Aufgabe 1
Sei $f: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion, die bei $x_0 \in \mathbb{R}$ ein lokales Maximum hat. Dann gilt $f'(x_0) = 0$.
○ wahr ○ falsch
Sei $f: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion und sei $x_0 \in \mathbb{R}$ mit $f'(x_0) = 0$. Dann liegt an der Stelle x_0 ein lokales Extremum von f vor.
○ wahr ○ falsch
Sei $f: \mathbb{R} \to \mathbb{R}$ eine stetige Funktion und sei $x_0 \in \mathbb{R}$. Angenommen f ist monoton fallend auf $(-\infty, x_0]$ und monoton wachsend auf $[x_0, +\infty)$. Dann liegt an der Stelle x_0 ein lokales Minimum vor.
○ wahr ○ falsch
Sei $f: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion und sei $x_0 \in \mathbb{R}$. Sei f monoton wachsend auf $(-\infty, x_0]$ und monoton fallend auf $[x_0, +\infty)$. Dann gilt $f'(x_0) = 0$.
○ wahr ○ falsch
Aufgabe 2
Sei $f: [4,9] \to \mathbb{R}$ stetig und auf $(4,9)$ differenzierbar mit $f(4)=3$ und $f'(x) \le 7$ für alle $x \in (4,9)$. Dann ist der maximal mögliche Wert von $f(9)=$
Sei $f: [3,7] \to \mathbb{R}$ stetig und auf $(3,7)$ differenzierbar mit $f(3) = 8$ und $f'(x) \le 3$ für alle $x \in (3,7)$. Dann ist der maximal mögliche Wert von $f(7) = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Sei $f: [3,7] \to \mathbb{R}$ stetig und auf $(3,7)$ differenzierbar mit $f(3) = 7$ und $f'(x) \ge 3$ für alle $x \in (3,7)$. Dann ist der minimal mögliche Wert von $f(7) = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Sei $f: [5,10] \to \mathbb{R}$ stetig und auf $(5,10)$ differenzierbar mit $f(5)=15$ und $f'(x) \ge -2$ für alle $x \in (5,10)$. Dann ist der minimal mögliche Wert von $f(7)=$

Aufgabe 3

Seien $f, g: \mathbb{R} \to \mathbb{R}$ differenzierbare Funktionen mit f' + g' = 0. Dann gilt f(x) = -g(x) für alle $x \in \mathbb{R}$.

 \bigcirc wahr \bigcirc falsch

Seien $f, g: \mathbb{R} \to \mathbb{R}$ differenzierbare Funktionen mit f' + g' = 0. Dann gibt es ein $c \in \mathbb{R}$ mit f(x) = -g(x) + c für alle $x \in \mathbb{R}$.

 \bigcirc wahr \bigcirc falsch

Seien $f, g: \mathbb{R} \to \mathbb{R}$ differenzierbare Funktionen mit f' + g' = 0. Dann gilt f(x) = g(x) für alle $x \in \mathbb{R}$.

○ wahr ○ falsch

Seien $f, g: \mathbb{R} \to \mathbb{R}$ differenzierbare Funktionen mit f' + g' = 0. Dann gibt es ein $c \in \mathbb{R}$ mit f(x) = -g(x) - c für alle $x \in \mathbb{R}$.

 \bigcirc wahr \bigcirc falsch

Aufgabe 4

Tragen Sie entweder eine Zahl ein oder kreuzen Sie existiert nicht an, wenn der Grenzwert nicht existiert.

 $\lim_{x \to \frac{\pi}{2}} \frac{6\cos(x)}{\pi - 2x} = \boxed{\qquad}, \text{ existiert nicht } \boxed{\qquad}$

Tragen Sie entweder eine Zahl ein oder kreuzen Sie existiert nicht an, wenn der Grenzwert nicht existiert.

 $\lim_{x \to 0} \frac{5\sin(x) + x}{3x} = \boxed{}, \text{ existiert nicht } \boxed{}$

Tragen Sie entweder eine Zahl ein oder kreuzen Sie existiert nicht an, wenn der Grenzwert nicht existiert.

 $\lim_{x \to \frac{\pi}{2}} \frac{8\cos(x)}{2\pi - 4x} = \boxed{\hspace{1cm}}, \text{ existiert nicht } \boxed{\hspace{1cm}}$

Tragen Sie entweder eine Zahl ein oder kreuzen Sie existiert nicht an, wenn der Grenzwert nicht existiert.

 $\lim_{x\to 0} \frac{4\sin(x) + 2x}{2x} = \boxed{\qquad}, \text{ existient nicht } \boxed{\qquad}$

Aufgabe 5

Die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) := \begin{cases} \frac{e^{x^2} - 1}{x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$ ist stetig.

○ wahr ○ falsch

Die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) := \begin{cases} \frac{e^{x^2} - 1}{x^2} & x \neq 0 \\ 1 & x = 0 \end{cases}$ ist stetig.

○ wahr ○ falsch

Die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) := \begin{cases} \frac{e^{x^2} - 1}{x^2} & x \neq 0 \\ 2 & x = 0 \end{cases}$ ist stetig.

○ wahr ○ falsch

Die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) := \begin{cases} \frac{e^{x^2} - 1}{x^2} & x \neq 0 \\ -1 & x = 0 \end{cases}$ ist stetig.

○ wahr ○ falsch

Aufgabe 6

Die Funktion $f:(-1,1)\to\mathbb{R}$ mit $f(x):=|x^2-1|$ hat ein lokales Maximum bei $x_0=0$.

○ wahr ○ falsch

Die Funktion $f:(-1,1)\to\mathbb{R}$ mit $f(x):=|x^2-1|$ hat ein lokales Minimum bei $x_0=0$.

○ wahr ○ falsch

Die Funktion $f:(-1,1)\to\mathbb{R}$ mit $f(x):=|x^2-1|$ ist nicht differenzierbar an $x_0=0$.

○ wahr ○ falsch

Die Funktion $f:(-1,1)\to\mathbb{R}$ mit $f(x):=|x^2-1|$ hat genau ein lokales Extremum.

○ wahr ○ falsch

Aufgabe 7

Sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion mit f(x - zy) = f(x) - zf(y) für alle $x, y, z \in \mathbb{R}$. Dann ist f differenzierbar und es existiert $a \in \mathbb{R}$ mit f'(x) = a für alle $x \in \mathbb{R}$.

 \bigcirc wahr \bigcirc falsch

Sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion mit f(x - zy) = f(x) - zf(y) für alle $x, y, z \in \mathbb{R}$. Dann ist f differenzierbar und hat keine lokalen Extrema.

 \bigcirc wahr \bigcirc falsch

Sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion mit f(x - zy) = f(x) - zf(y) für alle $x, y, z \in \mathbb{R}$. Dann ist f stetig, aber im Allgemeinen nicht überall differenzierbar.

 \bigcirc wahr \bigcirc falsch

Sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion mit f(x - zy) = f(x) - zf(y) für alle $x, y, z \in \mathbb{R}$ und $f(1) \neq 0$. Dann ist f differenzierbar und bijektiv.

 \bigcirc wahr \bigcirc falsch

Aufgabe 8

Sei $f: \mathbb{R}_{>-1} \to \mathbb{R}$ gegeben durch $f(x) := \frac{x}{1+x}$ und sei $n \in \mathbb{N}$. Dann ist f n-mal differenzierbar und es gilt $f^{(n)}(2) = (-1)^{n+1} \frac{n!}{3^{n+1}}$.

() wahr () falsch

Sei $f: \mathbb{R}_{>-1} \to \mathbb{R}$ gegeben durch $f(x) := \frac{x}{1+x}$ und sei $n \in \mathbb{N}$. Dann ist f n-mal differenzierbar und es gilt $|f^{(n)}(2)| \le 1$.

 \bigcirc wahr \bigcirc falsch

Aufgabe 9

Sei $f: \mathbb{R}_{>-1} \to \mathbb{R}$ mit $f(x) := \frac{x}{1+x}$ und sei $T_2(f, x, 2) = \sum_{k=0}^{2} a_k (x-2)^k$ das zweite Taylorpolynom um den Entwicklungspunkt $x_0 = 2$. Dann gilt $a_k > 0$ für k = 0, 1, 2.

 \bigcirc wahr \bigcirc falsch

2
Sei $f: \mathbb{R}_{>-1} \to \mathbb{R}$ mit $f(x) := \frac{x}{1+x}$ und sei $T_2(f, x, 2) = \sum_{k=0}^{2} a_k (x-2)^k$ das zweite Taylorpolynom um den
Entwicklungspunkt $x_0 = 2$. Dann gilt $a_0 + a_1 + a_2 < 1$.
○ wahr ○ falsch
Sei $f: \mathbb{R}_{>-1} \to \mathbb{R}$ mit $f(x) := \frac{x}{1+x}$ und sei $T_2(f, x, 2) = \sum_{k=0}^{2} a_k (x-2)^k$ das zweite Taylorpolynom um den
Entwicklungspunkt $x_0 = 2$. Dann gilt $a_0 \cdot a_1 \cdot a_2 > 0$.
○ wahr ○ falsch
Sei $f: \mathbb{R}_{>-1} \to \mathbb{R}$ mit $f(x) := \frac{x}{1+x}$ und sei $T_2(f, x, 2) = \sum_{k=0}^2 a_k (x-2)^k$ das zweite Taylorpolynom um den
Entwicklungspunkt $x_0 = 2$. Dann gilt $a_0 > a_1 > a_2$.
○ wahr ○ falsch
Aufgabe 10
Sei $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto x^2 + 2x + 2$. Dann wird f durch die Taylorreihe $\sum_{k=0}^{\infty} \frac{a_k}{k!} x^k$ mit $a_k = 2$ für $k \le 2$ und
$a_k = 0$ für $k \ge 3$ beschrieben.
○ wahr ○ falsch
Sei $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto 4x^2 + 2x + 2$. Dann wird f durch die Taylorreihe $\sum_{k=0}^{\infty} \frac{b_k}{k!} \cdot x^k$ mit $b_k = 2$ für alle k beschrieben.
○ wahr ○ falsch
Sei $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto 6x^2 + 3x + 2$. Dann wird f durch die Potenzreihe $\sum_{k=0}^{\infty} a_k (x-2)^k$ mit $a_0 = 32$, $a_1 = 27$, $a_2 = 6$ und $a_k = 0$ für $k \ge 3$ beschrieben.
○ wahr ○ falsch
Sei $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto 6x^2 + 3x + 2$. Dann wird f durch die Potenzreihe $\sum_{k=0}^{\infty} a_k (x-2)^k$ mit $a_0 = 2, a_1 = 3, a_2 = 6$, und $a_k = 0$ für $k \geq 3$ beschrieben.

O wahr

 \bigcirc falsch