WS 2014/15

Gruppenübung 7

Aufgabe 25

Die Fibonaccizahlen sind induktiv definiert als

$$F_0 := 0, F_1 := 1 \text{ und } F_{n+2} := F_n + F_{n+1} \text{ für } n \in \mathbb{N}_0.$$

Zeigen Sie für alle $n, m \geq 1$:

a)

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$$

b) $F_m F_n + F_{m-1} F_{n-1} = F_{m+n-1}$.

Aufgabe 26

a) Berechnen Sie A^4 für folgende Matrix:

$$A = \begin{pmatrix} 4 & 12 & 8 \\ -7 & -6 & -8 \\ 4 & -3 & 2 \end{pmatrix}$$

b) Zeigen Sie: $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ ist genau dann invertierbar, wenn $ad - bc \neq 0$ ist.

Finden Sie in diesem Fall $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1}$.

Aufgabe 27

Wir definieren die Spur tr einer quadratischen Matrix $A=(a_{i,j})$ mit n^2 Einträgen durch: $\operatorname{tr}(A):=\sum_{k=1}^n a_{k,k}$. Zeigen Sie für eine beliebige weitere quadratische Matrix B mit n^2 Einträgen:

- a) tr(AB) = tr(BA)
- b) $tr(BAB^{-1}) = tr(A)$, falls B invertierbar ist.

Aufgabe 28 (schriftlich)

Es seien
$$X_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}$$
, $X_2 = \begin{pmatrix} 0 \\ -2 \\ 1 \\ 0 \end{pmatrix}$, $X_3 = \begin{pmatrix} 1 \\ -1 \\ 3 \\ 1 \end{pmatrix}$, $Y_1 = \begin{pmatrix} 3 \\ 1 \\ 7 \\ 3 \end{pmatrix}$, $Y_2 = \begin{pmatrix} -3 \\ 2 \\ -5 \\ -1 \end{pmatrix}$, $Y_3 = \begin{pmatrix} 0 \\ 3 \\ 2 \\ 2 \end{pmatrix}$. Ferner sei U_1 der von X_1, X_2, X_3 erzeugte Unterraum von \mathbb{R}^4 und U_2 der von Y_1, Y_2, Y_3

Ferner sei U_1 der von X_1, X_2, X_3 erzeugte Unterraum von \mathbb{R}^4 und U_2 der von Y_1, Y_2, Y_3 erzeugte Unterraum von \mathbb{R}^4 . Desweiteren sei U_3 der von $X_1, X_2, X_3, Y_1, Y_2, Y_3$ erzeugte Unterraum von \mathbb{R}^4 . Bestimmen Sie jeweils die Dimension und eine Basis von U_1, U_2 und U_3 .