Es gilt $\left| \int_0^\pi x \cdot \cos(x) dx \right| \le \int_1^2 x \cdot \sqrt{x^2 + 1} dx$.

wahr (

Ofalsch

Es gilt $\left| \int_0^\pi x \cdot \cos(x) dx \right| \ge \int_1^2 x \cdot \sqrt{x^2 + 1} dx$.

O wahr

⊗falsch

Es gilt $\int_0^{\pi} x \cdot \cos(x) dx \le -\int_1^2 x \cdot \sqrt{x^2 + 1} dx$.

O wahr

Xfalsch

Es gilt $\int_0^{\pi} x \cdot \cos(x) dx \ge -\int_1^2 x \cdot \sqrt{x^2 + 1} dx$.

💢 wahr

()falsch

Aufgabe 2

In der Partialbruchzerlegung des Quotienten $\frac{2x^3+x^2+5x+1}{(x^2+2)^2}$ taucht der Summand $\frac{2x+1}{x^2+2}$ auf.

₩ wahr

Ofalsch

In der Partialbruchzerlegung des Quotienten $\frac{2x^3+x^2+5x+1}{(x^2+2)^2}$ taucht der Summand $\frac{2x-1}{x^2+2}$ auf.

O wahr

Malsch

In der Partialbruchzerlegung des Quotienten $\frac{3x^3+x^2+7x+1}{(x^2+2)^2}$ taucht der Summand $\frac{3x-1}{x^2+2}$ auf.

O wahr

Xfalsch

In der Partialbruchzerlegung des Quotienten $\frac{3x^3+x^2+7x+1}{(x^2+2)^2}$ taucht der Summand $\frac{3x+1}{x^2+2}$ auf.

X wahr

()falsch

Es gilt $e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{2}\int_0^x (t-x)^2 e^t dt$.

⋈ wahr

Ofalsch

Es gilt $e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6} \int_0^x (x - t)^3 e^t dt$.

O wahr

⊠falsch

Es gilt $\cos(x) = 1 - \frac{1}{2}x^2 + \frac{1}{2}\int_0^x (x-t)^2 \sin(t)dt$.

₩ wahr

Ofalsch

Es gilt $\cos(x) = 1 - \frac{1}{2}x^2 - \frac{1}{2}\int_0^x (x-t)^2 \sin(t)dt$.

O wahr

Malsch

Aufgabe 4

Jede Treppenfunktion $f:[a,b]\to\mathbb{R}$ hat eine Stammfunktion.

 \bigcirc wahr

Sei $f:[0,1]\to\mathbb{R}$ stetig. Dann gilt $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n f(\frac{k}{n})=\int_0^1 f(x)dx$.

Sei $f:[0,1]\to\mathbb{R}$ stetig. Dann gilt $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n f(\frac{k-1}{n})=\int_0^1 f(x)dx$.

Sei $f:[0,2]\to\mathbb{R}$ stetig. Dann gilt $\lim_{n\to\infty}\frac{1}{2n}\sum_{k=1}^n f(\frac{k}{2n})=\int\limits_0^2 f(x)dx$.

Sei $f:[0,2]\to\mathbb{R}$ stetig. Dann gilt $\lim_{n\to\infty}\frac{1}{2n}\sum_{k=1}^n f(\frac{k}{2n})=\int_0^{\frac{1}{2}}f(x)dx$.

Aufgabe 6

Sei $f: \mathbb{R} \to \mathbb{R}$ Riemann-integrierbar. Für $a, b, c \in \mathbb{R}_{>0}$ mit a < b gilt $\int_a^b f(x+c)dx = \int_{a+c}^{b+c} f(x)dx$.

wahr of falsch

Sei $f: \mathbb{R} \to \mathbb{R}$ Riemann-integrierbar. Für $a, b, c \in \mathbb{R}_{>0}$ mit a < b gilt $\int_a^b (f(x) + c) dx = \int_{a+c}^{b+c} f(x) dx$.

○ wahr X falsch

Sei $f: \mathbb{R} \to \mathbb{R}$ Riemann-integrierbar. Für $a, b, c \in \mathbb{R}_{>0}$ mit a < b gilt $\int_a^b f(cx) dx = \int_{ac}^{bc} f(x) dx$.

O wahr X falsch

Sei $f: \mathbb{R} \to \mathbb{R}$ Riemann-integrierbar. Für $a, b, c \in \mathbb{R}_{>0}$ mit a < b gilt $c \cdot \int_a^b f(cx) dx = \int_{ac}^{bc} f(x) dx$.

Sei $f: [-3,3] \to \mathbb{R}, f(x) = \sqrt{9-x^2}$. Dann beträgt die Bogenlänge $L(C_f) = \boxed{6} \cdot \frac{\pi}{2}$.

Sei $f: [-3,0] \to \mathbb{R}, f(x) = \sqrt{9-x^2}$. Dann beträgt die Bogenlänge $L(C_f) = \boxed{3} \cdot \frac{\pi}{2}$.

Sei $f: [-4,0] \to \mathbb{R}, f(x) = \sqrt{16-x^2}$. Dann beträgt die Bogenlänge $L(C_f) = \frac{\pi}{2}$.

Sei $f: [-4,4] \to \mathbb{R}, f(x) = \sqrt{16-x^2}$. Dann beträgt die Bogenlänge $L(C_f) = \boxed{\$} \cdot \frac{\pi}{2}$.

Aufgabe 8

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $f(x,y) := x^2y + y^3x$. Dann ist der Gradient von f an $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ gegeben durch einen Vektor $\begin{pmatrix} a \\ b \end{pmatrix}$ mit $a = \boxed{12}$.

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $f(x,y) := x^2y + y^3x$. Dann ist der Gradient von f an $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ gegeben durch einen Vektor $\begin{pmatrix} a \\ b \end{pmatrix}$ mit $b = \boxed{13}$.

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $f(x,y) := x^2y + y^3x$. Dann ist der Gradient von f an $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ gegeben durch einen Vektor $\begin{pmatrix} a \\ b \end{pmatrix}$ mit $a = \boxed{}$.

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $f(x,y) := x^2y + y^3x$. Dann ist der Gradient von f an $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ gegeben durch einen Vektor $\begin{pmatrix} a \\ b \end{pmatrix}$ mit b = 2.

Sei $g: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $g(x,y) = xy(x^2 + y^3) + 2x - 3y$. Dann ist die Richtungsableitung von g and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ in Richtung $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ gegeben durch den Wert $\boxed{ }$ $\boxed{ }$ $\boxed{ }$ $\boxed{ }$ $\boxed{ }$

Sei $g: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $g(x,y) = xy(x^2 + y^3) + 2x - 3y$. Dann ist die Richtungsableitung von g and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ in Richtung $\begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ gegeben durch den Wert $\boxed{-2} \cdot \sqrt{2}$.

Sei $g: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $g(x,y) = xy(x^2 + y^3) + 2x - 3y$. Dann ist die Richtungsableitung von g an $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ in Richtung $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$ gegeben durch den Wert $\boxed{2} \cdot \sqrt{2}$.

Sei $g: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $g(x,y) = xy(x^2 + y^3) + 2x - 3y$. Dann ist die Richtungsableitung von g an $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ in Richtung $\begin{pmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$ gegeben durch den Wert $\boxed{-4}$.

Aufgabe 10

Existieren alle partiellen Ableitungen der Funktion $f: \mathbb{R}^n \to \mathbb{R}$ in jedem Punkt, dann ist f total differenzierbar.

○ wahr 💢 falsch

Ist $f:\mathbb{R}^n \to \mathbb{R}$ total differenzierbar, dann existieren alle Richtungsableitungen.

wahr of falsch

Existieren alle partiellen Ableitungen der Funktion $f: \mathbb{R}^n \to \mathbb{R}$ in jedem Punkt, dann ist f stetig.

○ wahr X falsch

Existieren alle partiellen Ableitungen der Funktion $f: \mathbb{R}^n \to \mathbb{R}$ in jedem Punkt und sind diese zudem konstant, dann ist f total differenzierbar.

 4/