Corrections first edition:

p. 110: Caption Figure 3.3.2: Two non-Lipschitzian domains
p. 196: S. Mikhailov informed us that Lemma 5.1.1 on page 197 needs to be corrected. Due to his results in [207] replace the last 6 lines on page 196 by:

Here the space $\widetilde{H}_{0}^{-1}(\Omega) \subset \widetilde{H}^{-1}(\Omega)=\left\{f \in H^{-1}\left(\mathbb{R}^{n}\right)\right.$ with supp $\mathrm{f} \subseteq \bar{\Omega}$ will consist of all

$$
\begin{gather*}
f=f_{1}+f_{2} \text { where } f_{1} \in \widetilde{H}^{-1}(\Omega) \text { with suppf } \\
\text { and } f_{2} \in \Omega \tag{5.1.6}\\
\widetilde{H}^{t}(\Omega), t \geq-\frac{1}{2}
\end{gather*}
$$

equipped with the norm $\inf \left\{\left\|f_{1}\right\|_{\tilde{H}^{-1}(\Omega)}+\left\|f_{2}\right\|_{\tilde{H}^{t}(\Omega)}\right\}$.
p. 197: line -9 supplement by:

If f is given as in (5.1.6) then the definition ...
After line -8 insert:
For $f \in \widetilde{H}^{-1}(\Omega)$ set in (5.1.7) $\int_{\Omega}(P u)^{\top} \mathcal{Z} v d x=(f, \mathcal{Z} v)$ and approximate u in $H^{1}(\Omega)$ and f in $\widetilde{H}^{-1}(\Omega)$ by the distributions in $\widetilde{H}_{0}^{-1}(\Omega)$ characterized in (5.1.6). Then $\tau \in H^{-\frac{1}{2}}(\Gamma)$ is the well defined limit but it now depends not only on u in Ω but also on f; since the extension of $P u \in H^{-1}(\Omega)$ to $f \in \widetilde{H}^{-1}(\Omega)$ is not unique (see McLean [203, Lemma 4.3] and Mikhailov [207, Lemma 6]).
p. 604: Reference 128: Supplement "Hörmander, L.:"

Corrections Second Edition 2021

- Preface to the second edition line-16: Change the hyphen in the word pseudod-ifferential to pseudo-differential.
- Page 46, formula (2.2.8): Write $T_{y}(x, y) E(x, y)$.
- Page 55, line-1 in formula (2.2.41) write $\frac{1}{2} \sigma-K^{\prime} \sigma=D \varphi$ and write displacement.
- Page 186 line 9: j is running from 0, line - 8 write: P_{d} instead of P_{α}.
- Page 187 in Theorem 4.2 .7 write exponent $m+\sigma-\frac{1}{2}$ at the end of Theorem 4.2.7 write $\frac{\partial^{m-1} u}{\partial_{n}^{m-1}}$.
- Page 188 line-2 write small z_{1}.
- Page 195: In formula (4.5.4) write: div:
line (4.5.4)+1 write: $f \in L_{0}^{2}(\Omega)$ and delete \mathbf{u}_{f}, line (4.5.4) +2 write $\mathbf{u}_{f} \in \mathbf{H}_{0}^{1}(\Omega)$ satisfying
- Page 303 write: The operators $\frac{1}{2} I \pm K$ and $\frac{1}{2} I \pm K^{\prime}$

Formula (5.6.41): $\|\ldots\|_{V^{-1}} \leq \ldots$
In formula (5.5.41) the index above is $+\frac{1}{2}$ twice.

- Page 650 in formula (10.3.30), second line, write $\mathcal{M}\left(\partial_{x}, n(x)\right)$, in the third line cancel the symbol I.

