WS 2014/15

Gruppenübung 2

Aufgabe 5

- a) Wieviele Anordnungen gibt es von dem Wort "MATHEMATIK"?
- b) Wieviele Teiler hat die Zahl $2^7 \cdot 3^5 \cdot 151^3$?
- c) Im klassischen Lotto-Spiel werden 6 aus 49 Zahlen in beliebiger Reihenfolge gezogen. Wie groß ist die Wahrscheinlichkeit, die richtigen Zahlen zu raten?

Aufgabe 6

Seien M und N Mengen. Der *Schnitt* $M \cap N$ ist definiert als $\{x \mid x \in M \text{ und } x \in N\}$, die *Vereinigung* $M \cup N$ ist $\{x \mid x \in M \text{ oder } x \in N\}$. Die Vereinigung beliebig vieler Mengen M_i schreiben wir als $\bigcup_i M_i$. Wir sagen die Mengen M und N sind *disjunkt*, falls $M \cap N = \emptyset$. Mit $\mathcal{P}(M)$ bezeichnen wir die Potenzmenge von M, d.h. die Menge aller Teilmengen von M.

- a) Wieviele injektive Abbildungen gibt es zwischen zwei endlichen Mengen M und N mit m bzw n vielen Elementen? Geben Sie eine Formel an.
- b) Seien M und N disjunkte endliche Mengen mit |M| = m und |N| = n. Zeigen Sie, dass die Abbildung $f(X) = (X \cap M, X \cap N)$ eine Bijektion zwischen $\mathcal{P}(M \cup N)$ und $\mathcal{P}(M) \times \mathcal{P}(N)$ ist.
- c) Folgern Sie für alle $k \geq 1$: $\binom{m+n}{k} = \sum_{i=0}^{k} \binom{m}{i} \cdot \binom{n}{k-i}$.

Aufgabe 7

Ist k eine natürliche Zahl und n eine beliebige reelle Zahl, so kann man $\binom{n}{k}$ allgemeiner definieren als: $\binom{n}{k} := \frac{n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1)}{k!}$.

- a) Berechnen Sie $\binom{0,5}{2}$. Für welche Zahlen n,k ist $\binom{n}{k}=0$?
- b) Zeigen Sie für alle $n, k \ge 1$: $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$.
- c) Zeigen Sie für alle $n \ge 0$ und $k \ge 1$: $\sum_{m=0}^{n} {m \choose k} = {n+1 \choose k+1}$.

http://www.mathematik.uni-stuttgart.de/studium/infomat/HM-Koenig-WS1415

Aufgabe 8 (schriftlich)

Es sei eine Abbildung $f:M\to N$ gegeben und A und B seien Teilmengen von M. Zeigen Sie:

- a) $M=\bigcup_{n\in N}f^{-1}(n)$. Ist diese Vereinigung disjunkt, d.h. gilt für beliebige $n,m\in N$ mit $n\neq m$: $f^{-1}(n)\cap f^{-1}(m)=\emptyset?$
- b) $f(A \cup B) = f(A) \cup f(B)$.
- c) $f(A \cap B) \subseteq f(A) \cap f(B)$. Gilt $f(A \cap B) = f(A) \cap f(B)$? (Beweis oder Gegenbeispiel angeben.)