Konvergenz

Aufgabe 3

Gegeben ist die Folge (a_n) mit $a_n = \frac{n^2}{n^2 + 3}$. Behauptung: $\lim_{n \to \infty} a_n = 1$.

- a) Berechne $|a_n 1|$.
- **b)** Bestimme ein N so, dass $|a_n-1|<\frac{1}{1000}$ für alle n>N gilt.
- c) Es sei ein beliebiges $\varepsilon>0$ fest vorgegeben. Bestimme eine Formel für N, so dass $|a_n-1|<\varepsilon$ für alle n>N gilt.

Durch die Lösung von Teil c) ist bewiesen, dass (a_n) gegen a=1 konvergiert.

Aufgabe 4

Es soll bewiesen werden, dass die Folge (a_n) mit $a_n = \frac{3n^2 - 1}{n^2 + 2}$ gegen a = 3 konvergiert.

- a) Berechne $|a_n 3|$.
- **b)** Es sei ein beliebiges $\varepsilon > 0$ fest vorgegeben. Bestimme eine Formel für N, so dass $|a_n 3| < \varepsilon$ für alle n > N gilt.

Durch die Lösung von Teil b) ist bewiesen, dass (a_n) gegen a=3 konvergiert.

Aufgabe 5

Gegeben ist die Folge (a_n) mit $a_n=\frac{n^3+n^2}{5n^3+5n^2+3}$. Behauptung: $\lim_{n\to\infty}a_n=\frac{1}{5}$.

- a) Berechne $|a_n \frac{1}{5}|$.
- **b)** Schätze $|a_n \frac{1}{5}|$ durch einen einfacheren Term nach oben ab. Im Nenner sollte keine Summe stehen bleiben.
- c) Bestimme ein N so, dass $|a_n \frac{1}{5}| < \frac{1}{1000}$ für alle n > N gilt.
- d) Es sei ein beliebiges $\varepsilon > 0$ fest vorgegeben. Bestimme eine Formel für N, so dass $|a_n \frac{1}{5}| < \varepsilon$ für alle n > N gilt.

Durch die Lösung von Teil d) hast Du bewiesen, dass (a_n) gegen $a=\frac{1}{5}$ konvergiert.

Zusatzaufgabe 1

Es sei (a_n) eine Folge, die gegen a konvergiert

- a) Beweise, dass dann die Folge $(1 a_n)$ gegen 1 a konvergiert.
- **b)** Beweise, dass dann die Folge $(5a_n)$ gegen 5a konvergiert.