WS 2014/15

Gruppenübung 6

Aufgabe 21 (schriftlich)

a) Bestimmen Sie die Lösungsmengen der folgenden linearen Gleichungssysteme, als Teilmengen von \mathbb{R}^3 (in (i) und (ii)) bzw. als Teilmenge von \mathbb{R}^4 (in (iii)).

- b) Zeigen Sie, dass die Menge $\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\}$ eine Basis von \mathbb{R}^3 bildet.
- c) Schreiben Sie die Vektoren $\begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$ und $\begin{pmatrix} 3 \\ -8 \\ -3 \end{pmatrix}$ als Linearkombination der Basisvektoren aus b).

Aufgabe 22

Es seien $a,b,c,d\in\mathbb{R}$ gegebene Zahlen. Beweisen Sie folgende Aussage über das lineare Gleichungssystem $\frac{ax_1+\ bx_2=\ y_1}{cx_1+\ dx_2=\ y_2}:$

Für alle $y_1, y_2 \in \mathbb{R}$ existiert eine eindeutige Lösung $\Leftrightarrow ad - bc \neq 0$.

Aufgabe 23

Es seien Metall-Legierungen M_1, M_2 und M_3 gegeben, die alle Kupfer, Silber und Gold enthalten, und zwar in folgenden Prozentsätzen:

 M_1 bestehe zu 20% aus Kupfer, zu 60% aus Silber und zu 20% aus Gold,

 M_2 bestehe zu 70% aus Kupfer, zu 10% aus Silber und zu 20% aus Gold,

 M_3 bestehe zu 50% aus Kupfer, zu 50% aus Silber und zu 0% aus Gold.

Kann man diese Legierungen so mischen, dass eine Legierung entsteht, die 40% Kupfer, 50% Silber und 10% Gold enthält?

Aufgabe 24

- a) Es seien 3 Vektoren im \mathbb{R}^3 gegeben und je 2 davon seien linear unabhängig. Sind dann auch alle 3 Vektoren linear unabhängig? Geben Sie ein Gegenbeispiel oder beweisen Sie diese Aussage.
- b) In einem Vektorraum sind
n Vektoren $a_1,a_2,...,a_n$ gegeben. Wir definieren $b_i:=\sum_{k=1}^i a_k \text{ für } i=1,...,n. \text{ Zeigen Sie für beliebiges } n\geq 1:$ Die Vektoren $a_1,a_2,...,a_n$ sind genau dann linear unabhängig, wenn die Vektoren $b_1,b_2,...,b_n$ linear unabhängig sind.