Triangulated categories - exercises

- (1) Let T be a triangulated category and E a full triangulated subcategory of T. Show that the following two conditions are equivalent to each other:
 (a) If f : X → Y is contained in a triangle X → Y → Z ~ with Z an object in E and if f factors through an object in E, then X and Y are objects in E.
 (b) Objects of T that are direct summands of objects of E are themselves objects of E.
- (2) Let A = k be a field.
 - (a) Determine the bounded derived category $D^b(A mod)$.

(b) Determine the stable category $\hat{A} - \underline{mod}$ of the repetitive algebra \hat{A} . Compare the two triangulated categories. Is any of these categories abelian? Let $B = k[x]/x^2$ and address the same questions.

(3) Let A be a ring.

(a) Let X be an object in $D^b(A - Mod)$. Show that X is isomorphic to a bounded complex of projective A-modules if and only if for all objects Y in $D^b(A - Mod)$ the morphism space $Hom_{D^b(A - Mod)}(X, Y[n])$ vanishes for large n.

Let B be another ring. Show that any equivalence of triangulated categories

 $D^b(A - Mod) \simeq D^b(B - Mod)$

restricts to an equivalence $K^b(A - Proj) \simeq K^b(B - Proj)$.

(4) Let Q be the quiver $1 \to 2 \to 3$ and k a field. Determine the derived module category $D^b(kQ - mod)$.

Let B be the quotient of kQ modulo the path of length two. Determine the derived module category $D^b(B - mod)$.

Compare the two derived categories.

Homepage of the course:

http://www.iaz.uni-stuttgart.de/LstAGeoAlg/Koenig/TriangCat/TriangCat.t