Übungen zur Vorlesung Darstellungstheorie von Algebren

zur Diskussion:

- (1) Bestimmen Sie alle Köcher Q, so dass die Wegealgebra KQ eine (nicht notwendig endlich-dimensionale) kommutative Algebra ist.
- (2) Ist eine ein-dimensionale Darstellung einer Algebra notwendigerweise einfach? Und umgekehrt?

zu bearbeiten: Sei K ein Körper.

- (1) Sei $A = K[x]/x^5$ und $B_i := K[x]/x^i$ für $i = 0, \dots, 5$. Schreiben Sie B_i als A-Modul und als Darstellung von A, für $i = 0, \dots, 5$. Welche dieser Darstellungen sind injektiv?
- (2) Sei $G = \Sigma_3$. Schreiben Sie die triviale Darstellung, die Vorzeichendarstellung und die reguläre Darstellung jeweils als Modul.
- (3) Bestimmen Sie das Zentrum $Z(A_i)$ für jede der folgenden Algebren:

$$A_1 = (K)_{n \times n}$$
 (Matrizen)

$$A_2 = \begin{pmatrix} K & \cdots & K \\ 0 & \ddots & \vdots \\ 0 & 0 & K \end{pmatrix}_{n \times n} \text{ (obere Dreiecksmatrizen)}$$

 $A_3 = K(\cdot \rightrightarrows \cdot)$ (Wegealgebra des Kronecker-Köchers)

$$A_4 = K(\cdot \rightleftharpoons \cdot)$$

(4) Sei Q_n (für $n \ge 1$) der Köcher

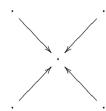
und sei K ein Körper. Zeigen Sie, dass die Wegealgebra KQ_n isomorph ist zur Algebra A_n der oberen Dreiecksmatrizen

$$\begin{pmatrix} K & \dots & K \\ 0 & \ddots & \vdots \\ 0 & 0 & K \end{pmatrix} = \left\{ \begin{pmatrix} a_{11} & \dots & a_{1n} \\ 0 & \ddots & \vdots \\ 0 & 0 & a_{nn} \end{pmatrix} : a_{ij} \in K, 1 \le i \le j \le n \right\} \subset (K)_{n \times n}$$

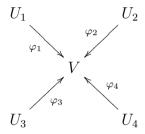
Was ist die entgegengesetzten Algebren A_n^{op} von A_n ? Finden Sie einen surjektiven Algebrenhomomorphismus von A_n^{op} nach A_{n-1}^{op} , und schreiben Sie A_{n-1}^{op} als A_n^{op} -Linksmodul und als Darstellung von Q_n .

schriftliche Aufgaben:

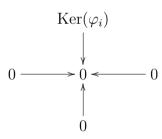
- (1) (5 Punkte) Sei A eine Algebra mit Darstellungen φ_1 und φ_2 und zugehörigen Moduln M_1 und M_2 . Zeigen Sie, dass die Darstellungen φ_1 und φ_2 äquivalent sind, genau dann wenn die Moduln M_1 und M_2 isomorph sind.
- (2) (10 Punkte) Sei K ein Körper und Q der Köcher



und sei



eine Darstellung von Q über K. Zeigen Sie: wenn ein φ_i nicht injektiv ist, dann hat die Darstellung einen direkten Summanden



Im Folgenden nehmen wir an, dass alle φ_i injektiv sind. Geben Sie alle paarweise nichtisomorphen unzerlegbaren Darstellungen von Q mit V=K an. Ebenfalls für $V=K^2$.

Erklären Sie, warum die Darstellungstheorie dieses Köchers das Vier-Unterraum-Problem genannt wird, und was es bedeutet, die Lage von vier Geraden in einer Ebene zu beschreiben.

Abgabe der schriftlichen Aufgaben ist in der Vorlesung am Dienstag, den 9.11.2010. Die dritte Übung findet am Mittwoch, den 10.11.2010, 8-9:30 Uhr im Seminarraum 7.527 des Instituts für Algebra und Zahlentheorie statt.