @z, E®" denotes the usual classical (type A) inverse Schur functor associated to GL,.
Then there is a chain of G-module isomorphisms, whose composition we denote by k:

go(M(I,N) = M(,\) @p, B
~ M)‘ Rk, o e B, X B, E®"
~ M Rks,_ o 61E®T

~ M)\ ®k27«_21 (E®7’—21 ® ﬂl)
= (MA QkE, o E®r_21) Y o'
~ g(MY) @

~ Sym*E ® 9.
The latter is isomorphic to Sym*E as G-module since ¥ is the trivial G-module.

Here, as G-modules,

B = B @ gl ~ pOT2 T T,

—

given by z ® 9! = z, and ¥,_o operates by place permutations (without sign) on the

tensor space E¥"2l Given z € E®", the isomorphism « above is realised by mapping
Sho ® e ® x — my(oerbr) ® 9,

with well-defined inverse map given by

7'(')\(?L'\) ®191 = X\d® e ® x.

The inverse Schur functor gg induces an algebra homomorphism
(6) o : Sg(n,r) — C, a— gola)
where Sp(n,r) = Endp, (©&M(l,\)) and

C=Ende( P Sym'Ewd))~Ende( € (Sym*E)).
1< Ar—21 I<Z AFr—21

It is this map ® that will be shown to be an isomorphism, when proving Theorem 1.1.
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3.5. Maps from tensor space to symmetric powers. By Proposition 3.2, the di-
mension of Homg(E®* @ 9, Sym"E ® ¥™) does not depend on k. We will now give a
combinatorial description of these homomorphisms in terms of Brauer diagrams.

Proposition 3.5. Let s = r—2l, t = r—2m and p a partition of t. Then in the diagram

E®s®19l ........ ’y ..... >E®t®19m ,

) l
~ o
~
B~y

Sym*E @ ¢
composition with m, provides a surjective map
Tuo— iy muyoy=0
inducing an isomorphism

o : Homg(E®* @ 9", E¥' @ 9™)/%,, ~ Homg(E®* @ 9!, Sym" E @ 9™).

By Schur-Weyl duality (as formulated in [35]), the maps « are linear combinations of
(s,t)-Brauer diagrams, whose rows have s and ¢ vertices, respectively. Each 3 is of the
form 3 = m, 0. Moreover, 71 and -2 define the same 3 if and only if there exists o € ¥,
such that v9 = 0 o7;.

Proof. Composition with 7, defines a map 7, o — as stated. This map is surjective:
Indeed, the map 8 : E®* @ ¥ — Sym*E ® 9™ starts and ends in objects of (V) and
the surjective map 7, : E®' ® 9™ — Sym"E ® 9™ is part of a short exact sequence in
F(V), by Lemma 3.3. By Proposition 3.1, module E¥* ~ E®% @ ¢! is relative projective
in (V). Being relative projective is equivalent to having the lifting property:

E®s ® 19l

Iy
VB I

kernel(wu) — BOt @ gm LN Sym*E @ 9

Thus, 8 = m, o~ for some «. Note that the lifting property requires the kernel of the
surjective map 7, to belong to the subcategory F (V).

Certainly, 71 and ~o define the same 3 if there exists o € X, such that 75 = o 0 71.
We have to show the converse, which implies injectivity of . By Proposition 3.2, the
dimension of Homg (E®® @19, Sym*E ®9¥™) does not depend on the choice of the ground
field k.Therefore, it is enough to check injectivity of « in characteristic zero.

In that case, Sym*E®9Y™ is a direct summand of E®*®9" through the split epimorphism
7. More precisely, this provides an isomorphism Sym*E @ 9™ ~ (E®' @ 9¥™)/%,,. Over
GL,, Schur-Weyl duality implies an isomorphism
Homgy, (E® @ 9", Sym"E @ 9™) =~ Homgy, (E¥ @ 9™, (E¥' @ 9™)/%,)
~ Homgy, (E¥ @ 9™, (E®' @ 9™))/%,
~ kS5,
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Indeed, by Schur-Weyl duality the G L,-maps between the tensor spaces are linear com-
binations of group elements in ¥;. Thus the GL,-maps into the symmetric power are the
compositions of these maps with the split epimorphism 7, which identifies the elements
in each coset of 3;/%,. This shows that Homgy, (E®' @ 9™, Sym*E ® 9™) C kX;/Z,,.
Since tensor space is isomorphic to a full direct sum of copies of symmetric powers (the
contragredient dual of the Schur algebra, which is a full set of injective modules), the
inclusion must be equality. The multiplication map

Homg(E®® @ 9!, E¥ @ ™) @iy, Homgy, (E®' @ 9™, X) — Homg(E®® @ 9!, X)

is an isomorphism for X = E®! ® 9™, again by Schur-Weyl duality. Thus it is an
isomorphism for X a direct summand of E®' @ 9™, too, hence in particular for X =
SymME ® 9. This assertion is a special case of [15, Lemma 2.3(ii)]. This proves
injectivity of a. O

3.6. The image of Sym*F under the Schur functor. We next apply the Schur
functor fy to symmetric powers. The following result restates parts of [15, Theorem 2.1
and Theorem 4.1] in our notation:

Lemma 3.6. For all l and all X\t r — 2l there is a right B-module isomorphism

fo(Sym*E @ ') ~ M(1, )).

Proof. First we show that the two vector spaces have the same dimension, and then we
provide an explicit G-module isomorphism. By [22, 24], the vector space dimension of
M(l,\) does not depend on the choice or characteristic of k. More precisely, by definition
M(I,\) = M* ® ¢;B, has a basis consisting of Xy-orbits on ¢;B,; so, the basis elements
are represented by Xy-orbits of Brauer diagrams with rows of r and r — 2[ vertices,
respectively, the remaining 2[ vertices being reserved for [ fixed arcs.

By Proposition 3.2 in Subsection 3.3, the dimension of
fo(Sym*E ® 9') = Homg (E®", Sym*E @ 9')

does not depend on k either. By Proposition 3.5, this vector space has a basis consisting
of ¥y-orbits of Brauer diagrams also having rows of r and r — 2[ vertices with [ fixed
arcs on the remaining 2[ vertices; hence this basis is in bijection with the above basis of
M(,N).

An explicit isomorphism t : M(I,\) = fo(Sym*E ® 9!) with = — v, is given by the
following map: Given an element x = Y o®e;b € MA®@e;B = M (I, \), then z is mapped
to

Wy BT L) E®r Uy per=2 g gl T, per—2 g gl T SymAE ® 79l7

that is, ¥,(v) = mx(oebv). By Schur-Weyl duality, see (1), this is a right G-
module homomorphism. Map ¢ sends the above basis of M(l,\) to the above basis
of fo(Sym*E ® 9'); hence 1 is an isomorphism. O
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3.7. Injectivity of ® : Sg(n,r) — C. By Lemma 3.4, the inverse Schur functor sends
permutation modules M (I, \) to symmetric powers Sym*E ® 9. Moreover, there exists
a homomorphism of algebras

P SB(TL,T') — C, ¢u,7r,a = 90(¢u,7r,0)-

Under the homomorphism ®, the basis element ¢, : M(l,\) = M(m, p) of Sp(n,r),
see (4), is mapped to a G-homomorphism

90(Puno) = bumo @id: Sym*E @ 9" — Sym'E @ 9™
in the algebra C.
Proposition 3.7. The map ® is injective, that is, Sp(n,r) is a subalgebra of C.

Proof. By Lemma 3.6 and Lemma 3.4, there are the following two isomorphisms of B-
modules:

M(I,\) = Homg (E®", Sym*E @ 9'), Yaid ® egb = ) 0 M, 0 My,
and Homg(E®", Sym*E @ 9') — Homg(E®", M(I,\) @ E®") with
T\ O Mg, O My k1 O )\ O Mg, O M.

Here m, denotes multiplication by the element a from left, and

kMO N ®p EY - SymMEed,  Tid®eb @ x> my(ebr) @ 9L
The composition of these two isomorphisms is denoted as «(l, A), that is

a(l,\) : M(I,\) — Homg(E®", M(I,\) @ E®"), z (z— 2@ ).
Let ¢ : M (I, \) — M(m, ) be some B-homomorphism. Then applying the inverse Schur
functor gg and the Schur functor fy, we obtain:

O(p) = go(p) =p@id = M(I,A) ® E¥" — M(m,u) ®p E*",

folgo(¢)) = (p®id) o — : Homg(E®", M(I,\) ®p E®") — Hom(E®", M (m,u) ®p E®).

We check that the following diagram is commutative:

M(1,N) ol Hom(E®", M(I, \) © E®")
%"l lfO(QO(s&))
M (m, ) M Hom(E®", M (m, u) ® E®").

Indeed, it is enough to check commutativity by evaluating the maps on a generator
Yaid ® e; of M(I,\). By the definition of M (I, \),

fo(go(@)) ca(l,\)(Erid®@e): = p(Erid®e) @ .
Similarly,

alm,p)(p(Xrid®e)):  x—= p(Erid ® ) ® .

Assume that ®(¢) = 0, that is go(¢) = 0. Then fo(g0(¢)) = 0 and since a(m, p) is an
isomorphism, it follows that

© = a(m, 1) o folgo(p)) o al, ) = 0.



16 ANNE HENKE, STEFFEN KOENIG

This implies that the map ® : Sg(n,r) — C' is injective. O

Composing the Schur functor fy with the isomorphisms x~! and o' defines an algebra
homomorphism

U:C — Sp(n,r), B Bo—,

and the commutative diagram in the proof shows that ¥ o ® is the identity.

The map «(l, \) can be produced as an adjunction unit. In fact, the natural isomorphism
Homg (M (I, \) @ E®", M(I,\) @ E®") ~ Homp(M(I,\), Homg (E®", M (I, \) @ E®")

sends the identity map on M(l,\) to the map «a(l,\) : m — [z — m ® z|. Thus,
commutativity of the diagram in the above proof also follows from adjunction being
natural.

3.8. Surjectivity of ® : Sg(n,r) — C. In Proposition 3.5, a basis of Homg(E®® ®
9!, Sym*E ® 9™) has been given combinatorially, in terms of Brauer diagrams. Next
we produce from this basis a combinatorial basis of Homg(Sym*E ® 9!, Sym*E @ 9™).
Counting basis elements yields surjectivity of @, finishing the proof of Theorem 1.1.

Proposition 3.8. Fix s =r —2l, t =r — 2m, A a partition of s and i a partition of t.
Then in the diagram
E® @ ;
DN - =~ ~
| e
Sym*E @ 9 —— Sym"E @ 9™
pre-composition with 7wy provides an injective map
—omy:a—~aomy =f
imducing an isomorphism
Homg (Sym*E @ ¢!, Sym"E ® 9"™) ~ ¥, \Homg (E®* ® ¢!, Sym"E @ 9™)

Thus ® s surjective, and hence an isomorphism.

Proof. Given «, we can define § := « o wy. Conversely 3 factors in this way if and only
if its kernel is contained in the kernel of ., which means 3 oo = 3 for all o € Xy.
This gives an upper bound for the number of maps a: The vector space dimension of
Homg(Sym?* E@9!, Sym* E@9™) is bounded above by the dimension of ¥y \Homg(E®*®
¥, Sym*E @ 9¥™). By Proposition 3.5, the dimensions of the vector spaces Homg(E®® ®
9, Sym"E @ 9™) and Homg(E®® @ 9!, E® @ 9™)/%,, are equal. Hence

dim Homg(Sym*E @ ¢', Sym"E @ v™) < dim ¥,\Homg(E®* @ 9', E®' @ 9™)/%,.

The latter space has a basis consisting of orbits of Brauer diagrams with r —2s vertices in
the top row and r—2t vertices in the bottom row, under the action of the group ¥ x ¥, on
the top vertices through projection of group elements on the first component, and on the
bottom vertices through the second component. By Proposition 2.1, this is exactly the
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dimension of Homp, (M (s, A), M(t,u)). Hence dim C < dim Sg(n,r). By Proposition
3.7 the map @ is injective, implying the converse inequality. O

Summarising the combinatorial description of maps obtained so far, we get the following
commutative diagram:

E®s ® 19[ .......... ’y ....... > E@t ® 9m ,

~
~
UDN o i
BT~y

Sym*E ® o —— Sym"E @ 9™

The maps « have now been determined in terms of maps (3, which in turn have been
determined in terms of maps 7. In all cases, combinatorial descriptions have been found
that show that the dimensions of these morphism spaces do not depend on the charac-
teristic of the underlying field. Moreover, the maps « have been shown to correspond to
double cosets of Brauer diagrams, similar to the description in Proposition 2.1.

3.9. Proof of Corollary 1.2. Recall the definition of M := EBl,)\Fn,QlSym)‘E. There
are two claims:

C = Endsenv (@) (M) and Senv(G) = EndSB(n,r)(M)

The first claim is true by definition; we are going to prove the second claim.

Proof. The group algebra of the orthogonal or symplectic group G acts on the vector
space M = @, A\Sym*E via its finite dimensional quotient algebra Se,,(G). The algebra
Senv(G) acts faithfully on tensor space and thus a fortiori on M. Since the actions of
G on M and of Sg(n,r) = Endg(M) on M commute, those of Se,,(G) on M and of
Sp(n,r) on M commute as well. Hence Se,,(G) C € := Endg, () (M) and we have to
show the converse inclusion.

Let e be the projection from the G-module M to its G-direct summand E®". Viewed
as an endomorphism of M, the element e is an idempotent in Sg(n,r) and it commutes
with the elements of £. This implies that E®" = Me is an £-module and the action
of & on E®" commutes with the action of eSg(n,r)e. Since tensor space E®" is the
image of M(0,1") = B, under the inverse Schur functor go, the centraliser algebra
eSp(n,r)e coincides with the Brauer algebra B,. By definition, £ acts faithfully on
M = @L}J—n_QlSym)\E. As each Sym™F is a quotient of the tensor space E®", the action
of & on E®" is faithful. Thus £ is contained in Endpg, (E®") = Seny(G) by Equation
(2). O

3.10. Proof of Corollary 1.3. Here, we give additional information on, and a proof of
Corollary 1.3.

Proof. (a) The algebra C has an integral form with an explicit basis, which is independent
of the ground field k and its characteristic.

The basis in assertion (a) corresponds under the isomorphism C' ~ Sg(n,r) to the basis
of Sp(n,r) mentioned in Section 2.2 and described in Equation (4); it has been shown
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to be a basis in [24, Theorem 5.3]. This basis is indexed by certain double cosets of
symmetric groups. Hence it does not depend on the characteristic of the field. In fact,
the ground ring need not even be a field.

(b) The algebra C' carries a quasi-hereditary structure, that is C'—mod is a highest weight
category.

The quasi-heredity claimed in (b) follows from [24, Theorem 7.1|, which states the cor-
responding result for the algebra Sp(n,r) in general. The category of finite dimensional
modules over a quasi-hereditary algebra always is a highest weight category.

(¢) The global (cohomological) dimension of C' is finite.

Cline, Parshall and Scott, and Dlab and Ringel have shown that quasi-hereditary algebras
over fields have finite global dimension, which implies (c). See [7, Theorem 4.4| and [10,
Appendix, Statement 9]. More precisely, Dlab and Ringel have shown that the global
dimension is bounded above by 2s — 2, where s is the number of simple modules up
to isomorphism. By statement (f) below, s equals the number of all partitions of all
numbers r — 21 > 0.

(d) There is a Schur-Weyl duality between C' and the Brauer algebra B,(£n).

Schur-Weyl duality between Sg(n,r,d) and B,(d) on the bimodule &M (I, \) has been
shown in |24, Theorem 11.4(a)] for any parameter §. It uses n > 2r.

Note that the claims on C' are just special cases of known results for Sg(n,r,d). In fact,
the assertions (a), (b) and (d) are all true for Sg(n,r,d) over any ground ring, and (c)
is true over any ground field, and for any choice of the parameter §. The assertion (e),
however, needs the ground ring to be a field, and n to be at least greater than or equal
to 7.

(e) When the characteristic is different from two or three, the algebra C satisfies a uni-
versal property that makes it unique up to Morita equivalence: It is the quasi-hereditary
1-cover of the Brauer algebra in the sense of Rouquier.

The claim is [24, Theorem 11.4 (b) and (c¢)]. Under these assumptions, the Brauer algebra
B, is of the form eSpg(n,r)e for some idempotent e € Sg(n,r) and the two algebras B,
and Sp(n,r) are in Schur-Weyl duality on the bimodule e - Sg(n,r). According to
Rouquier’s definition [33], the algebra Sg(n,r) is a 0-cover of B,. For a quasi-hereditary
1-cover, an additional condition is required: The exact Schur functor e-— has to identify
extension spaces between modules with standard filtration over Sg(n,r) with extension
spaces over B,

EXtuls'B(n,r) (X7 Y) ~ EthBr (€X7 GY)
These latter isomorphisms hold by [22], needing the characteristic being different from

two and three. See [21, Sections 11, 12 and 13] for explicit statements, and for more
information.
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(f) The simple C-modules are parametrised by the disjoint union of all partitions X\ F r—2I
of the non-negative integers of the form r,r —2,r —4,....

This is a consequence of the quasi-hereditary structure of the algebra Sg(n,r) as exhib-
ited in [24]. The isomorphism classes of simple modules of a quasi-hereditary algebra
correspond bijectively to the standard modules or equivalently to the ideals in a heredity
chain. The heredity chain is constructed in [24] by first forming a coarse chain of ideals,
indexed by non-negative integers of the form r —2[, and then refining this into a heredity
chain. The coarse chain imitates the chain of ideals in the Brauer algebra obtained by
counting horizontal arcs in top and bottom row. Within the coarse layer indexed by
r — 2l the heredity chain is indexed by all the partitions of r — 2[. Indeed, in a sense
made precise in [24] this part of the heredity chain is ’induced up’ from a heredity chain
of the classical Schur algebra S(n,r — 21). O

3.11. A triangle of Schur functors. Finally, we summarise the current situation with
respect to Schur functors for orthogonal and symplectic groups, which shows a marked
difference to the type A situation. In type A, Green’s Schur algebra is both a generalised
Schur algebra and an endomorphism ring of permutation modules over k.. In types
B, C and D, tensor space is different from the sum of permutation modules over B,., see
[25]. We get the following triangle of functors with non-trivial functors between mod-G
(or mod-Seyy(G)) and mod-Sg(n,r):

Gs
mod-Se,,,(G) C mod-G mod-Sg(n,r)
mod-B,
with
go = — ®Br E®T’ fO = HOIHG(_E@T, _)’
Gs = — Qsp(nr) (@SymAE), Fg = Homg(@SymAE, -),
Gy = _®SB(n,7") (EBM(Z,)\)), Fy :HomBr(@M(Z’)‘),_)-

This triangle commutes in the sense that Gg = go o Gy and similarly for the adjoints.
Indeed, there are isomorphims of left Sg(n,r)-modules

M(,\) ®@p, E¥" ~ M* s, 1B, ®p, E®" ~ Sym*E @ 9! ~ Sym*E

as in Section 3.4. Uniqueness of adjoints then implies Fg = Fs o fo.

r—21

When the ground field k has characteristic different from two and three, the functors
Fyr and Gy are mutually inverse equivalences between the exact categories of A-filtered
Sp(n,r)-modules and cell filtered B,-modules, by [22]; this uses and extends a similar
equivalence, due to Hemmer and Nakano [23], between Weyl filtered modules of GL,,
and Specht filtered modules of kX,. See also [21, 24| for further structural properties
and relations between mod-Sg(n,r) and mod-B,. It is not known how well these two
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functors compare or identify cohomology in higher degrees. By [17] this is equivalent to
saying that the dominant dimension of Sg(n,r) is not known. The other two pairs of
functors are not known to restrict to equivalences between corresponding categories of
filtered modules. The dominant dimensions of generalised Schur algebras or of enveloping
algebras Sen,,(G) are not known.

4. A DIRECT COMBINATORIAL DESCRIPTION OF MORPHISMS BETWEEN SYMMETRIC
POWERS

In this Section, we give a direct combinatorial description of the morphism spaces be-
tween symmetric powers assuming that the underlying field has characteristic zero or
bigger than r. Under this assumption Theorem 1.1 can be shown without using the
results collected in Subsection 3.3.

We use Schur-Weyl duality for symplectic and orthogonal Schur algebras (stated above
in Equations (1) and (2)), which in particular implies that every G-endomorphism of the
tensor space E®" is given by multiplication with a Brauer algebra element >, A\pb where
b runs through Brauer diagrams and A, € k. Let m\ = 7y ;.

For a composition p of r — 2m, the G-module homomorphism ¢, is defined to be the
composition:

1
Ly s SymPE @ 9™ — E¥TTEM @ 9™ — BOT t = SRR Z($0)®19m-

12l &
Here the symmetric group acts by place permutation.

Under the assumption of the underlying field £ having characteristic zero or larger than r,
map ¢, is a split monomorphism, composing with the split epimorphim 7, to the identity
on Sym"E ® ¥™. For the following proof, the factor ‘2—1#‘ may as well be omitted. The
crucial point is that under our assumptions, ¢, is injective, which is not true in general.

Using the notation introduced in Section 3.2, the result is as follows:

Proposition 4.1. Fiz X\, p and my, 1, as above. Let ¢ : E¥" — E®" be a G-module
homomorphism. Then 1) factors as ¢ = 1, 0@ o\ = TrpL,,

gor — s ger

WA\L LuT
Sym*E @ o' — Sym'E @ 9™
for some G-homomorphism ¢ : Sym* E@9Y! — SymHE®9™, if and only if ¥ = >.pApD

with Ap € k. Here the sum runs over some elements D of the Brauer algebra, which are
of the form

(7) Dy= >V, withTy={obr|oc €L, 1eEL,}
v eTy,
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where each b is a Brauer diagram with | horizontal arcs of adjacent vertices on the last
2l vertices in the top row and with m horizontal arcs of adjacent vertices on the last 2m
vertices in the bottom row. The factorisation of ¢ is unique, if it exists.

This proposition says in particular that there is a k-linear bijection between the space of
maps ¢ = > ApD and the maps . With the elements D being linearly independent,
and their number being independent of the field k, it follows:

Corollary 4.2. The dimension of the space Homg(SymAE, Sym*E) does not depend on
the characteristic of k, as long as this is zero or larger than r, more precisely, as long as
the map 1, is injective.

Proof of Proposition.1. Since the Brauer algebra acts from the right, we write mypt,
for i =1, 0pomy.

(a) By Schur-Weyl duality for the tensor space (see (1)), every G-endomorphism 1) of
the tensor space E®" is given by multiplication with a Brauer algebra element, say
> Abb, where the sum runs through some Brauer diagrams b € B,(). Assume such a
homomorphism ¢ = >~, A\pb of the tensor space E®" factors through a homomorphism
Sym*E @ 9 — SymME @ 9™, that is ¢ = > b b = magu, for some o : Sym*E @ 9 —
Sym*E & 9.

(i) Since ¢; and e, are the identity maps on ¢E" = E® "2 @ ¢! and e, E" =
E®r=2m @ 9™ respectively, it follows that

el(z Apb)em = (emr)p(tpem) = Trpl, = Z Apb.
b b

Since Brauer diagrams form a basis of the Brauer algebra, the diagrams b all
have [ arcs on adjacent vertices on the last 2] vertices in the top row, and m arcs
on adjacent vertices on the last 2m vertices in the bottom row.

(ii) An arbitrary vector in the image of ¢, is a linear combination of vectors of the

form
Z (xo) @ 0™,
oeX,

These vectors are invariant under the action of ¥,. Let m, be multiplication
with a permutation 7 € ¥,. Then ¢,m,; = ¢,, and hence

(Z Apb)my = T me = TapL, = Z Apb.
b b

SN =D XbT =D Apmrb,
b b b

and hence A\, = A\, -1 for all 7 € X, that is the coefficients )\, are constant on
X ,-orbits.

(iii) Similarly as in the previous step, we can postcompose with multiplication by
o € 3. Then m,my = m) for any ¢ € . Hence

mo (D Ab) =) Aub.
b b

Note that
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It follows that
SNb=0> Mb=>_ A-ub,
b b b

and hence A\, = A, -1, for all o € X). That is, the coefficients are constant on
Y -orbits.

It follows that we can write ¢ as a linear combination of elements D as claimed.

(b) Conversely, given ) = > ApD as defined in the proposition. We show that ker my C
ker+ and imi C ime,. If so, then 1 factors as ¢ = mygi, for some G-homomorphism
¢ : Sym E ® 0! — Sym"E @ 9™,

By definition, 7y is a composition 7y : E®" — E®"=2 _ Sym*E of first multiplication
by the idempotent e; and then canonical projection onto Sym*FE.

The elements D by definition satisfy D = De;. Hence ¢ annihilates the kernel of mul-
tiplication by e;, and thus factors through E®"~2: denote the induced map on residue
classes by 1 : E®"2 @ 9! — Sym*E @ ¥!. We have to check that the kernel of the
canonical projection E"~2 — Sym*E gets annihilated by . This kernel is generated by
elements of the form x;; := z(id—(i,j)) = - ;@ @2;® -+ — - RT; Q- DT; Q- - -
Let b be a Brauer diagram with [ adjacent horizontal arcs on the last 2/ vertices in the top
row of b. By the definition of ), we have ¢ = o4} for all ¢ € 3. Hence, x”E = T; j o).

Choose o = (4,7) to be the transposition exchanging the positions of x; and ;. Then
x; ;0 = —x;; and hence x”E = —xi,ja. If char(k) # 2, it follows that x”E =0. In
case char(k) = 2, use that
(wij + @)Y = wijth + @i oY = 22450 = 0.
Hence, the kernel of 7y is contained in that of .
Next, note that
ime, ={z |er=xforal e X,} @™

Let D = >V be as defined in the proposition. Then for a tensor z € E®" and 7/ € 3,

(Y ) =x(D Y
and thus
T’ = ).
By definition of v, for x € E®", there exists y € E®"?" with z1) = y ® 9™. As
yr' @9 = (y @I = a1’ = 2p = y @ 9"
it follows that y7’ = y. Hence x1) € imy,,, that is imy C ime,,.

(c) Finally, for uniqueness, assume that my@1¢, = mxpat,. Since ¢, is injective, it follows
that my@1 = map2. Since )y is surjective, 1 = 9. It is in this last step, where we use
the assumption on the characteristic, ensuring that ¢, is injective. [
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