Aufgabe 1
Die ganzen Zahlen $\mathbb Z$ sind ein $\mathbb Q$ -Vektorraum bezüglich der gewöhnlichen Multiplikation in $\mathbb Q$.
○ wahr ⊗ falsch
Die reellen Zahlen $\mathbb R$ sind ein $\mathbb Q$ -Vektorraum bezüglich der gewöhnlichen Multiplikation in $\mathbb R$.
⊗ wahr
Die komplexen Zahlen $\mathbb C$ sind ein $\mathbb Q$ -Vektorraum bezüglich der gewöhnlichen Multiplikation in $\mathbb C$.
⊗ wahr
Die ganzen Zahlen $\mathbb Z$ sind ein $\mathbb R$ -Vektorraum bezüglich der gewöhnlichen Multiplikation in $\mathbb R$.
○ wahr 🔌 falsch
Aufgabe 2
Sei K ein Körper. Dann ist der Polynomring $K[X]$ ein K -Vektorraum bezüglich der üblichen Multiplikation von Polynomen mit Skalaren und $\forall n \geq 1$ existiert eine Menge mit n linear unabhängigen Vektoren in $K[X]$
₩ wahr
Sei K ein Körper. Dann ist der Polynomring $K[X]$ ein endlich-dimensionaler K -Vektorraum bezüglich der üblichen Multiplikation von Polynomen mit Skalaren.
○ wahr ♦ falsch
Sei K ein Körper. Dann ist der Polynomring $K[X]$ ein K -Vektorraum bezüglich der üblichen Multiplikation von Polynomen mit Skalaren, der von der Menge $\{1, X\}$ erzeugt wird.
\bigcirc wahr \bigcirc falsch
Sei K ein Körper. Dann ist der Polynomring $K[X]$ ein K -Vektorraum bezüglich der üblichen Multiplikation von Polynomen mit Skalaren, der nicht von endlich vielen Vektoren erzeugt werden kann.
⊗ wahr

Aufgabe 3

Jeder Vektor $v \neq 0$ in \mathbb{R}^2 erzeugt einen 1-dimensionalen Unterraum von \mathbb{R}^2 .

wahr O falsch

Ein Vektor v in \mathbb{R}^2 erzeugt einen 1-dimensionalen Unterraum von \mathbb{R}^2 genau dann, wenn $v \neq 0$.

Aufgabe 4

Die Vektoren $v_1 = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}, v_3 = \begin{pmatrix} -1 \\ -2 \\ 7 \end{pmatrix}$ in \mathbb{R}^3 sind linear unabhängig.

O wahr 😿 falsch

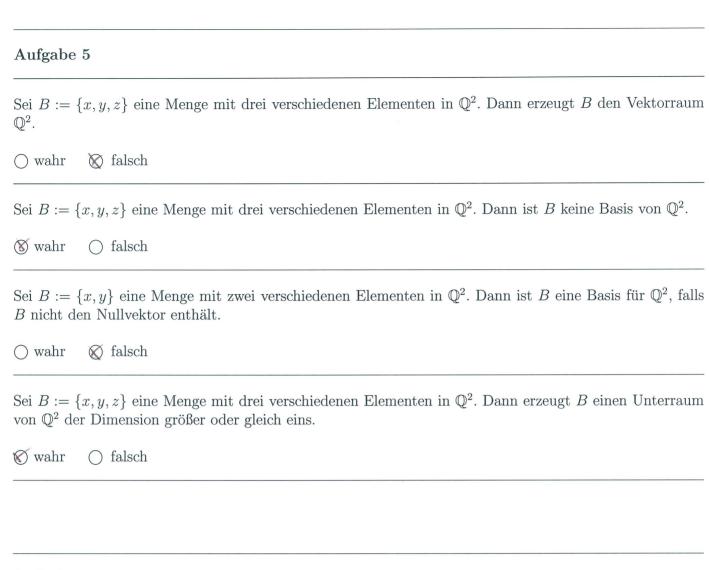
Die Vektoren $v_1 = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}, v_3 = \begin{pmatrix} -1 \\ -2 \\ 7 \end{pmatrix}$ in \mathbb{R}^3 sind linear abhängig.

wahr () falsch

Die Vektoren $v_1 = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}, v_3 = \begin{pmatrix} -1 \\ -2 \\ 7 \end{pmatrix}$ in \mathbb{R}^3 erzeugen einen 2-dimensionalen Unterraum.

Die Vektoren $v_1 = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}, v_3 = \begin{pmatrix} -1 \\ -2 \\ 7 \end{pmatrix}$ bilden eine Basis in \mathbb{R}^3 .

O wahr Stalsch



Aufgabe 6

Die Menge $\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2=1\}$ beschreibt einen Unterraum von \mathbb{R}^3 .

○ wahr 🚷 falsch

Die Menge $\{(x,y,z)\in\mathbb{R}^3\mid x+y+z=0\}$ beschreibt einen Unterraum von \mathbb{R}^3 .

wahr O falsch

Die Menge $\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2-z=0\}$ beschreibt einen Unterraum von \mathbb{R}^3 .

O wahr Ø falsch

Die Menge $\{(x,y,z)\in\mathbb{R}^3\mid x=-y+2z,z=-x\}$ beschreibt einen Unterraum von \mathbb{R}^3 .

Aufgabe 7	
Sei V ein Vektorr	aum. Jede Basis von V ist auch ein Erzeugendensystem.
⊗ wahr	sch
Sei V ein Vektorr	aum. Jedes Erzeugendensystem von V ist auch eine Basis.
○ wahr ⊗ fal	sch
Sei V ein Vektorrist.	raum. Ein Erzeugendensystem von V ist eine Basis genau dann, wenn es unverkürzbar
wahr of fals	sch
Sei V ein endlich-	dimensionaler Vektorraum. Jede Basis von V hat dieselbe Anzahl an Elementen.
wahr of fals	sch
Aufgabe 8	
unabhängig.	orraum mit $v, w \in V$. Sind v und w linear unabhängig, so sind auch v und $v + w$ linear
wahr of fals	sch
Sei V ein \mathbb{R} -Vekte linear unabhängig	orraum mit $v, w \in V$. Sind v und w linear unabhängig, so sind auch $v-w$ und $v+w$
wahr of fals	sch
Sei V ein \mathbb{R} -Vekte abhängig.	orraum mit $v, w \in V$. Sind v und w linear abhängig, so sind auch v und $v + w$ linear
⊗ wahr	sch
Sei V ein \mathbb{R} -Vektonicht linear unabh	rraum mit $v, w \in V$. Sind v und w linear unabhängig, so sind v und $v+w$ im Allgemeinen längig.
○ wahr ⊘ fals	sch