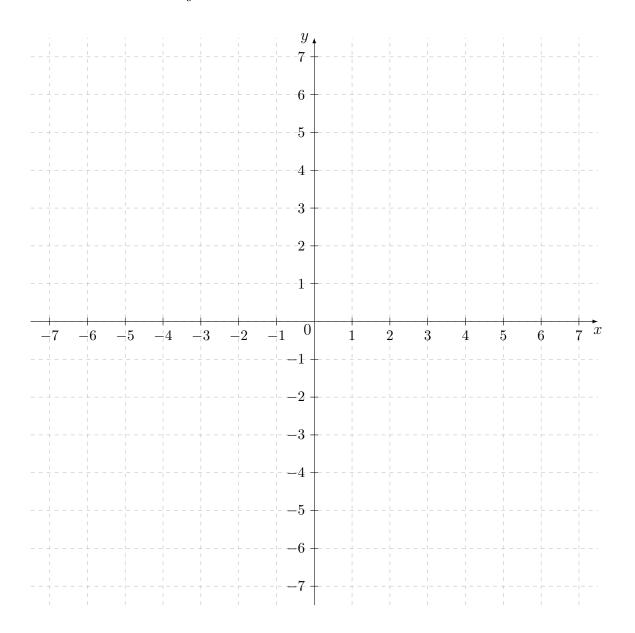
Schriftliche Aufgaben

Name:

Aufgabe 9


Welche der folgenden Aussagen ist wahr? Trage "w" oder "f" ein.

Aussage	w/f
Jede lineare Abbildung bildet Geraden auf Geraden ab.	
Jede lineare Abbildung hat mindestens den Fixpunkt $(0 \mid 0)$.	
Es gibt lineare Abbildungen, die nur einen Fixpunkt haben.	
Jede Fixpunktgerade ist eine Fixgerade	
Jede Fixgerade ist eine Fixpunktgerade	
Jede Geradenspiegelung hat unendlich viele Fixpunktgeraden.	
Jede Geradenspiegelung hat unendlich viele Fixgeraden.	
Jede Geradenspiegelung hat unendlich viele Fixpunkte.	
$\label{eq:standard} \mbox{Ist Z eine zentrische Streckung, dann sind alle Ursprungsgeraden Fixgeraden von Z.}$	
$\label{eq:likelihood} \mbox{Ist E eine Eulerabbildung, dann sind alle Ursprungsgeraden Fixgeraden von E.}$	
Ist D_{α} eine Drehung um $(0\mid 0)$ mit Winkel α , $0^{\circ}<\alpha<360^{\circ}$, dann sind alle Ursprungsgeraden Fixgeraden von D_{α} .	

Aufgabe 10

Gegeben ist die Gerade $g: \vec{s}(t) = t \cdot {-3 \choose 2}$ ($t \in \mathbb{R}$). Mit S_g sei die Spiegelung an g bezeichnet.

- a) Zeichne g in das Koordinatensystem ein.
- **b)** Zeichne in das Koordinatensystem drei verschiedene Fixgeraden h_1,h_2,h_3 von S_g ein, die keine Fixpunktgeraden von S_g sind.

Aufgabe 11

Gegeben ist die Eulerabbildung E mit der Matrixdarstellung

$$E = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}.$$

- a) Gib einen Vektor $\vec{v} \in \mathbb{R}^2$ mit $\vec{v} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ an, der die Gleichung $E(\vec{v}) = \vec{v}$ löst. $\vec{v} = \vec{v}$
- **b)** Gib die Fixpunktgerade von E an. $g: \vec{s}(t) =$
- c) Gib eine Fixgerade h_1 von E an, die keine Fixpunktgerade von E ist.

$$h_1: ec{s}(t) =$$

d) Da E eine Fixpunktgerade besitzt, gibt es noch mehr Fixgeraden von E. Gib eine weitere Fixgerade $h_2 \neq h_1$ von E an, die keine Fixpunktgerade von E ist. Hinweis: Verwende als Stützvektor einen Vektor, der zu einem Fixpunkt von E gehört.

$h_2: \vec{s}(t) = $	
----------------------	--

Aufgabe 12

Gegeben ist die lineare Abbildung A mit der Matrixdarstellung

$$A \ = \ \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix}.$$

a) Berechne die folgenden Abbildungswerte.

$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \boxed{ }, \quad A \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \boxed{ }, \quad A \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \boxed{ }, \quad A \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \boxed{ }.$$

- **b)** Gib einen Fixpunkt P von A an. P
- c) Gib eine Fixpunktgerade von A an. $g: \vec{s}(t) =$
- **d)** Gib einen Vektor $ec{v} \in \mathbb{R}^2$ an, für den $A(ec{v}) = 3 \cdot ec{v}$ gilt. $ec{v} =$
- e) Gib eine Fixgerade von A an, die keine Fixpunktgerade von A ist.

$$h: ec{s}(t) =$$