Aufgabe 1
Wieviele Elemente hat die Menge $\{1, 2, 3\} \times \{4\} \times \{5\}$?
Wieviele Elemente hat die Menge $\{1,2,3\} \times \{4,5\}$?
Wieviele Elemente hat die Menge $\{1,2,5\} \times \{4,5\}$?
Aufgabe 2
Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\}$ mit $x\cdot y$ ist gerade $\}$ hat genau 4 Elemente.
○ wahr ○ falsch
Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\}$ mit $x\cdot y$ ist gerade $\}$ hat genau 3 Elemente.
○ wahr ○ falsch
Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\}$ mit $x\cdot y$ ist gerade $\}$ hat genau 5 Elemente.
○ wahr ○ falsch

Aufgabe	3
riaigasc	·

Eine Abbildung $f: X \to Y$ ist nach Definition eine Teilmenge $f \subset X \times Y$, sodass gilt:

 $\forall x \in X \,\exists y \in Y \, \operatorname{mit} \, (x, y) \in f.$

 \bigcirc wahr \bigcirc falsch

Eine Abbildung $f: X \to Y$ ist nach Definition eine Teilmenge $f \subset X \times Y$, sodass gilt:

 $\forall x \in X \exists ! y \in Y \text{ mit } (x, y) \in f.$

() wahr () falsch

Eine Abbildung $f: X \to Y$ ist nach Definition eine Teilmenge $f \subset X \times Y$, sodass gilt:

 $\exists x \in X \text{ sodass } \forall y \in Y \text{ gilt: } (x, y) \in f.$

○ wahr ○ falsch

Aufgabe 4

Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\}$ mit $x\cdot y$ ist gerade $\}$ ist eine Abbildung $f:\{1,2,3\}\to\{4,5\}$.

 \bigcirc wahr \bigcirc falsch

Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\}$ mit $x\cdot y$ ist gerade $\}$ ist keine Abbildung $f:\{1,2,3\}\to\{4,5\}$.

 \bigcirc wahr \bigcirc falsch

Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\}$ mit $x\cdot y$ ist ungerade $\}$ ist eine Abbildung $f:\{1,2,3\}\to\{4,5\}$.

○ wahr ○ falsch

Α	ufgabe	5
4 L	aigasc	U

Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\}$ mit $x\cdot y$ ist durch 5 teilbar $\}$ ist eine Abbildung $f:\{1,2,3\}\to\{4,5\}$, die weder injektiv noch surjektiv ist.

 \bigcirc wahr \bigcirc falsch

Die Menge $\{(x,y) \in \{1,2,3\} \times \{4,5\} \text{ mit } x \cdot y \text{ ist durch 5 teilbar} \}$ ist eine injektive Abbildung $f: \{1,2,3\} \rightarrow \{4,5\}$.

○ wahr ○ falsch

Die Menge $\{(x,y)\in\{1,2,3\}\times\{4,5\}$ mit $x\cdot y$ ist durch 5 teilbar $\}$ ist eine surjektive Abbildung $f:\{1,2,3\}\to\{4,5\}$.

 \bigcirc wahr \bigcirc falsch

Aufgabe 6

Seien $f: X \to Y$ und $g: Y \to X$ Abbildungen mit $g \circ f = \mathrm{id}_X$. Dann ist f bijektiv.

○ wahr ○ falsch

Seien $f: X \to Y$ und $g: Y \to X$ Abbildungen mit $g \circ f = \mathrm{id}_X$. Dann ist f injektiv.

 \bigcirc wahr \bigcirc falsch

Seien $f: X \to Y$ und $g: Y \to X$ Abbildungen mit $g \circ f = \mathrm{id}_X$. Dann ist f surjektiv.

○ wahr ○ falsch

Es existiert eine injektive Abbildung $\mathbb{Z} \to \mathbb{N}$.
\bigcirc wahr \bigcirc falsch
Es existiert eine surjektive Abbildung $\mathbb{Z} \to \mathbb{N}$.
\bigcirc wahr \bigcirc falsch
Es existiert keine injektive Abbildung $\mathbb{Z} \to \mathbb{N}$.
○ wahr ○ falsch
Aufgabe 8
Aufgabe 8 $\label{eq:problem}$ Für alle $n\in\mathbb{N}$ und für alle Abbildungen $f:\mathbb{N}\to\{n\}$ gilt: f ist surjektiv.
Für alle $n \in \mathbb{N}$ und für alle Abbildungen $f: \mathbb{N} \to \{n\}$ gilt: f ist surjektiv.
Für alle $n \in \mathbb{N}$ und für alle Abbildungen $f: \mathbb{N} \to \{n\}$ gilt: f ist surjektiv. \bigcirc wahr \bigcirc falsch
Für alle $n \in \mathbb{N}$ und für alle Abbildungen $f: \mathbb{N} \to \{n\}$ gilt: f ist surjektiv. O wahr O falsch Für alle $n \in \mathbb{N}$ und für alle Abbildungen $f: \mathbb{N} \to \{n\}$ gilt: f ist injektiv.
Für alle $n \in \mathbb{N}$ und für alle Abbildungen $f : \mathbb{N} \to \{n\}$ gilt: f ist surjektiv. O wahr O falsch Für alle $n \in \mathbb{N}$ und für alle Abbildungen $f : \mathbb{N} \to \{n\}$ gilt: f ist injektiv. O wahr O falsch

Aufgabe	9
Die Abbild	luı
O wahr	

ng $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ mit $f(x) = (x, x^3)$ ist injektiv.

) falsch

Die Abbildung $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ mit $f(x) = (x, x^3)$ ist surjektiv.

 \bigcirc wahr \bigcirc falsch

Die Abbildung $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ mit $f(x) = (x, x^2)$ ist injektiv.

O wahr \bigcirc falsch

Aufgabe 10

Wieviele injektive Abbildungen $f:\{1,2,3,4\} \rightarrow \{1,2,3,4\}$ gibt es?

Wieviele surjektive Abbildungen $f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$ gibt es?

Wieviele bijektive Abbildungen $f: \{1, 2, 3, 4\} \rightarrow \{2, 3, 4, 5\}$ gibt es?