Aufgabe 1 Wieviele Elemente hat die Menge $\{1, 2, 3\} \times \{4\} \times \{5\}$? Wieviele Elemente hat die Menge $\{1, 2, 3\} \times \{4, 5\}$? 6 Wieviele Elemente hat die Menge $\{1, 2, 5\} \times \{4, 5\}$? 6 Aufgabe 2 Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\}$ mit $x\cdot y$ ist gerade $\}$ hat genau 4 Elemente. **w**ahr () falsch Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\}$ mit $x\cdot y$ ist gerade $\}$ hat genau 3 Elemente. O wahr M falsch

Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\}$ mit $x\cdot y$ ist gerade $\}$ hat genau 5 Elemente.

O wahr

X falsch

Aufgabe 3

Eine Abbildung $f:X\to Y$ ist nach Definition eine Teilmenge $f\subset X\times Y$, sodass gilt:

 $\forall x \in X \,\exists y \in Y \,\, \mathrm{mit} \,\, (x,y) \in f.$

○ wahr 💢 falsch

Eine Abbildung $f: X \to Y$ ist nach Definition eine Teilmenge $f \subset X \times Y$, sodass gilt:

 $\forall x \in X \exists ! y \in Y \text{ mit } (x, y) \in f.$

Eine Abbildung $f: X \to Y$ ist nach Definition eine Teilmenge $f \subset X \times Y$, sodass gilt:

 $\exists x \in X \text{ sodass } \forall y \in Y \text{ gilt: } (x, y) \in f.$

 \bigcirc wahr \bigcirc falsch

Aufgabe 4

Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\} \text{ mit } x\cdot y \text{ ist gerade}\}$ ist eine Abbildung $f:\{1,2,3\}\to\{4,5\}.$

○ wahr ⋈ falsch

Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\} \text{ mit } x\cdot y \text{ ist gerade}\}$ ist keine Abbildung $f:\{1,2,3\}\to\{4,5\}$.

Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\}$ mit $x\cdot y$ ist ungerade $\}$ ist eine Abbildung $f:\{1,2,3\}\to\{4,5\}$.

○ wahr 🎇 falsch

Aufgabe 5

Die Menge $\{(x,y) \in \{1,2,3\} \times \{4,5\} \text{ mit } x \cdot y \text{ ist durch 5 teilbar} \}$ ist eine Abbildung $f: \{1,2,3\} \rightarrow \{4,5\}$, die weder injektiv noch surjektiv ist.

🔇 wahr 🔘 falsch

Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\}$ mit $x\cdot y$ ist durch 5 teilbar $\}$ ist eine injektive Abbildung $f:\{1,2,3\}\to\{4,5\}$.

○ wahr 🎇 falsch

Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\}$ mit $x\cdot y$ ist durch 5 teilbar $\}$ ist eine surjektive Abbildung $f:\{1,2,3\}\to\{4,5\}$.

○ wahr 💢 falsch

Aufgabe 6

Seien $f:X\to Y$ und $g:Y\to X$ Abbildungen mit $g\circ f=\mathrm{id}_X.$ Dann ist f bijektiv.

O wahr 💢 falsch

Seien $f:X\to Y$ und $g:Y\to X$ Abbildungen mit $g\circ f=\mathrm{id}_X.$ Dann ist f injektiv.

Seien $f:X\to Y$ und $g:Y\to X$ Abbildungen mit $g\circ f=\mathrm{id}_X.$ Dann ist f surjektiv.

O wahr 🚫 falsch

Aufgabe 7
Es existiert eine injektive Abbildung $\mathbb{Z} \to \mathbb{N}$.
\bigotimes wahr \bigcirc falsch
Es existiert eine surjektive Abbildung $\mathbb{Z} \to \mathbb{N}$.
\otimes wahr \bigcirc falsch
Es existiert keine injektive Abbildung $\mathbb{Z} \to \mathbb{N}$.
\bigcirc wahr \bigcirc falsch
Aufgabe 8
Für alle $n \in \mathbb{N}$ und für alle Abbildungen $f : \mathbb{N} \to \{n\}$ gilt: f ist surjektiv.
⊗ wahr
Für alle $n \in \mathbb{N}$ und für alle Abbildungen $f : \mathbb{N} \to \{n\}$ gilt: f ist injektiv.
\bigcirc wahr \bigotimes falsch
Für alle $n \in \mathbb{N}$ und für alle Abbildungen $f : \mathbb{N} \to \{n\}$ gilt: f ist bijektiv.
\bigcirc wahr \bigotimes falsch

Aufgabe 9

Die Abbildung $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ mit $f(x) = (x, x^3)$ ist injektiv.

wahr (

() falsch

Die Abbildung $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ mit $f(x) = (x, x^3)$ ist surjektiv.

O wahr

Die Abbildung $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ mit $f(x) = (x, x^2)$ ist injektiv.

wahr

() falsch

Aufgabe 10

Wieviele injektive Abbildungen $f:\{1,2,3,4\} \rightarrow \{1,2,3,4\}$ gibt es?

24

Wieviele surjektive Abbildungen $f:\{1,2,3,4\} \rightarrow \{1,2,3,4\}$ gibt es?

24

Wieviele bijektive Abbildungen $f:\{1,2,3,4\} \rightarrow \{2,3,4,5\}$ gibt es?

24