Aufgabe 1
Die Menge aller quadratischen $n \times n$ Matrizen über einem Körper bildet einen kommutativen Ring bzgl. der gewöhnlichen Matrizenmultiplikation und -addition genau dann, wenn $n=1$ gilt.
wahr of falsch
Die Menge aller quadratischen Matrizen über einem Körper bildet einen kommutativen Ring bzgl. der gewöhnlichen Matrizenmultiplikation und -addition.
\bigcirc wahr \bigotimes falsch
Die Menge aller quadratischen Matrizen über einem Körper K bildet einen kommutativen Ring bzgl. der gewöhnlichen Matrizenmultiplikation und -addition, falls K nur endlich viele Elemente hat.
○ wahr ⊗ falsch
Aufgabe 2
Eine quadratische Matrix A mit Einträgen in einem Körper K ist invertierbar genau dann, wenn ein $\lambda \in K \setminus \{0\}$ existiert, sodass $A = \lambda \cdot E$, wobei E die Einheitsmatrix beschreibt.
○ wahr Ø falsch
Eine quadratische Matrix mit Einträgen in einem Körper ist invertierbar genau dann, wenn alle Diagonal-einträge ungleich 0 sind.
\bigcirc wahr \bigcirc falsch
Eine quadratische Matrix $A = (a_{ij})$ mit Einträgen in einem Körper und $a_{ii} \neq 0$ für alle i sowie $a_{ij} = 0$ für alle i , j mit $i \neq j$ ist stets invertierbar.
⊗ wahr
Eine quadratische Matrix $A=(a_{ij})$ mit Einträgen in einem Körper ist invertierbar genau dann, wenn $a_{ii}\neq 0$ und $a_{ij}=0$ für alle $i\neq j$.
○ wahr ⊗ falsch
→ wahr ⊗ falsch

Aufgabe 3

Die transponierte Matrix zu $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ ist gegeben durch $\begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$.

○ wahr 🎇 falsch

Die transponierte Matrix zu $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ ist gegeben durch $\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

🛚 wahr 🔾 falsch

Die transponierte Matrix zu $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ ist gegeben durch $\begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}$.

O wahr S falsch

Die transponierte Matrix zu $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ ist gegeben durch $\begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$.

○ wahr ⊗ falsch

Aufgabe 4

Berechnen Sie die Matrix $C = (c_{ij})$, gegeben durch das Produkt $\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix}$, und tragen Sie den Wert c_{11} (in arabischen Zahlen) in das folgende Kästchen ein:

1

Berechnen Sie die Matrix $C = (c_{ij})$, gegeben durch das Produkt $\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix}$, und tragen Sie den Wert c_{12} (in arabischen Zahlen) in das folgende Kästchen ein:

8

Berechnen Sie die Matrix $C = (c_{ij})$, gegeben durch das Produkt $\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix}$, und tragen Sie den Wert c_{21} (in arabischen Zahlen) in das folgende Kästchen ein:

2

Berechnen Sie die Matrix $C = (c_{ij})$, gegeben durch das Produkt $\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix}$, und tragen Sie den Wert c_{22} (in arabischen Zahlen) in das folgende Kästchen ein:

Aufgabe 5
Eine quadratische Matrix ist invertierbar genau dann, wenn ihre transponierte Matrix invertierbar ist.
⊗ wahr ⊝ falsch
Falls eine quadratische Matrix invertierbar ist, so ist ihre transponierte Matrix im Allgemeinen nicht invertierbar.
○ wahr ⊗ falsch
Aufgabe 6
Wir betrachten \mathbb{Q} als \mathbb{Q} -Vektorraum. Ist die Abbildung $\alpha: \mathbb{Q} \to \mathbb{Q}$ mit $\alpha(x) = 3x$ linear?
💢 ja 🔘 nein
Wir betrachten \mathbb{Q} als \mathbb{Q} -Vektorraum. Ist die Abbildung $\alpha: \mathbb{Q} \to \mathbb{Q}$ mit $\alpha(x) = x + 3$ linear?
○ ja 🏽 🗴 nein
Wir betrachten \mathbb{Q} als \mathbb{Q} -Vektorraum. Ist die Abbildung $\alpha:\mathbb{Q}\to\mathbb{Q}$ mit $\alpha(x)=5x$ linear?
⊠ ja ⊝ nein
Wir betrachten \mathbb{Q} als \mathbb{Q} -Vektorraum. Ist die Abbildung $\alpha: \mathbb{Q} \to \mathbb{Q}$ mit $\alpha(x) = x + 5$ linear?
○ ja 🌣 nein

Aufgabe 7

Wir betrachten \mathbb{R}^3 und \mathbb{R} als \mathbb{R} -Vektorräume. Ist die Abbildung $\alpha: \mathbb{R}^3 \to \mathbb{R}$, $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto x_1 + x_2$ linear?

⊗ ja ⊝ nein

Wir betrachten \mathbb{R}^3 und \mathbb{R} als \mathbb{R} -Vektorräume. Ist die Abbildung $\alpha: \mathbb{R}^3 \to \mathbb{R}$, $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto x_1 + x_2 + x_3$ linear?

⊗ja ⊝ nein

Wir betrachten \mathbb{R}^2 als \mathbb{R} -Vektorraum. Ist die Abbildung $\alpha: \mathbb{R}^2 \to \mathbb{R}^2$, $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_1 + x_2 \end{pmatrix}$ linear?

⊗ ja ⊃ nein

Wir betrachten \mathbb{R}^2 als \mathbb{R} -Vektorraum. Ist die Abbildung $\alpha: \mathbb{R}^2 \to \mathbb{R}^2$, $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} -x_1 \\ x_1 + x_2 \end{pmatrix}$ linear?

⊗ ja ⊝ nein

Aufgabe 8

Wir betrachten $\mathbb C$ als $\mathbb C$ -Vektorraum. Ist die Abbildung $\alpha:\mathbb C\to\mathbb C,\,z\mapsto z^2$ linear?

○ ja 😡 nein

Wir betrachten $\mathbb C$ als $\mathbb C$ -Vektorraum. Ist die Abbildung $\alpha:\mathbb C\to\mathbb C,\,z\mapsto z^2+1$ linear?

○ ja 🚫 nein

Wir betrachten \mathbb{C} als \mathbb{C} -Vektorraum. Ist die Abbildung $\alpha: \mathbb{C} \to \mathbb{C}, z \mapsto z^3$ linear?

○ ja 🛛 Nein

Wir betrachten $\mathbb C$ als $\mathbb C$ -Vektorraum. Ist die Abbildung $\alpha:\mathbb C\to\mathbb C,\,z\mapsto z^2+z+1$ linear?

○ ja ⊗ nein

Aufgabe 9
Sei V ein Vektorraum mit Basis $\{v_1, v_2, v_3\}$ und W ein Vektorraum mit Basis $\{w_1, w_2\}$. Dann gibt es eine lineare Abbildung $\alpha: V \to W$ mit $\alpha(v_1) = w_1$, $\alpha(v_2) = w_2$ und $\alpha(v_3) = w_1 + w_2$.
⊗ wahr
Sei V ein Vektorraum mit Basis $\{v_1, v_2, v_3\}$ und W ein Vektorraum mit Basis $\{w_1, w_2\}$. Dann gibt es eine lineare Abbildung $\alpha: V \to W$ mit $\alpha(v_1) = w_2$, $\alpha(v_2) = w_1$ und $\alpha(v_3) = w_1 + w_2$.
⊗ wahr
Sei V ein Vektorraum mit Basis $\{v_1, v_2, v_3\}$ und W ein Vektorraum mit Basis $\{w_1, w_2\}$. Dann gibt es eine lineare Abbildung $\alpha: V \to W$ mit $\alpha(v_1) = w_1$, $\alpha(v_2) = w_1$ und $\alpha(v_3) = w_1 + w_2$.
⊗ wahr ⊝ falsch
Sei V ein Vektorraum mit Basis $\{v_1, v_2, v_3\}$ und W ein Vektorraum mit Basis $\{w_1, w_2\}$. Dann gibt es eine lineare Abbildung $\alpha: V \to W$ mit $\alpha(v_1) = w_1$, $\alpha(v_2) = w_2$ und $\alpha(v_3) = 0$.
⊗ wahr ⊝ falsch
Aufgabe 10
Sei K ein Körper. Die Abbildung $\alpha: K \to K$ mit $\alpha(x) = 0$ ist linear.
\bigotimes wahr \bigcirc falsch
Sei K ein Körper. Die Abbildung $\alpha:K\to K$ mit $\alpha(x)=1$ ist linear.
○ wahr ⊗ falsch
Sei K ein Körper. Die Abbildung $\alpha:K\to K$ mit $\alpha(x)=x$ ist linear.
\bigotimes wahr \bigcirc falsch
Sei K ein Körper. Die Abbildung $\alpha: K \to K$ mit $\alpha(x) = -1$ ist linear.
\bigcirc wahr \bigcirc falsch