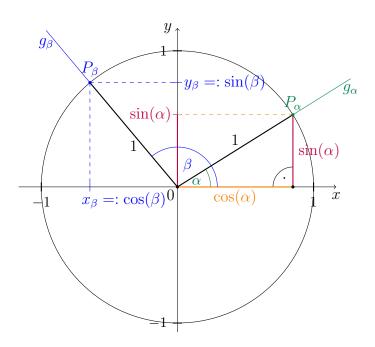
Informationen zu Sinus und Cosinus

<u>Definition:</u> Für beliebige Winkel α sei g_{α} die Halbgerade, die durch Drehung der positiven x-Achse um den Ursprung mit Winkel α im Gegenuhrzeigersinn entsteht (für $\alpha < 0^{\circ}$ Drehung mit Winkel $|\alpha|$ im Uhrzeigersinn). $P_{\alpha}(x_{\alpha} \mid y_{\alpha})$ sei der Schnittpunkt des Einheitskreises mit g_{α} . Man definiert

$$\sin(\alpha) := y_{\alpha}, \quad \cos(\alpha) := x_{\alpha}.$$



Satz: Für beliebige Winkel α gelten:

$$\sin(360^\circ + \alpha) = \sin \alpha,$$

$$\cos(360^{\circ} + \alpha) = \cos \alpha$$

$$\sin(-\alpha) = -\sin(\alpha)$$

4)
$$\cos(-\alpha) = \cos(\alpha)$$

4)
$$\cos(-\alpha) = \cos(\alpha)$$

5) $(\sin(\alpha))^2 + (\cos(\alpha))^2 = 1$

Tabelle exakter Werte für Sinus und Cosinus:

α	0°	30°	45°	60°	90°
$\sin(\alpha)$	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$
$\cos(\alpha)$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$

<u>Satz:</u> Für beliebige Winkel α, β gelten die **Additionstheoreme**

$$\sin(\alpha + \beta) = \sin(\alpha) \cdot \cos(\beta) + \cos(\alpha) \cdot \sin(\beta)$$
$$\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)$$

Cosinussatz: In jedem Dreieck ABC gilt

$$c^2 = a^2 + b^2 - 2ab\cos(\gamma).$$

Hierbei sind für a, b, c die Längen der entsprechend bezeichneten Seiten einzusetzen, γ bezeichnet den von den Seiten a, b eingeschlossenen Winkel.

