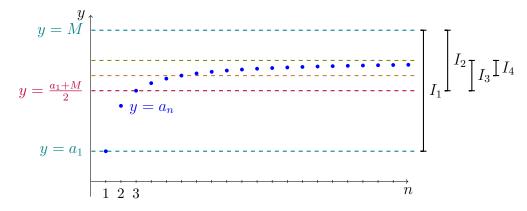
Der Hauptsatz über monotone Folgen

<u>Satz:</u> Eine Folge (a_n) , die monoton wachsend und nach oben beschränkt ist, ist konvergent.

Beweis:

 (a_n) ist nach oben beschränkt \Rightarrow Es gibt eine Zahl $M \ge 0$, so dass für $n \in \mathbb{N}$.



Nun werden Intervalle I_1, I_2, \ldots konstruiert, so dass in jedem Intervall unendlich viele Folgenglieder a_n liegen und nur endlich viele Folgenglieder außerhalb, und dass die Intervalle eine Intervallschachtelung bilden.

Schritt 0: Alle Folgenglieder a_n liegen in dem Intervall $I_1 = \begin{bmatrix} & & \\ & & \end{bmatrix}$

Schritt 1: Die Mitte des Intervalls I_1 ist durch $m_1 = \begin{bmatrix} \\ \\ \\ \end{bmatrix}$ gegeben.

Fall 1: Für alle $n \in \mathbb{N}$ gilt $a_n < m_1$.

Dann liegen alle Folgenglieder a_n im Intervall [;]

Bezeichne dieses Intervall mit \mathcal{I}_2 und fahre fort mit Schritt 2.

Fall 2: Es gibt eine Zahl N, so dass $a_N \ge m_1$.

Da (a_n) monoton wächst, folgt, dass dann für alle $n \geq N$ gilt.

Dann liegen alle Folgenglieder a_n mit Index $n \ge N$ im Intervall [;].

Bezeichne dieses Intervall mit I_2 und fahre fort mit Schritt 2.

Schritt 2: Wir wissen, dass $a_n \in I_2$ für $n \geq N_1$ mit einer geeigneten Zahl $N_1 \in \mathbb{N}$ gilt. Sei $I_2 = [c_2, d_2]$, und m_2 bezeichne die Mitte des Intervalls m_2 .

Fall 1: Für alle $n \geq N_1$ gilt

Dann liegen alle Folgenglieder a_n mit $n \ge N_1$ im Intervall [;]

Bezeichne dieses Intervall mit \mathcal{I}_3 und fahre fort mit Schritt 3.

Fall 2: Es gibt eine Zahl N, so dass für $n \ge N$.

Dann liegen alle Folgenglieder a_n mit Index $n \geq N$ im Intervall [;]

Bezeichne dieses Intervall mit I_3 und fahre fort mit Schritt 3.

So fortfahrend erhalten wir Intervalle $I_1, I_2, I_3, I_4, \ldots$

Da sich die Intervalllänge in je	dem Schritt			,	
bilden die Intervalllängen eine			_	-	
Außerdem gilt $I_1\supseteq I_2\supseteq I_3\supseteq$ Daher bilden die Intervalle $I_1,$					
Die einzige reelle Zahl a , die in	n allen Interv	allen enthalt	ten ist, ist de	er Grenzwert der	Folge (a_n) .