SS 2016

Blatt 12

Diskussionsaufgaben sind mit * markiert. ^T bezeichnet stets transponieren.

Aufgabe 70 (schriftlich)

- a) Sei V der Vektorraum aller stetigen Funktionen $[0,1] \to \mathbb{R}$ mit Skalarprodukt $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$. Bestimmen Sie eine Orthonormalbasis des Unterraums $U = \langle 1,t,t^2,t^3,t^4 \rangle$ von V.
- b) Formulieren und beweisen Sie den Satz von Thales im euklidischen Raum \mathbb{R}^2 : Jeder Winkel im Halbkreis ist ein rechter Winkel.

Aufgabe 71

Sei V ein reeller Vektorraum mit Skalarprodukt und seien $x, y \in V$. Zeigen Sie:

- a) Es ist x = y genau dann, wenn ||x|| = ||y|| und $\langle x, x \rangle = \langle x, y \rangle$ gilt.
- b) Es ist ||x|| = ||y|| genau dann, wenn x y und x + y orthogonal sind.
- c) Ein Parallelogramm ist genau dann eine Raute (d.h. alle Seiten sind gleich lang), wenn die Diagonalen aufeinander senkrecht stehen.

Aufgabe 72

Seien A, B, C drei Punkte im euklidischen Vektorraum \mathbb{R}^2 , die ein nicht-ausgeartetes Dreieck bilden. Seien α, β und γ die drei Winkel im Dreieck. Zeigen Sie $\alpha + \beta + \gamma = \pi$.

Aufgabe 73*

Seien a < b reelle Zahlen. Sei V der Vektorraum aller stetigen Funktionen $[a,b] \to \mathbb{R}$ mit Skalarprodukt $\langle f,g \rangle = \int_a^b f(t)g(t)dt$. Zeigen Sie, dass die Polynome

$$P_n(t) = \sqrt{\frac{2n+1}{b-a}} \frac{1}{n!(b-a)^n} \frac{d^n}{dt^n} ((t-a)^n (t-b)^n), \qquad n \ge 0$$

eine Orthonormalbasis des Unterraums $U = \langle t^i \mid i \geq 0 \rangle$ bilden.

Aufgabe 74

Sei V ein reeller Vektorraum mit Skalarprodukt. Sei U ein Untervektorraum von V und $U \neq 0$. Sei $U^{\perp} := \{ x \in V \mid \langle u, x \rangle = 0 \text{ für alle } u \in U \}$ wie in der Vorlesung. Sei $b_1, b_2, ..., b_m$ eine Orthonormalbasis von U.

- a) Sei $p_U: V \to U$ die Abbildung mit p(v) = u, wenn v = u + w mit $u \in U$ und $w \in U^{\perp}$ gilt. Zeigen Sie, dass p_U linear und wohldefiniert ist.
- b) Zeigen Sie für alle $x \in V$:

$$p_U(x) = \sum_{k=1}^{m} \langle b_k, x \rangle b_k.$$

c) Seien $X_1, X_2 \subseteq \mathbb{R}^n$. Dann ist der Abstand von X_1 zu X_2 definiert als

$$d(X_1, X_2) := \inf\{ \|x_1 - x_2\| \mid x_1 \in X_1, x_2 \in X_2 \}.$$

Seien $X_1 = p_1 + U_1$ und $X_2 = p_2 + U_2$ affine Unterräume von \mathbb{R}^n . Zeigen Sie:

$$d(X_1, X_2) = d(\{p_1 - p_2\}, U_1 + U_2).$$

Das heißt, um den Abstand zweier affiner Unterräume zu berechnen, reicht es den Abstand eines Punktes zu einem Untervektorraum zu kennen.

d) Zeigen Sie für $x \in V$:

$$d(\{x\}, U)^2 = ||x||^2 - \sum_{k=1}^{m} \langle b_k, x \rangle^2.$$

e) Bestimmen Sie den Abstand der beiden Geraden $g_1 = (1, 2, -1)^T + \langle (3, 1, 0)^T \rangle$ und $g_2 = (0, 2, -1)^T + \langle (1, 0, 1)^T \rangle$.

Aufgabe 75*

Sei X eine endliche Menge mit $n \geq 1$ Elementen und P(X) die Menge aller Teilmengen von X. Sei V der n-dimensionale Vektorraum über dem Körper \mathbb{F}_2 mit 2 Elementen.

- a) Zeigen Sie, dass es eine Bijektion zwischen P(X) und V gibt,
- b) Sei $U \subseteq P(X)$ mit den zwei Eigenschaften, dass jede Menge in U eine gerade Anzahl von Elementen hat und der Schnitt von zwei in U enthaltenen Mengen eine gerade Anzahl von Elementen hat. Wieviele Elemente kann U maximal haben? Hinweis: Definieren Sie mit Hilfe von a) eine geeignete Bilinearform auf P(X).

Informationen:

- Aufgabe 70 ist die letzte schriftliche Aufgabe.
- Das letzte Übungsblatt erscheint nächsten Mittwoch, 6. Juli und wird nur Votieraufgaben enthalten.
- Die letzten Übungsgruppen finden am Mittwoch, 13. Juli, und am Donnerstag, 14. Juli, statt.

http://www.mathematik.uni-stuttgart.de/studium/infomat/LAAG-Koenig-SS16/