Aufgabe 1

 $\forall n \in \mathbb{N} \text{ gilt: } \sum_{i=1}^{n} {n \choose i} = \sum_{i=0}^{n-1} {n \choose i+1}.$

wahr of falsch

 $\forall n \in \mathbb{N} \text{ gilt:} \sum_{i=1}^{n} {n \choose i} = \sum_{i=2}^{n+1} {n \choose i-1}.$

 $\forall n \in \mathbb{N} \text{ gilt:} \sum_{i=1}^{n} \binom{n}{i} = \sum_{i=0}^{n-1} \binom{n+1}{i}.$

 \bigcirc wahr \bigotimes falsch

Aufgabe 2

 $\forall n \in \mathbb{N} \text{ gilt: } \sum_{i=1}^{n} {n+1 \choose i+1} = \sum_{i=1}^{n} {n \choose i} + \sum_{i=2}^{n+1} {n \choose i}.$

⊗ wahr ⊝ falsch

 $\forall n \in \mathbb{N} \text{ gilt:} \sum_{i=1}^{n} {n+1 \choose i+1} = \sum_{i=0}^{n} {n \choose i} + \sum_{i=2}^{n+1} {n \choose i}.$

○ wahr 🛛 falsch

Aufgabe 3

Die Menge $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a,b,c,d \in \mathbb{Z} \right\}$ mit $\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix}$ und $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa'+bc' & ab'+bd' \\ ca'+dc' & cb'+dd' \end{pmatrix}$ bildet einen Ring.

\chi wahr 🔘 falsch

Die Menge $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a,b,c,d \in \mathbb{Z} \right\}$ mit $\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix}$ und $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa'+bc' & ab'+bd' \\ ca'+dc' & cb'+dd' \end{pmatrix}$ bildet einen kommutativen Ring.

○ wahr ⊗ falsch

Die Menge $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a,b,c,d \in \mathbb{Z} \right\}$ mit $\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix}$ und $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa'+bc' & ab'+bd' \\ ca'+dc' & cb'+dd' \end{pmatrix}$ bildet einen Körper.

 \bigcirc wahr \bigotimes falsch

Die Menge $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a,b,c,d \in \mathbb{Z} \right\}$ mit $\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix}$ und $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa' & bb' \\ cc' & dd' \end{pmatrix}$ bildet einen kommutativen Ring.

Aufgabe 4

Sei $(R,+,\cdot)$ ein Ring. Für $x,y\in R$ definieren wir $x\star y=y\cdot x$. Dann ist auch $(R,+,\star)$ ein Ring. Sei $(R,+,\cdot)$ ein Ring. Für $x,y\in R$ definieren wir $x\star y=y\cdot x$. Dann ist $(R,+,\star)$ im Allgemeinen kein Ring. Sei $(R,+,\cdot)$ ein Ring. Für $x,y\in R$ definieren wir $x\star y=x\cdot x\cdot y\cdot y$. Dann ist auch $(R,+,\star)$ ein Ring. Sei $(R,+,\cdot)$ ein Ring. Für $x,y\in R$ definieren wir $x\star y=x\cdot x\cdot y\cdot y$. Dann ist auch $(R,+,\star)$ ein Ring. Sei $(R,+,\cdot)$ ein Ring. Für $x,y\in R$ definieren wir $x\star y=y\cdot y\cdot x$. Dann ist auch $(R,+,\star)$ ein Ring. Sei $(R,+,\cdot)$ ein Ring. Für $x,y\in R$ definieren wir $x\star y=y\cdot y\cdot x$. Dann ist auch $(R,+,\star)$ ein Ring. Sei $(R,+,\cdot)$ ein Ring. Sei (

Aufgabe 5
Sei $(K, +, \cdot)$ ein Körper und $a, b \in K$ sodass $a \cdot b = 0$. Dann gilt $a = 0$ oder $b = 0$.
⊗ wahr ⊝ falsch
Sei $(K, +, \cdot)$ ein Körper und $a, b \in K$ sodass $a + b = 0$ und $a \cdot b = 0$. Dann gilt $a = 0$ und $b = 0$.
⊗ wahr
Sei $(R, +, \cdot)$ ein Ring und $a, b \in R$ sodass $a \cdot b = 0$. Dann gilt $a = 0$ oder $b = 0$.
\bigcirc wahr \bigotimes falsch
Aufgabe 6
$\forall p, q \in \mathbb{Q} \text{ mit } p \neq q \exists r \in \mathbb{R} \text{ sodass } p < r < q \text{ oder } q < r < p \text{ gilt.}$
⊗ wahr
$\forall p, q \in \mathbb{Q} \text{ mit } p \neq q \exists \text{ unendlich viele } r \in \mathbb{R} \text{ sodass } p < r < q \text{ oder } q < r < p \text{ gilt.}$

Es gibt rationale Zahlen $p,q \in \mathbb{Q}$ mit $p \neq q$ sodass für alle $r \in \mathbb{R}$ gilt: p < r < q oder q < r < p.

 $\forall p, q \in \mathbb{Q} \text{ mit } p < q \exists r_1, r_2, r_3 \in \mathbb{R} \text{ sodass } r_1 < p < r_2 < q < r_3 \text{ gilt.}$

O wahr

💢 wahr

X falsch

O falsch

Aufgabe	7	
$\sqrt{8} \in \mathbb{Q}$.		
O wahr	✓ falsch	
$\sqrt{7} \in \mathbb{Q}.$		
O wahr	⊗ falsch	
$\sqrt{9} \in \mathbb{Q}.$		
⊗ wahr	○ falsch	
$\sqrt{10} \in \mathbb{Q}.$		
O wahr	⊗ falsch	
Aufgabe	8	
$a,b \in \mathbb{R} \setminus$	$\mathbb{Q} \Rightarrow a \cdot b \in \mathbb{R} \setminus \mathbb{Q}.$	
O wahr		
$a,b\in\mathbb{R}\setminus$	$\mathbb{Q} \Rightarrow a + b \in \mathbb{R} \setminus \mathbb{Q}.$	
O wahr	∅ falsch	
$a, b \in \mathbb{R} \setminus$	$\mathbb{Q} \Rightarrow a \cdot b \in \mathbb{Q}.$	
O wahr		

Geben Sie das Supremum der Menge $\{x\in\mathbb{Q}\mid x\geq x^2\}$ an. Runden Sie das Ergebnis auf eine ganze Zahl.

1

Geben Sie das Supremum der Menge $\{x \in \mathbb{Q} \mid x \geq x^2 - 2\}$ an. Runden Sie das Ergebnis auf eine ganze Zahl.

2

Geben Sie das Supremum der Menge $\{x \in \mathbb{Q} \mid x^2 \geq x^3\}$ an. Runden Sie das Ergebnis auf eine ganze Zahl.

1

Geben Sie das Supremum der Menge $\{x \in \mathbb{Q} \mid x^3 \leq x^2 + 2x\}$ an. Runden Sie das Ergebnis auf eine ganze Zahl.

2

Aufgabe 10

Ist die Menge $\{x \in \mathbb{R} \mid x = \frac{n+1}{n}$ für ein $n \in \mathbb{N}\}$ nach oben beschränkt?

ja ○ nein

Ist die Menge $\{x \in \mathbb{R} \mid x = \frac{n+1}{m}$ für $n, m \in \mathbb{N}\}$ nach oben beschränkt?

○ ja 🛚 🗙 nein

Hat die Menge $\{x \in \mathbb{R} \mid x = \frac{n+1}{m} \text{ für } n, m \in \mathbb{N}\}$ ein Supremum?

○ ja 🔯 nein

Hat die Menge $\{x\in\mathbb{R}\mid x=\frac{n+1}{n}$ für ein $n\in\mathbb{N}\}$ ein Supremum?

⊠ ja ⊝ nein