Schriftliche Aufgaben (30 Punkte)

Hier sind Begründungen verlangt.

7. (8 Punkte) Beweisen Sie die folgenden Aussagen für alle $n \in \mathbb{N}$.

(a)
$$\sum_{k=1}^{n} (3k-2) = \frac{n(3n-1)}{2}$$

- (b) 6 teilt $3^n 3$
- 8. (6 Punkte) Sei $f: \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) \to \mathbb{Q}$ die Funktion gegeben durch $f(a,b) = \frac{a}{b}$.
 - (a) Untersuchen Sie die Funktion f auf Injektivität und Surjektivität.
 - (b) Bestimmen Sie die Mengen $f^{-1}(\{0\}), f^{-1}(\{1\})$ und $f^{-1}(f(\{(4,2),(-7,7)\})).$
- 9. (6 Punkte) Schreiben Sie die folgenden komplexen Zahlen in der Form a+bi mit $a,b \in \mathbb{R}$:
 - (a) $\frac{1}{i}$

(b)
$$\frac{(1+2i)\cdot(1-i)}{(1+i)^2}$$

(c)
$$\frac{|2+i| \cdot (1-2i)}{(1+i) \cdot (3+i)}$$

- 10. (5 Punkte) Gegeben sind die Vektoren $v_1 = (1, -1, 1)$ und $v_2 = (0, 2, 1)$ im \mathbb{R}^3 .
 - (a) Schreiben Sie den Vektor (-2, 8, 1) als Linearkombination von v_1 und v_2 .
 - (b) Bestimmen Sie den von der Menge $\{v_1 v_2, v_1 + v_2\}$ erzeugten Unterraum in \mathbb{R}^3 . Ist der Vektor (-2, 8, 1) Element dieses Unterraumes?
- 11. (5 Punkte) Sei V der reelle Vektorraum aller Abbildungen von \mathbb{R} nach \mathbb{R} . Zeigen Sie, dass $U := \{ f \in V \mid f(x) = f(-x) \, \forall x \in \mathbb{R} \}$ ein Unterraum von V ist.

-Bitte auf diesem Blatt keine Lösungen eintragen-