
SCHUR ALGEBRAS OF BRAUER ALGEBRAS, IIANNE HENKE, STEFFEN KOENIGAbstrat. A lassial problem of invariant theory and of Lie theory is to determineendomorphism rings of representations of lassial groups, for instane of tensor powersof the natural module (Shur-Weyl duality) or of full diret sums of tensor produtsof exterior powers (Ringel duality). In this artile, the endomorphism rings of fulldiret sums of tensor produts of symmetri powers over sympleti and orthogonalgroups are determined. These are shown to be isomorphi to Shur algebras of Braueralgebras as de�ned in [24℄. This implies strutural properties of the endomorphismrings, suh as double entraliser properties, quasi-hereditary, and a universal property,as well as a lassi�ation of simple modules.1. IntrodutionLet G be a lassial group de�ned over an algebraially losed �eld k, E its naturalmodule and E⊗r the r-fold tensor produt. Classial Shur-Weyl duality determinesthe entraliser algebra EndG(E
⊗r). When G equals the general linear group GLn, theentraliser is a quotient of the group algebra kΣr of the symmetri group. When Gis orthogonal or sympleti, the entraliser algebra is a quotient of a Brauer algebra.For n ≥ r, the symmetri group ats faithfully on the tensor spae; the Brauer algebraats faithfully on the tensor spae for n ≥ 2r. In suh a situation, lassial invarianttheory and its harateristi-free versions, in partiular, work by Shur, Brauer, Weyl, DeConini and Proesi, and others, provides muh information. Additional work is neededto determine the struture of the entraliser algebras and their representation theory,whih are far from being known.Keep G, but replae the tensor spae E⊗r by a (full) diret sum of tensor produts ofeither exterior or symmetri powers of the natural module. When hoosing a full diretsum of tensor produts of exterior powers in type A, Donkin [12℄ has shown that theendomorphism algebra is a type A Shur algebra; in fat, for n ≥ r this assertion isthe Ringel self-duality of the lassial Shur algebra. Adamovih and Rybnikov [1℄ haveextended this result about the endomorphism ring of a diret sum of tensor produts ofexterior powers to over also ertain orthogonal and sympleti situations. The ase ofsymmetri powers has remained open.The main result of this artile determines the endomorphism rings of a full diret sumof tensor produts of symmetri powers, for all lassial groups over an algebraiallylosed �eld of any harateristi. While in type A the entraliser algebra of a diretsum of tensor produts of symmetri powers is again the lassial type A Shur algebra,unexpetedly a di�erent algebra is oming up in the orthogonal and sympleti ase:Theorem 1.1. Let G ⊂ GLn be an orthogonal or sympleti group, over an algebraiallylosed �eld k. Assume n ≥ 2r when G is a sympleti group, and n > 2r when G isDate: September 18, 2013. 1



2 ANNE HENKE, STEFFEN KOENIGan orthogonal group. Denote by Br = Br(δ) the Brauer algebra with non-zero parameter
δ ∈ k. Fix the parameter δ = −n ∈ k when G is a sympleti group, and δ = n ∈ k when
G is an orthogonal group.Then the entraliser algebra

C := EndG(
⊕

λ⊢r−2l,0≤l≤ r
2

SymλE)is isomorphi to the Shur algebra SB(n, r) of the Brauer algebra Br.The Shur algebra SB(n, r) has been de�ned in [24℄ as the endomorphism algebra
SB(n, r) = EndBr(

⊕

λ⊢r−2l,0≤l≤ r
2

M(l, λ))of the permutation modules (introdued by Hartmann and Paget [22℄) of the orrespond-ing Brauer algebra Br. Both algebras, Br and SB(n, r), are de�ned ombinatorially, andthey are related by a Shur-Weyl duality. The inverse Shur funtor (see Lemma 3.4)sends permutation modules M(l, λ) to symmetri powers SymλE. Using this, Theorem1.1 establishes a diret onnetion between SB(n, r) and the representation theory oflassial groups. Here and throughout, when G is the orthogonal or sympleti groupinside GLn, the parameter δ of the Brauer algebra is taken to be non-zero in k and �xedas ±n. Moreover, when dealing with an orthogonal group, we assume the ground �eld kto have harateristi di�erent from two.When the group G is even orthogonal or sympleti, its ation on tensor spae and on thesymmetri powers is via a generalised Shur algebra that is assoiated with a saturatedset of highest weights. In general, the ation fators through the enveloping algebra of
G in Endk(E

⊗r). This algebra will be denoted by Senv(G), see Setion 2.1; in the aseof even orthogonal or sympleti groups, Senv(G) equals the generalised Shur algebrajust mentioned.Corollary 1.2. Let G, n and δ be as in 1.1. Then there is a Shur-Weyl duality betweenthe algebra Senv(G) and the algebra C ≃ SB(n, r), on the bimodule
M :=

⊕

λ⊢r−2l,0≤l≤ r
2

SymλE,that is, the following two equations hold true:
C = EndSenv(G)(M) and Senv(G) = EndC(M).With the tensor spae E⊗r being a diret summand ofM , this Shur-Weyl duality on thebimoduleM extends the lassial Shur-Weyl duality (due to Brauer [2℄ in harateristizero and [8, 9, 16, 35℄ in general) on tensor spae.Apart from relating two di�erent situations, the isomorphism in Theorem 1.1 moreovertransports muh struture and information (developed in [24℄ and also in [22, 21℄) fromthe Shur algebra SB(n, r) to the entraliser algebra C � see Setion 3.10 for a moredetailed formulation:



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 3Corollary 1.3. Let C be de�ned as in Theorem 1.1.(a) The algebra C has an integral form with an expliit basis, whih is independentof the ground �eld k and of its harateristi.(b) The algebra C arries a quasi-hereditary struture, that is, mod-C is a highestweight ategory.() The global (ohomologial) dimension of C is �nite.(d) There is a Shur-Weyl duality between C and the Brauer algebra Br.(e) When the harateristi is di�erent from two or three, the algebra C satis�esa universal property that makes it unique up to Morita equivalene: It is thequasi-hereditary 1-over of the Brauer algebra Br in the sense of Rouquier [33℄.(f) The simple C-modules are parametrised by the disjoint union of all partitions ofthe non-negative integers of the form r, r − 2, r − 4, . . . .These properties are shared by the members of a muh larger family of algebras
SB(n, r, δ)δ∈k , speialising to the sympleti and the orthogonal ase for δ = −n and
δ = n, respetively.From the point of view of invariant theory and of Lie theory, the results of this artiledesribe the previously unknown endomorphism ring of a lassial objet, as well asits ring struture, its representation theory and its homologial properties. From thepoint of view of the more reent � and now quikly expanding � theory of Braueralgebras and their Shur algebras, Theorem 1.1 gives a Lie theoretial meaning to theseShur algebras, whih turn out to be the third players in a triangle of six Shur funtorsmutually relating Brauer algebras, their Shur algebras, and the enveloping algebras oforthogonal or sympleti groups, on the full diret sum of tensor powers of symmetripowers. This triangle replaes the familiar type A situation of just two algebras beingin Shur-Weyl duality, whih provides a lassial onnetion between Lie theory andombinatoris.This artile is organised as follows: Setion 2 ollets de�nitions and notation as wellas some results on Shur-Weyl duality for lassial groups, Brauer algebras and variousShur algebras. Setion 3 is devoted to the proof of Theorem 1.1. Setions 3.9 and 3.10explain and prove Corollaries 1.2 and 1.3, respetively. Finally, Subsetion 3.11 putsthe various Shur funtors, and three di�erent algebras, together into one ommutingtriangle.2. Shur-Weyl duality, Brauer algebras and Shur algebrasA main theme of this artile is Shur-Weyl duality and its various manifestations. Thisis motivated by lassial Shur-Weyl duality. Here, G = GLn(k) ats on tensor spae
E⊗r by diagonal extension of its ation on the natural module E. The symmetri group
Σr ats by plae permutation on tensor spae. The two ations ommute and do, in fat,entralise eah other. When n ≥ r, this means

EndG(E
⊗r) = kΣr and EndΣr(E

⊗r) = Senv(G),where the enveloping algebra Senv(G) of G in Endk(E
⊗r) is isomorphi to the lassialtype A Shur algebra S(n, r). When n < r, the group algebra kΣr has to be replaed by



4 ANNE HENKE, STEFFEN KOENIGa ertain known quotient algebra. In harateristi zero, lassial Shur-Weyl duality isdue to Shur [34℄, in general it follows from results of Carter and Lusztig [5℄, De Coniniand Proesi [8℄, and Green [19, Theorem 2.6℄.The injetive modules over S(n, r) are diret summands of diret sums of tensor produtsof symmetri powers. Indeed, the oalgebra A(n, r) = S(n, r)∗ dual to the Shur algebrais for n ≥ r a full sum of tensor produts of symmetri powers, see [19℄. Therefore,the endomorphism ring of a full diret sum of tensor powers of symmetri powers (theanalogue of the algebra C in type A) is Morita equivalent, for a suitable hoie ofmultipliities even isomorphi, to the Shur algebra S(n, r) itself. Moreover, tensor spae
E⊗r is a full diret sum of permutation modules Mλ = k ↑kΣr

kΣλ
(with λ running throughall ompositions of r) over the symmetri group Σr. Therefore, the type A analogue ofthe algebra SB(n, r) is the (type A) Shur algebra S(n, r) itself. In types di�erent fromA, there is no suh oinidene any more.2.1. Brauer algebras and Shur-Weyl dualities. Let k be a ommutative domain,and hoose a parameter δ ∈ k. Let r be a natural number. The Brauer algebra Br(δ) ofdegree r for parameter δ is de�ned to be the vetor spae with k-basis given by the setof all Brauer diagrams on 2r verties. A Brauer diagram is a diagram whose verties arearranged in two rows of r verties eah, and there are r edges between the verties suhthat eah vertex is inident to preisely one edge. Brauer diagrams are onsidered up tohomotopy, thus the dimension of Br(δ) is (2r−1)!! = (2r−1)·(2r−3) · · · 3·1. To multiplytwo Brauer diagrams, say b1 and b2, the diagrams are onatenated, with b1 drawn ontop of b2, and any losed loops appearing are removed, to give a Brauer diagram d. Theresult of the multipliation then is, by de�nition, b1 · b2 = δcd, where c is the numberof losed loops removed. Typially the parameter δ is understood from the ontext, andwe will denote the Brauer algebra by Br or just B. Brauer algebras were introduedin [2℄ in the ontext of generalising Shur-Weyl duality from general linear groups toorthogonal and sympleti subgroups. For more details and examples see for instane[2, 3, 21, 22, 25, 27℄. The restrition of the parameter δ = ±n is neessary to obtainan ation of the Brauer algebra Br(δ) on the generalised symmetri powers SymλE. Inharateristi zero, Brauer algebras are semisimple for non-integral parameter.Let k be an algebraially losed �eld of harateristi p ≥ 0 and let n, r be positiveintegers. Let E be an n-dimensional k-vetor spae and let ω be a non-degeneratesymmetri bilinear form on E. The orthogonal group relative to ω isOn = {g ∈ GLn | ω(gx, gy) = ω(x, y) for all x, y ∈ E }.Similarly for n = 2m even positive integer, let ω be a non-degenerate skew-symmetribilinear form on E. The sympleti group relative to ω isSpn = {g ∈ GLn | ω(gx, gy) = ω(x, y) for all x, y ∈ E }.In the following, we let G ∈ {Spn,On}. The lassial groups GLn, Spn and On operateon E by matrix multipliation. This ation extends diagonally to an ation on the tensorspae E⊗r.Brauer diagrams an be interpreted as G-homomorphisms in the following way: Assume

E has basis {v1, . . . , vn}, and let {v1, . . . , vn} be the dual basis of E with respet to the



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 5invariant form ω. De�ne
ϑ =

n∑

i=1

vi ⊗ vi.Then ϑ is G-invariant (see [18, 4.3.2.℄). For 1 ≤ i, j ≤ n, de�ne the (i, j)th ontrationoperator Ci,j : E⊗r → E⊗r−2 by
Ci,j(x1 ⊗ · · · ⊗ xr) = ω(xi, xj)x1 ⊗ · · · ⊗ x̂i ⊗ · · · ⊗ x̂j ⊗ · · · ⊗ xrwhere we omit the ith vetor xi and the jth vetor xj in the tensor produt. Moreover,the (i, j)th expansion operator Di,j : E

⊗r−2 → E⊗r is de�ned by
Di,j(x1 ⊗ · · · ⊗ xr−2) =

n∑

t=1

x1 ⊗ · · · ⊗ vt ⊗ · · · ⊗ vt ⊗ · · · ⊗ xr−2.Here vt is in the ith position and vt is in the jth position. Setting bij = Di,j ◦ Ci,j , itis easily heked that bi,j = bj,i. By (1) below, all elements in EndG(E
⊗r) oinide withelements in the Brauer algebra Br. In partiular, the element bi,j oinides with theBrauer diagram

bi,j =

• · · · • • • · · · • • • · · · •

• · · · • •i • · · · • •j • · · · •with the horizontal edges between verties i and j. Here the top row horizontal arorresponds to the ontration operator, and the ar in the bottom row orresponds tothe expansion operator.Diagrams onsisting of r − 2l through strings onneting top and bottom verties (and
l ars at orresponding top and bottom plaes), naturally orrespond to elements of asymmetri group Σr−2l. Suh elements are G-endomorphisms of tensor spae fatoringthrough the smaller tensor spae E⊗r−2l. Every Brauer diagram an be fatorised asa produt of ontration operators, an element of a symmetri group Σr−2l and then aprodut of expansion operators. This fatorisation is the basi ingredient of the ellularstruture of the Brauer algebra, for details see [27℄.From now on, we assume n ≥ 2r in ase G is a sympleti group and n > 2r in the orthog-onal ase. Then the Brauer algebra with parameter ±n ats faithfully on tensor spae
E⊗r. Results by Brauer [2℄ in harateristi zero, and in general by De Conini�Proesi[8℄, Oehms [31℄, Dipper�Doty�Hu [9, 16℄ and Tange [35℄ extend lassial Shur-Weyl du-ality to orthogonal and sympleti subgroups, implying in partiular the following twoisomorphisms:(1) Br(n) = EndOn(E

⊗r), Br(−n) = EndSpn(E
⊗r).(2) Senv(O(n)) = EndBr(n)(E

⊗r), Senv(Sp(n)) = EndBr(−n)(E
⊗r).Reall that here Senv(G) denotes the enveloping algebra in Endk(E

⊗r) of the respetivegroup. A version of Shur-Weyl duality involving HomG(E
⊗s, E⊗t) with s and t notneessarily equal an be found in [35℄: In this version, tensor spae E⊗r is replaedby a diret sum ⊕r

s=0E
⊗s. In Theorem 3 of [35℄, Shur-Weyl duality is shown for thissituation; the statement and the onditions oinide with those of usual Shur-Weyl



6 ANNE HENKE, STEFFEN KOENIGduality. (This also works in the orthogonal ase, see Remark 3 in [35℄.) Here, basiselements of G-homomorphisms between tensor spaes of di�erent degrees are representedby generalised Brauer diagrams (alled (u, v)-diagrams in [35℄) with u verties in the toprow and t verties in the bottom row. See [35, Setion 3℄ for explanations and details.Generalised Brauer diagrams with not neessarily equal numbers of verties in top andbottom row are the morphisms in the ategory of Brauer diagrams, as desribed indetail in [28℄, where lassial results of invariant theory are also disussed in detail, andextended.When G is a sympleti or an even orthogonal group, the enveloping algebra Senv(G) isa generalised Shur algebra in the sense of Donkin, whih gives it additional relevane, asfollows: The lassial type A Shur algebra de�ned by Green [19℄ provides a frameworkto study the polynomial representation theory of the general linear group GLn. Infat, the algebra Senv(G) in this ase oinides with Green's algebra S(n, r), and themodules over S(n, r) are the polynomial representations of G that are homogeneous ofdegree r. Donkin [11℄ generalised this onept to rational representations of redutivegroups assoiated with �nite saturated sets of weights. Generalised Shur algebras arequasi-hereditary, so their module ategories are highest weight ategories in the sense ofCline�Parshall�Sott [6℄. The union of these module ategories exhausts the ategoryof rational representations of the given group. When G is a sympleti group, the setof weights ouring in E⊗r is saturated, and Senv(Spn) oinides with the generalisedShur algebra assoiated with this set of weights. A similar result holds true for evenorthogonal groups. In the ase of odd orthogonal groups, the set of weights in E⊗r is notsaturated. Hene for n odd, Senv(On) is in general not a generalised Shur algebra. Itis, however, a diret summand of a generalised Shur algebra. Our assumption n > 2r inthe orthogonal ase ensures that the enveloping algebras Senv(On) and Senv(SOn) of theorthogonal and the speial orthogonal group, both ating on tensor spae, do oinide.The same is true for the orresponding generalised Shur algebras. See [15, Setion 4℄and [29, 30℄ for details. This will allow us in Subsetion 3.3 to use Brundan's results [4℄on restrition from general linear to speial orthogonal groups in order to get informationon restrition to orthogonal groups.2.2. Shur algebras of Brauer algebras. Shur algebras SB(n, r) of Brauer algebrashave been studied in the preeding artile [24℄. These algebras are endomorphism alge-bras of diret sums of permutation modules of Brauer algebras, whih have been de�nedby Hartmann and Paget [22℄. For l ≤ r
2 and λ ⊢ r− 2l, the permutation module M(l, λ)is de�ned as

M(l, λ) =Mλ ⊗kΣr−2l
elBrwhere

el =
1

δl
·

• · · · • • • · · · • •

• · · · • • • · · · • •
(3)with l ars in top and bottom row, respetively, and Mλ is the permutation module(indexed by λ) assoiated with the symmetri group Σr−2l.By de�nition, for any �xed parameter δ 6= 0, the Shur algebra SB(n, r) := SB(n, r, δ) isthe endomorphism ring of the diret sum ⊕l,λM(l, λ) of all permutation modules of the



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 7Brauer algebra:
SB(n, r) = EndBr(

⊕

λ⊢r−2l,0≤l≤ r
2

M(l, λ)).We drop the parameter δ in notation; later on, it will be assumed to be n or −n whenwe work with the orthogonal or the sympleti group, respetively.In [24, Theorem 7.1℄ it has been shown, in partiular, that SB(n, r) is a quasi-hereditaryalgebra. So its module ategory is a highest weight ategory. Moreover, SB(n, r) isrelated to the Brauer algebra Br by a Shur-Weyl duality on the diret sum ⊕M(l, λ)of the permutation modules. This Shur-Weyl duality is di�erent from that stated inCorollary 1.2, but related to it; see Setion 3.11 below for more information.In [24, Theorem 5.3℄ an expliit basis of the Shur algebra SB(n, r) has been onstruted,onsisting of B-homomorphisms
φu,π,σ :M(l, λ) →M(m,µ)(4)with

π ∈ Σr−2m a representative of Σµ\Σr−2m/(Σr−2u ×Hu−m),

σ ∈ Σr−2l a representative of (Σν ×Hu−l)\Σr−2l/Σλ,where Σν = Σr−2u ∩ π
−1Σµπ.Then the B-homomorphism

φu,π,σ :M(l, λ) −→M(m,µ)is expliitly given on a generator of M(l, λ) by
φu,π,σ(Σλ · id⊗ el) =

∑

α∈Σλ∩σ−1(Σν×Hu−l)σ\Σλ

(Σµ · id⊗ eπ,u)σ · α(see [24, Subsetion 5.3℄).By [24, Setion 10℄, suh a basis element φu,π,σ orresponds to a triple, say (v,w, ξ(σ̂)),de�ned as follows:
v ∈ V r−2m

u−m / ∼kΣµ
is a partial (bottom) ar on�guration, orresponding to π;

w ∈ V r−2l
u−l / ∼kΣλ

is a partial (top) ar on�guration, orresponding to σ;
ξ(σ̂) is the Shur algebra element orresponding to the double oset Σρσ̂Σν .In the third datum, Σρ = Σr−2u ∩ σΣλσ

−1. The element σ̂ has been de�ned in [24,Notation 8.3℄ as the restrition of σ to the 'free' verties not attahed to horizontal ars.This way of writing the basis uses [24, Setion 8℄, whih asserts that the lassial Shuralgebra S(n, r − 2l), for eah l, is a non-unital subalgebra of SB(n, r).For the proof of Proposition 3.8 we need the following formula that expresses the dimen-sion of HomBr(M(l, λ),M(m,µ)) in terms of generalised Brauer diagrams by indexingand ounting basis elements of SB(n, r) as explained above.Proposition 2.1. Fix a partition λ of r − 2l and a partition µ of r − 2m. Denote by
Xr−2l
r−2m the set of all Brauer diagrams with r − 2l verties in the top row and r − 2mverties in the bottom row. Let the group Σλ × Σµ at on Xr−2l

r−2m by the �rst omponent



8 ANNE HENKE, STEFFEN KOENIGof its elements permuting the verties in the top row and the seond omponent permutingthe verties in the bottom row.Then the dimension of HomBr(M(l, λ),M(m,µ)) equals the number of orbits in
Σλ\X

r−2l
r−2m/Σµ := Xr−2l

r−2m/(Σλ × Σµ).Proof. By the desription above, a homomorphism φu,π,σ : M(l, λ) −→ M(m,µ) isrepresented by a triple onsisting of a top ar on�guration, a bottom ar on�gurationand a permutation de�ning the through strings, that is, by a Brauer diagram, modulothe ation of Σλ on the top verties and of Σµ on the bottom verties. �3. Proof of Main Theorem, and onsequenes3.1. Outline. The proof of the Main Theorem 1.1 oupies the following seven sub-setions. Subsetion 3.2 realls basi material on symmetri powers and �xes notation.Subsetion 3.3 ollets several abstrat results from the literature, on ategories of rep-resentations of lassial groups and on restrition from general linear to orthogonal orsympleti groups. We are going to use these results to show that ertain dimensionsof homomorphism spaes do not depend on the harateristi of the underlying �eld k.In Setion 4, an alternative ombinatorial proof of this fat and a diret ombinatorialdesription of these morphism spaes will be given in ase of harateristi zero or largeprime harateristi.Subsetion 3.4 introdues Shur funtors and de�nes the algebra homomorphism φ :
SB(n, r) → C that will be shown to be an isomorphism. Moreover, an alternativedesription of tensor produts of symmetri powers will be given, as images of an inverseShur funtor. In Subsetion 3.5, a harateristi free ombinatorial desription will begiven for the spae of G-module homomorphisms from tensor spae to tensor produtsof symmetri powers. This is used in Subsetion 3.6 to desribe permutation modules ofBrauer algebras as images under a Shur funtor, providing a ounterpart to the resultin Subsetion 3.5. In Subsetion 3.7, injetivity of Φ is shown, and in Subsetion 3.8,proving surjetivity �nishes the proof of the Main Theorem 1.1. Subsetions 3.9 and 3.10prove and explain Corollaries 1.2 and 1.3. Finally, Subsetion 3.11 disusses onnetionsbetween several Shur funtors and puts the information together.3.2. Symmetri powers. Let E be an n-dimensional k-vetor spae and λ =
(λ1, . . . , λn) a omposition of r into n parts some of whih possibly are zero. For anatural number m, de�ne the mth symmetri power

SymmE = E⊗m/Imwith Im = 〈x1 ⊗ · · · ⊗ xm − xτ(1) ⊗ · · · ⊗ xτ(m) | τ ∈ Σm, xi ∈ E〉. The symmetri power
SymmE an be identi�ed with the vetor spae of all polynomials in n variables that arehomogeneous of degree m. Denoting by {v1, . . . , vn} a basis of E, the spae SymmE hasbasis

{vi11 · · · vinn |

n∑

j=1

ij = m}.



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 9We write πr for the natural projetion πr : E⊗r → SymrE. For the omposition λ =
(λ1, . . . , λn) of r, de�ne SymλE = Symλ1E ⊗ · · · ⊗ SymλnE. We will refer to SymλEas symmetri powers. Let πλ = πλ1 ⊗ · · · ⊗ πλn . For x = x1 ⊗ · · · ⊗ xr write xλ for theelement

xλ = x1 · · · xλ1 ⊗ xλ1+1 · · · xλ1+λ2 ⊗ · · · ⊗ · · · xr ∈ SymλE.Then πλ(x) = xλ. More generally, we use the following notation: Let x = x1⊗· · ·⊗xr−2land λ = (λ1, λ2, . . .) be a omposition of r − 2l. Write xλ for the element
xλ = x1 · · · xλ1 ⊗ xλ1+1 · · · xλ1+λ2 ⊗ · · · ⊗ · · · xr−2l ∈ SymλE.De�ne the G-homomorphism πλ,l as omposition

πλ,l : E
⊗r → E⊗r−2l ⊗ ϑl → SymλE ⊗ ϑlwhere the �rst map is given by l ontrations on adjaent plaes on the last 2l plaesin the tensor produt, and the seond map is given by the natural projetion x 7→ xλ,tensored with the identity map on the last 2l plaes of the tensor produt. We say that

xi and xj are in the same λ-omponent of the tensor x, if for some t ≥ 0,
t∑

s=1

λs < i, j ≤

t+1∑

s=1

λs.Then the kernel of the map πλ is spanned by elements of the form
xij := x(id− (i, j)) = · · · ⊗ xi ⊗ · · · ⊗ xj ⊗ · · · − · · · ⊗ xj ⊗ · · · ⊗ xi ⊗ · · ·where xi and xj lie in the same λ-omponent.3.3. Categories of �ltered modules. The endomorphism ring C to be determined inthis artile depends, by de�nition, on the underlying �eld k and its harateristi. TheShur algebra SB(n, r) of the Brauer algebra, whih will be shown to be isomorphi to

C, has been shown in [24℄ not to depend on k, in the sense that it has a ombinatoriallyde�ned basis that is independent of k. The struture onstants of this basis and thering struture of SB(n, r) - for instane, whether it is semisimple or not - do howeverheavily depend on k. The dimensions of the Brauer algebras and of the generalisedShur algebras of lassial groups also do not depend on k. Hene the dimensions ofthe endomorphism rings ouring in Shur-Weyl duality are independent of k, too. Inthis subsetion we reall results from representation theory of lassial groups that implysuh harateristi independene and we ollet fats to be used later on to show thatalso the dimension of C does not depend on k.Rational representations of lassial groups G form highest weight ategories. There-fore, Donkin's generalised Shur algebras [11℄ are quasi-hereditary algebras as de�nedby Cline, Parshall and Sott in [6℄. Their projetive modules are �ltered by standardmodules ∆(λ) and their injetive modules are �ltered by o-standard modules ∇(λ). Thestandard modules are preisely the Weyl modules and the o-standard modules are dualWeyl modules, where dual refers to the ontravariant duality in the ategory of rationalrepresentations.The ategory F(∆) is the full subategory of the ategory of rational representationsonsisting of the modules that admit a �ltration whose setions are Weyl modules. The



10 ANNE HENKE, STEFFEN KOENIGategory F(∇) is de�ned dually, using ostandard modules. Cruial homologial infor-mation is provided by the following orthogonality property:(5) ExtjG(∆(λ),∇(µ)) =

{
k, if j = 0andλ = µ,

0, otherwise.Using long exat ohomology sequenes, a similar Ext-orthogonality is obtained betweenobjets in F(∆) and objets in F(∇). An important onsequene is that objets in theintersetion of these two ategories have no self-extensions. More preisely, F(∆)∩F(∇)equals add(T ), the ategory of diret summands of diret sums of Ringel's harateristitilting module T , see [32℄ or, for instane, [14℄. Up to a hoie of multipliities of diretsummands, the equality add(T ) = F(∆) ∩ F(∇) an be taken as de�nition of T . Theharateristi tilting module T is an injetive objet in F(∆) and a projetive one in
F(∇). By the orthogonality property (5), the funtors HomG(−,∇(µ)) are exat onshort exat sequenes in F(∆) and the funtors HomG(∆(λ),−) are exat on shortexat sequenes in F(∇). Indutively, it follows that the dimension of HomG(X,Y ) for
X in F(∆) and Y in F(∇) only depends on the multipliities in the ∆-�ltration of
X and in the ∇-�ltration of Y . Suh �ltrations, and the multipliities, are preservedunder modular redution from harateristi zero to prime harateristi. Therefore,dimensions of HomG(X,Y ) are harateristi independent: More preisely, when X isa module with standard �ltration and Y is a module with o-standard �ltration, thenthe spae of homomorphisms HomG(X,Y ) has dimension ∑

λ aλbλ, where aλ is themultipliity of ∆(λ) in any standard �ltration of X and bλ is the multipliity of ∇(λ)in any o-standard �ltration of Y . These multipliities are well-de�ned, by generaltheory of quasi-hereditary algebras, and independent of k. Hene the dimension of
EndG(E

⊗r) does not depend on k or its harateristi. In order to establish harateristiindependene of dimensions of ertain morphism spaes, we will use that the relevantobjets are in the subategories F(∆) and F(∇), respetively, see Proposition 3.2 below.An example is Shur-Weyl duality for general linear groups. Over G = GLn with n ≥ r,tensor spae E⊗r is projetive and injetive and therefore a diret summand of theharateristi tilting module. When dropping the assumption n ≥ r, tensor spae isnot projetive any more, but still a diret summand of the harateristi tilting module.Even in this general ase, Shur-Weyl duality an be derived using suh arguments, see[26℄ for details.Proposition 3.1. Let G be a lassial group. Let n ≥ r when G = GLn is a generallinear group and let n and r be as in Theorem 1.1 when G is orthogonal or sympleti.Then tensor spae E⊗r is relative injetive in F(∆) and relative projetive in F(∇).Here, relative projetive or injetive means exatness of the respetive Hom-funtor onshort exat sequenes in the subategory, and thus vanishing of �rst extension groups.For example, P ∈ F(∇) is relative projetive in F(∇) if and only if Ext1G(P,−) vanisheson F(∇), whih is an extension losed subategory.Proof. When G = GLn and n ≥ r, then tensor spae E⊗r is a projetive module overthe lassial Shur algebra. Sine it is self-dual, it is also injetive. See [19℄ for details.Projetive modules are ∆-�ltered and injetive modules are ∇-�ltered. Therefore, E⊗r



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 11has both �ltrations and must be a diret summand of a diret sum of opies of theharateristi tilting module T , whih is relative injetive in F(∆) and relative projetivein F(∇).Now let G be the sympleti or the orthogonal group ating on tensor spae by restrit-ing the GLn-ation. When restriting representations from general linear to sympletior orthogonal groups, the ategories F(∆) and F(∇) are mapped into the orrespond-ing ategories for the smaller groups by results of Donkin and Brundan, see [13, 4℄.More preisely, Proposition 3.3 in [4℄ states in partiular that the pairs (SLn, SPn) and
(SLn, SOn) (the latter only in ase of harateristi di�erent from two) are good pairs.This means restriting from the �rst group to the seond sends modules with∇-�ltrationsover the �rst group to modules with ∇-�ltrations over the seond group. The �rst ase,involving the sympleti group, follows from a result of Donkin, in Appendix A of [13℄.Hene, tensor spae is a diret summand of a harateristi tilting module over everylassial group, and thus it is relative injetive in F(∆) and relative projetive in F(∇).

�Over G = GLn, the full tensor powers of the symmetri powers are injetive and thereforethey are objets in F(∇). Beause of the ompatibility with restrition just quoted thisimplies:Proposition 3.2. Let G be a lassial group, n and r as in Proposition 3.1 and λ apartition of some s ≤ r. Then the dimension of HomG(E
⊗r,SymλE) does not dependon the ground �eld k.When working with subategories and using ohomology it is important to know thatkernels of ertain surjetive maps belong to the given subategory. We will need:Lemma 3.3. In the short exat sequene

0 → kernel → E⊗|λ| πλ−→ SymλE → 0the kernel is in F(∇).This short exat sequene gives the relative projetive over of SymλE in the subategory
F(∇). Lemma 3.3 has been shown by Donkin in [14, laim 2.1.(15((ii)(b)℄ in the aseof quantum general linear groups. As remarked there, the proof given there works forredutive algebrai groups as well.3.4. Shur funtors. From now on, G is a sympleti or orthogonal group and theassumptions of Theorem 1.1 are valid. Following [15℄, we de�ne the Shur funtor f0 andthe inverse Shur funtor g0 for the sympleti and orthogonal groups as follows:

f0 : mod-G→ mod-Br, f0(−) = HomG(E
⊗r,−),

g0 : mod-Br → mod-G, g0(−) = −⊗Br E
⊗r.with G = Spn or G = On respetively. Here, as throughout, module ategories areategories of �nite dimensional right modules. Unlike in [15℄, we assume here that theation of the Brauer algebra Br on the tensor spae is without a twist by a sign (sine we



12 ANNE HENKE, STEFFEN KOENIGare using Br = Ar as explained above). Moreover, we use G-modules instead of modulesover a generalised Shur algebra, to simplify notation.Lemma 3.4. For all l and all λ ⊢ r − 2l there is an isomorphism of G-modules
g0(M(l, λ)) ≃ SymλE ⊗ ϑl.This has been shown in [15, Prop 2.2℄. In our notation it an be seen as follows:Proof. Let πλ = πλ,0. In the following, g : mod-Σr → mod-S(n, r), de�ned by g(−) =

−⊗kΣr
E⊗r denotes the usual lassial (type A) inverse Shur funtor assoiated to GLn.Then there is a hain of G-module isomorphisms, whose omposition we denote by κ:

g0(M(l, λ)) = M(l, λ)⊗Br E
⊗r

≃ Mλ ⊗kΣr−2l
elBr ⊗Br E

⊗r

≃ Mλ ⊗kΣr−2l
elE

⊗r

≃ Mλ ⊗kΣr−2l
(E⊗r−2l ⊗ ϑl)

≃ (Mλ ⊗kΣr−2l
E⊗r−2l)⊗ ϑl

≃ g(Mλ)⊗ ϑl

≃ SymλE ⊗ ϑl.The latter is isomorphi to SymλE as G-module sine ϑ is the trivial G-module.Here, as G-modules,
̂ : elE⊗r = E⊗r−2l ⊗ ϑl ≃ E⊗r−2l, x 7→ x̂,given by ẑ ⊗ ϑl = z, and Σr−2l operates by plae permutations (without sign) on thetensor spae E⊗r−2l. Given x ∈ E⊗r, the isomorphism κ above is realised by mapping

Σλσ ⊗ elb⊗ x 7→ πλ(σ̂elbx)⊗ ϑl,with well-de�ned inverse map given by
πλ(x̂)⊗ ϑl 7→ Σλid⊗ el ⊗ x.

�The inverse Shur funtor g0 indues an algebra homomorphism(6) Φ : SB(n, r) → C, α 7→ g0(α)where SB(n, r) = EndBr(⊕M(l, λ)) and
C = EndG(

⊕

l≤ r
2
,λ⊢r−2l

(SymλE ⊗ ϑl)) ≃ EndG(
⊕

l≤ r
2
,λ⊢r−2l

(SymλE)).It is this map Φ that will be shown to be an isomorphism, when proving Theorem 1.1.



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 133.5. Maps from tensor spae to symmetri powers. By Proposition 3.2, the di-mension of HomG(E
⊗s ⊗ ϑl,SymµE ⊗ ϑm) does not depend on k. We will now give aombinatorial desription of these homomorphisms in terms of Brauer diagrams.Proposition 3.5. Let s = r−2l, t = r−2m and µ a partition of t. Then in the diagram

E⊗s ⊗ ϑl
γ

//

β
''O

O

O

O

O

O

E⊗t ⊗ ϑm

πµ

��

SymµE ⊗ ϑm

,

omposition with πµ provides a surjetive map
πµ ◦ − : γ 7→ πµ ◦ γ = βinduing an isomorphism

α : HomG(E
⊗s ⊗ ϑl, E⊗t ⊗ ϑm)/Σµ ≃ HomG(E

⊗s ⊗ ϑl,SymµE ⊗ ϑm).By Shur-Weyl duality (as formulated in [35℄), the maps γ are linear ombinations of
(s, t)-Brauer diagrams, whose rows have s and t verties, respetively. Eah β is of theform β = πµ ◦γ. Moreover, γ1 and γ2 de�ne the same β if and only if there exists σ ∈ Σµsuh that γ2 = σ ◦ γ1.Proof. Composition with πµ de�nes a map πµ ◦ − as stated. This map is surjetive:Indeed, the map β : E⊗s ⊗ ϑl → SymµE ⊗ ϑm starts and ends in objets of F(∇) andthe surjetive map πµ : E⊗t ⊗ ϑm → SymµE ⊗ ϑm is part of a short exat sequene in
F(∇), by Lemma 3.3. By Proposition 3.1, module E⊗t ≃ E⊗s⊗ ϑl is relative projetivein F(∇). Being relative projetive is equivalent to having the lifting property:

E⊗s ⊗ ϑl

∃γ

ww

∀β

��
�

�

�

kernel(πµ) // E⊗t ⊗ ϑm
πµ

// SymµE ⊗ ϑmThus, β = πµ ◦ γ for some γ. Note that the lifting property requires the kernel of thesurjetive map πµ to belong to the subategory F(∇).Certainly, γ1 and γ2 de�ne the same β if there exists σ ∈ Σµ suh that γ2 = σ ◦ γ1.We have to show the onverse, whih implies injetivity of α. By Proposition 3.2, thedimension of HomG(E
⊗s⊗ϑl,SymµE⊗ϑm) does not depend on the hoie of the ground�eld k.Therefore, it is enough to hek injetivity of α in harateristi zero.In that ase, SymµE⊗ϑm is a diret summand of E⊗t⊗ϑm through the split epimorphism

πµ. More preisely, this provides an isomorphism SymµE⊗ ϑm ≃ (E⊗t⊗ ϑm)/Σµ. Over
GLn, Shur-Weyl duality implies an isomorphism

HomGLn(E
⊗t ⊗ ϑm,SymµE ⊗ ϑm) ≃ HomGLn(E

⊗t ⊗ ϑm, (E⊗t ⊗ ϑm)/Σµ)

≃ HomGLn(E
⊗t ⊗ ϑm, (E⊗t ⊗ ϑm))/Σµ

≃ kΣt/Σµ.



14 ANNE HENKE, STEFFEN KOENIGIndeed, by Shur-Weyl duality the GLn-maps between the tensor spaes are linear om-binations of group elements in Σt. Thus the GLn-maps into the symmetri power are theompositions of these maps with the split epimorphism πµ, whih identi�es the elementsin eah oset of Σt/Σµ. This shows that HomGLn(E
⊗t ⊗ ϑm,SymµE ⊗ ϑm) ⊂ kΣt/Σµ.Sine tensor spae is isomorphi to a full diret sum of opies of symmetri powers (theontragredient dual of the Shur algebra, whih is a full set of injetive modules), theinlusion must be equality. The multipliation map

HomG(E
⊗s ⊗ ϑl, E⊗t ⊗ ϑm)⊗kΣt

HomGLn(E
⊗t ⊗ ϑm,X) → HomG(E

⊗s ⊗ ϑl,X)is an isomorphism for X = E⊗t ⊗ ϑm, again by Shur-Weyl duality. Thus it is anisomorphism for X a diret summand of E⊗t ⊗ ϑm, too, hene in partiular for X =
SymµE ⊗ ϑm. This assertion is a speial ase of [15, Lemma 2.3(ii)℄. This provesinjetivity of α. �3.6. The image of SymλE under the Shur funtor. We next apply the Shurfuntor f0 to symmetri powers. The following result restates parts of [15, Theorem 2.1and Theorem 4.1℄ in our notation:Lemma 3.6. For all l and all λ ⊢ r − 2l there is a right B-module isomorphism

f0(Sym
λE ⊗ ϑl) ≃M(l, λ).Proof. First we show that the two vetor spaes have the same dimension, and then weprovide an expliit G-module isomorphism. By [22, 24℄, the vetor spae dimension of

M(l, λ) does not depend on the hoie or harateristi of k. More preisely, by de�nition
M(l, λ) =Mλ ⊗ elBr has a basis onsisting of Σλ-orbits on elBr; so, the basis elementsare represented by Σλ-orbits of Brauer diagrams with rows of r and r − 2l verties,respetively, the remaining 2l verties being reserved for l �xed ars.By Proposition 3.2 in Subsetion 3.3, the dimension of

f0(Sym
λE ⊗ ϑl) = HomG(E

⊗r,SymλE ⊗ ϑl)does not depend on k either. By Proposition 3.5, this vetor spae has a basis onsistingof Σλ-orbits of Brauer diagrams also having rows of r and r − 2l verties with l �xedars on the remaining 2l verties; hene this basis is in bijetion with the above basis of
M(l, λ).An expliit isomorphism ψ : M(l, λ) → f0(Sym

λE ⊗ ϑl) with x 7→ ψx is given by thefollowing map: Given an element x = Σλσ⊗elb ∈Mλ⊗elB =M(l, λ), then x is mappedto
ψx : E⊗r b·

−→ E⊗r el·−→ E⊗r−2l ⊗ ϑl
σ·
−→ E⊗r−2l ⊗ ϑl

πλ−→ SymλE ⊗ ϑl,that is, ψx(v) = πλ(σelbv). By Shur-Weyl duality, see (1), this is a right G-module homomorphism. Map ψ sends the above basis of M(l, λ) to the above basisof f0(SymλE ⊗ ϑl); hene ψ is an isomorphism. �



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 153.7. Injetivity of Φ : SB(n, r) → C. By Lemma 3.4, the inverse Shur funtor sendspermutation modules M(l, λ) to symmetri powers SymλE ⊗ ϑl. Moreover, there existsa homomorphism of algebras
Φ : SB(n, r) −→ C, φu,π,σ 7→ g0(φu,π,σ).Under the homomorphism Φ, the basis element φu,π,σ :M(l, λ) →M(m,µ) of SB(n, r),see (4), is mapped to a G-homomorphism

g0(φu,π,σ) = φu,π,σ ⊗ id : SymλE ⊗ ϑl → SymµE ⊗ ϑmin the algebra C.Proposition 3.7. The map Φ is injetive, that is, SB(n, r) is a subalgebra of C.Proof. By Lemma 3.6 and Lemma 3.4, there are the following two isomorphisms of B-modules:
M(l, λ) → HomG(E

⊗r,SymλE ⊗ ϑl), Σλid⊗ elb 7→ πλ ◦mel ◦mb,and HomG(E
⊗r,SymλE ⊗ ϑl) → HomG(E

⊗r,M(l, λ) ⊗B E
⊗r) with

πλ ◦mel ◦mb 7→ κ−1 ◦ πλ ◦mel ◦mb.Here ma denotes multipliation by the element a from left, and
κ :M(l, λ)⊗B E

⊗r → SymλE ⊗ ϑl, Σλid⊗ elb⊗ x 7→ πλ(êlbx)⊗ ϑl.The omposition of these two isomorphisms is denoted as α(l, λ), that is
α(l, λ) :M(l, λ) → HomG(E

⊗r,M(l, λ) ⊗B E
⊗r), z 7→ (x 7→ z ⊗ x).Let ϕ :M(l, λ) →M(m,µ) be some B-homomorphism. Then applying the inverse Shurfuntor g0 and the Shur funtor f0, we obtain:

Φ(ϕ) = g0(ϕ) = ϕ⊗ id : M(l, λ) ⊗ E⊗r →M(m,µ)⊗B E
⊗r,

f0(g0(ϕ)) = (ϕ⊗ id) ◦ − : HomG(E
⊗r,M(l, λ) ⊗B E

⊗r) → Hom(E⊗r,M(m,µ)⊗B E
⊗r).We hek that the following diagram is ommutative:

M(l, λ)

ϕ

��

α(l,λ)
// Hom(E⊗r,M(l, λ) ⊗ E⊗r)

f0(g0(ϕ))
��

M(m,µ)
α(m,µ)

// Hom(E⊗r,M(m,µ) ⊗ E⊗r).Indeed, it is enough to hek ommutativity by evaluating the maps on a generator
Σλid⊗ el of M(l, λ). By the de�nition of M(l, λ),

f0(g0(ϕ)) ◦ α(l, λ)(Σλid⊗ el) : x 7→ ϕ(Σλid⊗ el)⊗ x.Similarly,
α(m,µ)(ϕ(Σλid⊗ el)) : x 7→ ϕ(Σλid⊗ el)⊗ x.Assume that Φ(ϕ) = 0, that is g0(ϕ) = 0. Then f0(g0(ϕ)) = 0 and sine α(m,µ) is anisomorphism, it follows that

ϕ = α(m,µ)−1 ◦ f0(g0(ϕ)) ◦ α(l, λ) = 0.



16 ANNE HENKE, STEFFEN KOENIGThis implies that the map Φ : SB(n, r) → C is injetive. �Composing the Shur funtor f0 with the isomorphisms κ−1 and α−1 de�nes an algebrahomomorphism
Ψ : C −→ SB(n, r), β 7→ β ◦ −,and the ommutative diagram in the proof shows that Ψ ◦ Φ is the identity.The map α(l, λ) an be produed as an adjuntion unit. In fat, the natural isomorphism

HomG(M(l, λ)⊗B E
⊗r,M(l, λ) ⊗B E

⊗r) ≃ HomB(M(l, λ),HomG(E
⊗r,M(l, λ) ⊗ E⊗r)sends the identity map on M(l, λ) to the map α(l, λ) : m 7→ [x 7→ m ⊗ x]. Thus,ommutativity of the diagram in the above proof also follows from adjuntion beingnatural.3.8. Surjetivity of Φ : SB(n, r) → C. In Proposition 3.5, a basis of HomG(E

⊗s ⊗
ϑl,SymµE ⊗ ϑm) has been given ombinatorially, in terms of Brauer diagrams. Nextwe produe from this basis a ombinatorial basis of HomG(Sym

λE ⊗ ϑl,SymµE ⊗ ϑm).Counting basis elements yields surjetivity of Φ, �nishing the proof of Theorem 1.1.Proposition 3.8. Fix s = r − 2l, t = r − 2m, λ a partition of s and µ a partition of t.Then in the diagram
E⊗s ⊗ ϑl

πλ
�� β

((P

P

P

P

P

P

P

SymλE ⊗ ϑl α
// SymµE ⊗ ϑm

,

pre-omposition with πλ provides an injetive map
− ◦ πλ : α 7→ α ◦ πλ = βinduing an isomorphism

HomG(Sym
λE ⊗ ϑl,SymµE ⊗ ϑm) ≃ Σλ\HomG(E

⊗s ⊗ ϑl,SymµE ⊗ ϑm)Thus Φ is surjetive, and hene an isomorphism.Proof. Given α, we an de�ne β := α ◦ πλ. Conversely β fators in this way if and onlyif its kernel is ontained in the kernel of πγ , whih means β ◦ σ = β for all σ ∈ Σλ.This gives an upper bound for the number of maps α: The vetor spae dimension of
HomG(Sym

λE⊗ϑl,SymµE⊗ϑm) is bounded above by the dimension of Σλ\HomG(E
⊗s⊗

ϑl,SymµE⊗ϑm). By Proposition 3.5, the dimensions of the vetor spaes HomG(E
⊗s⊗

ϑl,SymµE ⊗ ϑm) and HomG(E
⊗s ⊗ ϑl, E⊗t ⊗ ϑm)/Σµ are equal. Hene

dim HomG(Sym
λE ⊗ ϑl,SymµE ⊗ ϑm) ≤ dim Σλ\HomG(E

⊗s ⊗ ϑl, E⊗t ⊗ ϑm)/Σµ.The latter spae has a basis onsisting of orbits of Brauer diagrams with r−2s verties inthe top row and r−2t verties in the bottom row, under the ation of the group Σλ×Σµ onthe top verties through projetion of group elements on the �rst omponent, and on thebottom verties through the seond omponent. By Proposition 2.1, this is exatly the



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 17dimension of HomBr(M(s, λ),M(t, µ)). Hene dim C ≤ dim SB(n, r). By Proposition3.7 the map Φ is injetive, implying the onverse inequality. �Summarising the ombinatorial desription of maps obtained so far, we get the followingommutative diagram:
E⊗s ⊗ ϑl

γ
//

πλ
�� β

((P

P

P

P

P

P

P

E⊗t ⊗ ϑm

πµ

��

SymλE ⊗ ϑl α
// SymµE ⊗ ϑm

,

The maps α have now been determined in terms of maps β, whih in turn have beendetermined in terms of maps γ. In all ases, ombinatorial desriptions have been foundthat show that the dimensions of these morphism spaes do not depend on the hara-teristi of the underlying �eld. Moreover, the maps α have been shown to orrespond todouble osets of Brauer diagrams, similar to the desription in Proposition 2.1.3.9. Proof of Corollary 1.2. Reall the de�nition of M := ⊕l,λ⊢n−2lSym
λE. Thereare two laims:

C = EndSenv(G)(M) and Senv(G) = EndSB(n,r)(M)The �rst laim is true by de�nition; we are going to prove the seond laim.Proof. The group algebra of the orthogonal or sympleti group G ats on the vetorspae M = ⊕l,λSym
λE via its �nite dimensional quotient algebra Senv(G). The algebra

Senv(G) ats faithfully on tensor spae and thus a fortiori on M . Sine the ations of
G on M and of SB(n, r) = EndG(M) on M ommute, those of Senv(G) on M and of
SB(n, r) on M ommute as well. Hene Senv(G) ⊂ E := EndSB(n,r)(M) and we have toshow the onverse inlusion.Let e be the projetion from the G-module M to its G-diret summand E⊗r. Viewedas an endomorphism of M , the element e is an idempotent in SB(n, r) and it ommuteswith the elements of E . This implies that E⊗r = Me is an E-module and the ationof E on E⊗r ommutes with the ation of eSB(n, r)e. Sine tensor spae E⊗r is theimage of M(0, 1r) = Br under the inverse Shur funtor g0, the entraliser algebra
eSB(n, r)e oinides with the Brauer algebra Br. By de�nition, E ats faithfully on
M = ⊕l,λ⊢n−2lSym

λE. As eah SymλE is a quotient of the tensor spae E⊗r, the ationof E on E⊗r is faithful. Thus E is ontained in EndBr(E
⊗r) = Senv(G) by Equation(2). �3.10. Proof of Corollary 1.3. Here, we give additional information on, and a proof ofCorollary 1.3.Proof. (a) The algebra C has an integral form with an expliit basis, whih is independentof the ground �eld k and its harateristi.The basis in assertion (a) orresponds under the isomorphism C ≃ SB(n, r) to the basisof SB(n, r) mentioned in Setion 2.2 and desribed in Equation (4); it has been shown



18 ANNE HENKE, STEFFEN KOENIGto be a basis in [24, Theorem 5.3℄. This basis is indexed by ertain double osets ofsymmetri groups. Hene it does not depend on the harateristi of the �eld. In fat,the ground ring need not even be a �eld.(b) The algebra C arries a quasi-hereditary struture, that is C−mod is a highest weightategory.The quasi-heredity laimed in (b) follows from [24, Theorem 7.1℄, whih states the or-responding result for the algebra SB(n, r) in general. The ategory of �nite dimensionalmodules over a quasi-hereditary algebra always is a highest weight ategory.() The global (ohomologial) dimension of C is �nite.Cline, Parshall and Sott, and Dlab and Ringel have shown that quasi-hereditary algebrasover �elds have �nite global dimension, whih implies (). See [7, Theorem 4.4℄ and [10,Appendix, Statement 9℄. More preisely, Dlab and Ringel have shown that the globaldimension is bounded above by 2s − 2, where s is the number of simple modules upto isomorphism. By statement (f) below, s equals the number of all partitions of allnumbers r − 2l ≥ 0.(d) There is a Shur-Weyl duality between C and the Brauer algebra Br(±n).Shur-Weyl duality between SB(n, r, δ) and Br(δ) on the bimodule ⊕M(l, λ) has beenshown in [24, Theorem 11.4(a)℄ for any parameter δ. It uses n ≥ 2r.Note that the laims on C are just speial ases of known results for SB(n, r, δ). In fat,the assertions (a), (b) and (d) are all true for SB(n, r, δ) over any ground ring, and ()is true over any ground �eld, and for any hoie of the parameter δ. The assertion (e),however, needs the ground ring to be a �eld, and n to be at least greater than or equalto r.(e) When the harateristi is di�erent from two or three, the algebra C satis�es a uni-versal property that makes it unique up to Morita equivalene: It is the quasi-hereditary1-over of the Brauer algebra in the sense of Rouquier.The laim is [24, Theorem 11.4 (b) and ()℄. Under these assumptions, the Brauer algebra
Br is of the form eSB(n, r)e for some idempotent e ∈ SB(n, r) and the two algebras Brand SB(n, r) are in Shur�Weyl duality on the bimodule e · SB(n, r). Aording toRouquier's de�nition [33℄, the algebra SB(n, r) is a 0-over of Br. For a quasi-hereditary1-over, an additional ondition is required: The exat Shur funtor e ·− has to identifyextension spaes between modules with standard �ltration over SB(n, r) with extensionspaes over Br:

Ext1SB(n,r)(X,Y ) ≃ Ext1Br
(eX, eY ).These latter isomorphisms hold by [22℄, needing the harateristi being di�erent fromtwo and three. See [21, Setions 11, 12 and 13℄ for expliit statements, and for moreinformation.



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 19(f) The simple C-modules are parametrised by the disjoint union of all partitions λ ⊢ r−2lof the non-negative integers of the form r, r − 2, r − 4, . . . .This is a onsequene of the quasi-hereditary struture of the algebra SB(n, r) as exhib-ited in [24℄. The isomorphism lasses of simple modules of a quasi-hereditary algebraorrespond bijetively to the standard modules or equivalently to the ideals in a heredityhain. The heredity hain is onstruted in [24℄ by �rst forming a oarse hain of ideals,indexed by non-negative integers of the form r−2l, and then re�ning this into a heredityhain. The oarse hain imitates the hain of ideals in the Brauer algebra obtained byounting horizontal ars in top and bottom row. Within the oarse layer indexed by
r − 2l the heredity hain is indexed by all the partitions of r − 2l. Indeed, in a sensemade preise in [24℄ this part of the heredity hain is 'indued up' from a heredity hainof the lassial Shur algebra S(n, r − 2l). �3.11. A triangle of Shur funtors. Finally, we summarise the urrent situation withrespet to Shur funtors for orthogonal and sympleti groups, whih shows a markeddi�erene to the type A situation. In type A, Green's Shur algebra is both a generalisedShur algebra and an endomorphism ring of permutation modules over kΣr. In typesB, C and D, tensor spae is di�erent from the sum of permutation modules over Br, see[25℄. We get the following triangle of funtors with non-trivial funtors between mod-G(or mod-Senv(G)) and mod-SB(n, r):mod-Senv(G) ⊂ mod-G � GS mod-SB(n, r)-

FS

R

f0

I

g0 mod-Br �
FM

	

GMwith
g0 = −⊗Br E

⊗r, f0 = HomG(E
⊗r,−),

GS = −⊗SB(n,r) (⊕SymλE), FS = HomG(⊕SymλE,−),

GM = −⊗SB(n,r) (⊕M(l, λ)), FM = HomBr(⊕M(l, λ),−).This triangle ommutes in the sense that GS = g0 ◦ GM and similarly for the adjoints.Indeed, there are isomorphims of left SB(n, r)-modules
M(l, λ)⊗Br E

⊗r ≃Mλ ⊗kΣr−2l
elBr ⊗Br E

⊗r ≃ SymλE ⊗ ϑl ≃ SymλEas in Setion 3.4. Uniqueness of adjoints then implies FS = FM ◦ f0.When the ground �eld k has harateristi di�erent from two and three, the funtors
FM and GM are mutually inverse equivalenes between the exat ategories of ∆-�ltered
SB(n, r)-modules and ell �ltered Br-modules, by [22℄; this uses and extends a similarequivalene, due to Hemmer and Nakano [23℄, between Weyl �ltered modules of GLnand Speht �ltered modules of kΣr. See also [21, 24℄ for further strutural propertiesand relations between mod-SB(n, r) and mod-Br. It is not known how well these two



20 ANNE HENKE, STEFFEN KOENIGfuntors ompare or identify ohomology in higher degrees. By [17℄ this is equivalent tosaying that the dominant dimension of SB(n, r) is not known. The other two pairs offuntors are not known to restrit to equivalenes between orresponding ategories of�ltered modules. The dominant dimensions of generalised Shur algebras or of envelopingalgebras Senv(G) are not known.4. A diret ombinatorial desription of morphisms between symmetripowersIn this Setion, we give a diret ombinatorial desription of the morphism spaes be-tween symmetri powers assuming that the underlying �eld has harateristi zero orbigger than r. Under this assumption Theorem 1.1 an be shown without using theresults olleted in Subsetion 3.3.We use Shur-Weyl duality for sympleti and orthogonal Shur algebras (stated abovein Equations (1) and (2)), whih in partiular implies that every G-endomorphism of thetensor spae E⊗r is given by multipliation with a Brauer algebra element ∑b λbb where
b runs through Brauer diagrams and λb ∈ k. Let πλ = πλ,l.For a omposition µ of r − 2m, the G-module homomorphism ιµ is de�ned to be theomposition:

ιµ : SymµE ⊗ ϑm → E⊗r−2m ⊗ ϑm → E⊗r, xµ 7→
1

| Σµ |
·
∑

σ∈Σµ

(xσ)⊗ ϑm.Here the symmetri group ats by plae permutation.Under the assumption of the underlying �eld k having harateristi zero or larger than r,map ιµ is a split monomorphism, omposing with the split epimorphim πµ to the identityon SymµE ⊗ ϑm. For the following proof, the fator 1
|Σµ|

may as well be omitted. Theruial point is that under our assumptions, ιµ is injetive, whih is not true in general.Using the notation introdued in Setion 3.2, the result is as follows:Proposition 4.1. Fix λ, µ and πλ, ιµ as above. Let ψ : E⊗r → E⊗r be a G-modulehomomorphism. Then ψ fators as ψ = ιµ ◦ ϕ ◦ πλ = πλϕιµ,
E⊗r

ψ
//

πλ
��

E⊗r

SymλE ⊗ ϑl ϕ
// SymµE ⊗ ϑm

ιµ

OO
,

for some G-homomorphism ϕ : SymλE⊗ϑl → SymµE⊗ϑm, if and only if ψ =
∑

D λDDwith λD ∈ k. Here the sum runs over some elements D of the Brauer algebra, whih areof the form
Db =

∑

b′∈Tb

b′, with Tb = {σbτ | σ ∈ Σλ, τ ∈ Σµ}(7)



SCHUR ALGEBRAS OF BRAUER ALGEBRAS, II 21where eah b is a Brauer diagram with l horizontal ars of adjaent verties on the last
2l verties in the top row and with m horizontal ars of adjaent verties on the last 2mverties in the bottom row. The fatorisation of ψ is unique, if it exists.This proposition says in partiular that there is a k-linear bijetion between the spae ofmaps ψ =

∑
D λDD and the maps ϕ. With the elements D being linearly independent,and their number being independent of the �eld k, it follows:Corollary 4.2. The dimension of the spae HomG(Sym

λE,SymµE) does not depend onthe harateristi of k, as long as this is zero or larger than r, more preisely, as long asthe map ιµ is injetive.Proof of Proposition4.1. Sine the Brauer algebra ats from the right, we write πλϕιµfor ψ = ιµ ◦ ϕ ◦ πλ.(a) By Shur-Weyl duality for the tensor spae (see (1)), every G-endomorphism ψ ofthe tensor spae E⊗r is given by multipliation with a Brauer algebra element, say∑
b λbb, where the sum runs through some Brauer diagrams b ∈ Br(δ). Assume suh ahomomorphism ψ =

∑
b λbb of the tensor spae E⊗r fators through a homomorphism

SymλE ⊗ ϑl → SymµE ⊗ ϑm, that is ψ =
∑

b λbb = πλϕιµ for some ϕ : SymλE ⊗ ϑl →
SymµE ⊗ ϑm.(i) Sine el and em are the identity maps on elE

r = E⊗r−2l ⊗ ϑl and emE
r =

E⊗r−2m ⊗ ϑm, respetively, it follows that
el(

∑

b

λbb)em = (elπλ)ϕ(ιµem) = πλϕιµ =
∑

b

λbb.Sine Brauer diagrams form a basis of the Brauer algebra, the diagrams b allhave l ars on adjaent verties on the last 2l verties in the top row, and m arson adjaent verties on the last 2m verties in the bottom row.(ii) An arbitrary vetor in the image of ιµ is a linear ombination of vetors of theform ∑

σ∈Σµ

(xσ)⊗ ϑm.These vetors are invariant under the ation of Σµ. Let mτ be multipliationwith a permutation τ ∈ Σµ. Then ιµmτ = ιµ, and hene
(
∑

b

λbb)mτ = πλϕιµmτ = πλϕιµ =
∑

b

λbb.Note that ∑

b

λbb =
∑

b

λbbτ =
∑

b

λbτ−1b,and hene λb = λbτ−1 for all τ ∈ Σµ, that is the oe�ients λb are onstant on
Σµ-orbits.(iii) Similarly as in the previous step, we an postompose with multipliation by
σ ∈ Σλ. Then mσπλ = πλ for any σ ∈ Σλ. Hene

mσ(
∑

b

λbb) =
∑

b

λbb.



22 ANNE HENKE, STEFFEN KOENIGIt follows that
∑

b

λbb = σ
∑

b

λbb =
∑

b

λσ−1bb,and hene λb = λσ−1b for all σ ∈ Σλ. That is, the oe�ients are onstant on
Σλ-orbits.It follows that we an write ψ as a linear ombination of elements D as laimed.(b) Conversely, given ψ =

∑
λDD as de�ned in the proposition. We show that ker πλ ⊆

kerψ and imψ ⊆ imιµ. If so, then ψ fators as ψ = πλgιµ for some G-homomorphism
ϕ : SymλE ⊗ ϑl → SymµE ⊗ ϑm.By de�nition, πλ is a omposition πλ : E⊗r → E⊗r−2l → SymλE of �rst multipliationby the idempotent el and then anonial projetion onto SymλE.The elements D by de�nition satisfy D = Del. Hene ψ annihilates the kernel of mul-tipliation by el, and thus fators through E⊗r−2l; denote the indued map on residuelasses by ψ : E⊗r−2l ⊗ ϑl → SymλE ⊗ ϑl. We have to hek that the kernel of theanonial projetion Er−2l → SymλE gets annihilated by ψ. This kernel is generated byelements of the form xij := x(id−(i, j)) = · · ·⊗xi⊗· · ·⊗xj⊗· · · − · · ·⊗xj⊗· · ·⊗xi⊗· · · .Let b be a Brauer diagram with l adjaent horizontal ars on the last 2l verties in the toprow of b. By the de�nition of ψ, we have ψ = σψ for all σ ∈ Σλ. Hene, xi,jψ = xi,j ·σψ.Choose σ = (i, j) to be the transposition exhanging the positions of xi and xj . Then
xi,jσ = −xi,j and hene xi,jψ = −xi,jψ. If char(k) 6= 2, it follows that xi,jψ = 0. Inase char(k) = 2, use that

(xi,j + xj,i)ψ = xi,jψ + xi,jσψ = 2xi,jψ = 0.Hene, the kernel of πλ is ontained in that of ψ.Next, note that
imιµ = {x | xτ = x for all τ ∈ Σµ} ⊗ ϑm.Let Db =

∑
b′ be as de�ned in the proposition. Then for a tensor x ∈ E⊗r and τ ′ ∈ Σµ,

x(
∑

b′)τ ′ = x(
∑

b′)and thus
xψτ ′ = xψ.By de�nition of ψ, for x ∈ E⊗r, there exists y ∈ E⊗r−2m with xψ = y ⊗ ϑm. As

yτ ′ ⊗ ϑm = (y ⊗ ϑm)τ ′ = xψτ ′ = xψ = y ⊗ ϑmit follows that yτ ′ = y. Hene xψ ∈ imιµ, that is imψ ⊆ imιµ.() Finally, for uniqueness, assume that πλϕ1ιµ = πλϕ2ιµ. Sine ιµ is injetive, it followsthat πλϕ1 = πλϕ2. Sine πλ is surjetive, ϕ1 = ϕ2. It is in this last step, where we usethe assumption on the harateristi, ensuring that ιµ is injetive. �
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