Schriftliche Aufgaben

Name:

Aufgabe 10

Berechne für die nachfolgend angegebenen Zahlen jeweils die fehlende Darstellung (Dezimaldarstellung oder gekürzter Bruch).

	Darstellung als gekürzter Bruch	Dezimaldarstellung
a)	$x_1 = \frac{3}{160}$	$x_1 =$
b)	$x_2 = \frac{207}{101}$	$x_2 =$
c)	$x_3 =$	$x_3 = 0,\overline{00271}$
d)	$x_4 =$	$x_4 = 0,00\overline{21}$
e)	$x_5 =$	$x_5 = 23,45\overline{9}$

Fall 2

Aufgabe 11

Beweise durch Widerspruch, dass für jede natürliche Zahl n gilt: Wenn n^2 durch 3 teilbar ist, dann ist auch n durch 3 teilbar. Fülle dazu den folgenden Lückentext aus.

Fall 1

Sei n eine natürliche Zahl, und n^2 sei durch 3 teilbar.

Annahme: n ist

Dann lässt n beim Teilen durch 3 den Rest oder den Rest

Fall 1: Mit geeignetem $k \in \{0, 1, \ldots\}$ lässt sich n = schreiben.

Fall 2: Mit geeignetem $k \in \{0, 1, \ldots\}$ lässt sich n = schreiben.

In beiden Fällen sieht man, dass n^2 beim Teilen durch 3 den Rest lässt.

Also ist n^2 einerseits durch 3 teilbar, andererseits lässt n^2 beim Teilen durch 3 den Rest

Das ist ein Widerspruch, also ist die Annahme

Es folgt, dass n ist.

Aufgabe 12

Beweise durch Widerspruch, dass $\sqrt{3}$ irrational ist. Fülle dazu die Kästchen aus.

Vorbereitung: $x=\sqrt{3}$ ist die nichtnegative Lösung der Gleichung

teilbar.

Annahme: $\sqrt{3}$ ist

 \Rightarrow Es gibt $m,n\in\mathbb{N}$, so dass $\sqrt{3}=$

Kürzen des Bruches liefert, dass es Zahlen $p,q\in\mathbb{N}$ gibt, so dass

 $\sqrt{3} = \frac{p}{q}$, wobei p, q sind.

Quadrieren der letzten Gleichung ergibt

 $\Rightarrow p^2 =$ (*)

 $\Rightarrow p^2 \text{ ist durch}$ teilbar.

Mit der letzten Aufgabe folgt: p ist durch

Schreibe p= $\qquad \qquad \text{mit geeigneter Zahl } k \in \mathbb{N}.$

Einsetzen in (*) ergibt

Auflösen nach q^2 liefert $q^2=$

Also ist q^2 und damit auch q durch teilbar.

Es folgt, dass p und q beide durch teilbar sind.

Dies steht im Widerspruch dazu, dass p,q $\hspace{1cm}$ sind.

 \Rightarrow Die Annahme war , also ist $\sqrt{3}$