Gruppenübung 2

Aufgabe 5

Beweisen Sie folgende Formeln für die Fourierkoeffizienten:

- a) $c_0 = \frac{a_0}{2}$.
- b) $c_n = \frac{a_n ib_n}{2}$ und $a_n = c_n + c_{-n}$.
- c) $c_{-n} = \frac{a_n + ib_n}{2}$ und $b_n = i(c_n c_{-n})$.

Aufgabe 6

- a) Beweisen Sie folgende Formel für $k, n \in \mathbb{N}_0$: $\frac{1}{2\pi} \int_0^{2\pi} e^{ikt} e^{-int} dt = 0$, falls $k \neq n$ und $\frac{1}{2\pi} \int_0^{2\pi} e^{int} e^{-int} dt = 1$.
- b) Beweisen Sie folgende Formeln aus Proposition 2.3. aus der Vorlesung:
 - i) $\int_0^{2\pi} \cos(kt) \sin(lt) dt = 0$ für $k, l \in \mathbb{N}_0$.
 - ii) $\int_0^{2\pi} \cos(kt) \cos(lt) dt = 0 \text{ und } \int_0^{2\pi} \sin(kt) \sin(lt) dt = 0$ für $k, l \in \mathbb{N}_0$ mit $k \neq l$.
 - iii) $\int_0^{2\pi} \cos^2(kt) dt = \int_0^{2\pi} \sin^2(kt) dt = \pi \text{ für } k \in \mathbb{N}.$

Aufgabe 7 (schriftlich)

- a) Berechnen Sie die Fourierreihe folgender Funktionen f_k auf den Intervallen I_k und geben Sie die Werte der Fourierreihen an den Konvergenzpunkten in \mathbb{R} an, wobei die Funktionen jeweils 2π -periodisch fortgesetzt seien:
 - (a) $f_1(t) = t^2$ auf $I_1 = [0, 2\pi)$.
 - (b) $f_2(t) = |\sin(t)|$ auf $I_2 = [-\pi, \pi)$.
 - (c) $f_3(t) = t + t^2$ auf $I_3 = [0, 2\pi)$.
- b) Ist $\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{2k}} \sin(kt)$ die Fourier-Reihe einer stetigen Funktion auf $[0, 2\pi]$?

Aufgabe 8

Berechnen Sie die Fourier-Reihe der Funktion f(t) = |t| auf $I = [-\pi, \pi]$. Verwenden Sie dann Theorem 2.7. aus der Vorlesung, um folgende Identität zu zeigen:

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^4} = \frac{\pi^4}{96}.$$