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We give a survey of results on Lieb-Thirring inequalities for the eigenvalue moments
of Schrddinger operators. In particular, we discuss the optimal values of the con-
stants therein for higher dimensions. We elaborate on certain generalisations and
some open problems as well.



0. INTRODUCTION

1. Let H be the Schrodinger operator
H(V;h) = —h?°A —V(z) on L?(RY).

For suitable real-valued potential wells V' the negative spectrum {\,,(V';h)} of H
Is semi-bounded from below and discrete.

2. Foro > 0 let

So,d(Vih) =tr HZ(V h) = ) (=An(V; 1))

be the o-Riesz mean of the negative spectrum.
Moreover, let
dxd&
¢ V;hz// _h(E, 3))°
Vi) = [ [ (h(&a)7 5 s

be the o-means of the symbol h = [£|2 — V (z).



For appropriate pairs of o and d the Lieb-Thirring inequalities states that

Sy.a(Vih) < R(o,d)SY (V;h)

3. The Lieb-Thirring inequality captures the correct order of the semi-classical Weyl
type asymptotics

Sed(Vih) = (14 0(1))SSy(Vih) as h—O0.

The inequality holds for all positive values of A.

It extracts hard information on the negative spectrum of Schrédinger operators from
the classical systems in the non-asymptotical regime.



4. The &-integration in S | evaluates to

s (viny = LY /v"*?m
where
M(c+ 1)
247 /20 (o + 4+ 1)

Lad_

The Lieb-Thirring inequality turns into

> (AnlVim)7 < Lo gh™ [ V] VT2
with the usual Lieb-Thirring constants

Lgq= R(o, d)Lg"d



In view of the Weyl asymptotics we have

R(o,d) > 1 and L,4> Lg[d.

5. One should ask the following questions:

1. For which o and d does the inequality
Se.a(Vih) < R(o,d)SS 4(V; )
actually hold?

2. What are the sharp values of R(o,d)?

3. Forwhichocand dis R(o,d) = 1?



1. VALIDITY OF LIEB-THIRRING INEQUALITIES

1. Counterexamples:

For d = 1,2 any arbitrary small attractive potential well will couple at least one
bound state. Hence, we have Sg 4(V; h) > 1 while S§' ,(V; h) ~ [ V¥/2dx can be
arbitrary small.

This contradictsto LTHforc = 0and d = 1, 2.

For d = 1 the weakly coupled bound state satisfies

M (V:R) = —4%2 (/ de)z Fo(h~2), h— oo

This implies S, 1(V; h) = O(h=27) while S, (V; k) = O(h=1) for h — cc.

This excludes LTHford =1and 0 < o < 1/2.



2. The LTH inequality holds true for

c>1/2 if d=1
o>0 if d=2.
>0 if d>3

[LTh] for ¢>1/2,d=1 and o >0,d>2; [CLR] for o=0,d>3;
[W]foroc =1/2,d = 1.

The parameter 7 can be scaled out and we put 7 = 1.

3. Borderline cases are the most complicated ones. In particular, for o = 0 and
d > 3 LTH turns into the celebrated CLR estimate on the number of bound states

rank H_(V') = Sp 4(V) < Lo,d/V_i/zda:.



CLR implies LTH for & > 0 and d > 3. Indeed,
Se.d(V) = > (= (V)
n

L o0 o—1
= — [ a7 S0V 1)
#{An<—t}
> 1 ocl
/O dit”> g 4(V — 1)

Vol {(¢,2):h<—t}
(2m)d

R(0, d)

o

VA

< R(0,d)SS ;(V).

In a similar way one shows that R(o’,d) < R(o,d) for all &/ > o [Aizenman,Lieb].

4. In the other borderline case o0 = 1/2 and d = 1 for VV > 0 one finds in fact a
two-sided estimate

S (V) < S, 1(V) <289, (V)
1,5 17§ 17§

[GGM], [W], [HLT]. Note that 0 = 1/2 and d = 1 is the only point in the Lieb-
Thirring scale, where such a two-sided estimate is possible.



2. ON THE SHARP VALUES OF R(o,d).

1. The dimension d = 1: Sharp constants appear already in [LTh], [AL]
R(o,1) =1 for all o> 3/2.

It uses a trace identity for o = 3/2 and the monotonicity argument [AL].
The only other case settled was o = 1 /2 with

R(1/2,1) =2

iIn [HLT]. This reflects the weak coupling behaviour.

The optimal values of R(o, 1) for 1/2 < o < 3/2 are unknown. An analysis of the
lowest bound state shows that here
1
o1
—A1(V))° —3\ 2
Rz sup RO, <a 2> |
vers+s 551 (V)




2. Let {u;.} be the eigenvalues of the Dirichlet Laplacian Hg = —/A\ on an open
domain 2 ¢ R4,

Foranyo > 1,A > 0,d € N, Q ¢ R? [Berezin '72]

2 o
5 Jo @ o2 =AY
< Lg',dvoI(Q)/\““L?.

Y (pp—N)7 <
k



Proof. Let {¢,.} be an o.n. eigenbase Hg. Put ¢, = 0 on R\ and

3p(&) = (2m) 42 /Q b (2) e da.

Jensen’s inequality (o > 1, [pa|@r|?d¢ = 1) gives
o _ 2 AN T 2 ..\7
N = N7 = 3 ( [ (6 - Mg Pde)
< Jpal€7 =7 I8P

Parsevals inequality w.r.t. {¢.} in L2(2) implies

7 2 __ e—ix§ 2 dx _ dx
zk:|¢k(£)| — /§2| | (27T)d — /Q (27T)d.



3. The Legendre transformed f(p) of a convex, non-negative function f(¢) on R
IS given by

f(p) =sup (pt — f(t)), p>0.
t>0

It reverses inequalities: f(t) < g(t) for allt > 0 implies f(p) > g(p) for all p > 0.

Note that

[p]
Sk —2))"®) = (= PDugrar + S i
k k=1

Bpl-l—ﬁ_l
(14 /)0 s

(ca?9)" (p) =



We put o = 1 in Berezin‘s inequality

Z(% ~AN)_<ILS dvoI(Q)/\H'z

and apply the Legendre transformatlon forc =ANandp=n¢c N

n 2 gd 1—%
S e > 0t (L vol()) d_( )
k=1 ’ -
> pltd (LS gvol(2)) q_d
VO
= " d 2+d

and recover a well-known result by Li and Yau.



4. The harmonic oscillator. Put m = (m1,...,my ),

d
V(z) =AN— Y mizz, A>0, my>0.
k=1

Then the operator H (V') has the eigenvalues

d
AM(V)=—-N+ Z mp(1 + 271),
k=1

with 7 = (71,...,7y)and 7, = 0,1,2, ...

For o,d = 1 itholds 5§, (V) = —2 and

S11(V) = > (mi(142k) —N)_
k

= m1 ( AN — t2>
(2m1)?

where t = 1 + [le _ %} _ szl




With the Lieb-Aizenman argument we get

So,1(V) < S51(V), o> 1.

A straightforward generalisation to higher dimensions is much more involved and
gives [De la Breteche]

Sea(V) < 89,(V), o>1.

The careful analysis of the same problem implies R(o,d) > 1 for all o < 1 [Helffer,
Robert].



5. Alternatively, put V(z) = W (z1,...,24_1) — m4z4. Integration in z; and ¢,
gives

SCId(V)

o dpde
[ J (6P 4 mied = w) o

= (2(c 4+ 1)mg) 8%, 1 4 1 (W).
Moreover, A (V) = A, (W(z")) + mgy(1 + 27,).

T ,Td
Evaluating the sum over 7; > O first, it follows that
Soa(V) = D> (Ap(W) +mq(1 + 274))7

' Ty

= 25071< (W) — md:vg)

< ZSCI (A (W) — md“/‘g)
T
<

(2(c + 1)mg) 1S (= A (W)t



and for any o > 1 it holds

S a(V)/SQ4(V) < Syp1,a-1(W)/SE 41 g 1 (W),

For V = A — 3, m#z7 iteration gives

S1.4(V) < S§ V), o>1.

In fact, this holds for all V (z) = W (2') — m4z!



6. We summarise

R(o,1) =1 for ¢ >3/2, d=1,
R(1/2,1) =2 for c =1/2,d=1,

1\ 73
1 1 3
R(J,1)>2<O 2) for _<o< . d=1,

R(o,d) >1 for o0 <1,deN,
R(O‘,Q) >1 for o0 <og,00~1.16,d= 2.

The Dirichlet Laplacian and the harmonic oscillator permitt a LTH estimate with the
classical constantif o > 1.

There exist certain explicite upper bounds on the constants R(c, d).



Lieb and Thirring posed the following
Conjecture:

In any dimension d there exists a finite critical value ocr(d), such that R(o,d) = 1
forall o > ocr(d).

In particular, one expects that o¢r(d) = 1 for d > 3, or

Lyg= L(i",d for d > 3.



3. LIEB-THIRRING INEQUALITIES FOR OPERATOR VALUED POTENTIALS

1. We consider a generalisation of LTH inequalities:

(G Is a separable Hilbert space, 1. is the identity on G. V : Re — Soo(G) is a
compact s.-a. operator-valued fct.

We study the negative spectrum {\,,(V")} of the operator

HV)=-A®1la—V(z) on L?*(RY ®G.



In particular, we shall find bounds
So.a(V) < r(0,d)SS 4(V)
of the eigenvalue moments

Sa,d(‘/) — trLQ(Rd)@)GHS(V) — Z<_>\n(v))g

In terms of the classical counterparts

cl . > dxd§
sy = [ [wen? @ g,

d
— Lg[d/ter_J_I_Q(:v)d:E

where h(&,2) = |£]2 @ 1o — V().

The constants (o, d) should not depend on dim G. Obviously

1 < R(o,d) <r(o,d).



2. Main results:
We confirm the first part of the conjecture by Lieb and Thirring with o < 3/2.

Theorem 1. [A. Laptev, T. Weidl (Acta Math 184 (2000) 87-111)] The identity
R(o,d) =r(o,d) =1
holds true for all 0 > 3/2 and all d € N.



The most interesting case for applications to physicsis o = 1 and d = 3. Here the
best know estimate so far was R(1,3) < 5.24. We show

Theorem 2. [D. Hundertmark, A. Laptev, T. Weidl (Invent math 140 3 (2000) 693-
704)] The bounds

4 for %§0<1
2 for 1<o<3

hold true in all dimensions d € N. Moreover, if d = 1 then

R(o,d) <r(o,d) < {

R(1/2,1) =r(1/2,1) =2 for o =1/2,
1< R(o,1) <r(0,1) <2 for 1/2 <o < 3/2.



3. Some Remarks:

The [LTh]-methods gives bounds for operator valued potentials with the same con-
stantsasin [LTh]foro > 1/2ifd = 1 and for o > O for d > 2.

It is not known whether (0, d) is finite for d > 3 (CLR inequality).
It is not known whether (o, d) = R(o, d) in general.
4. The proof of Theorem consists of two key elements:

Space dimension d = 1: We establish the identity

r(o,1) =1 foral o> 3/2.

This generalises R(o,1) = 1 for o > 3/2 from scalar Schrédinger operators to
Schrddinger operators with operator valued potentials .

We derive and apply a trace formula for matrix valued potentials for c = 3/2 and
use the AL-trick. Alternatively, Benguria and Loss found a proof based on a Darboux
commutation method.



Space dimensions d > 2 :
We iterate in the dimension.

Sg’d(V) — trLQ(Rd)@)GHf =
82 / / 7
— trLQ(Rd)@)G <—8—$§ ®1g — (A ®1la+ V(x ;xd))>
d? 7
< trLQ(R)(X)G <_@ & 1(”; - W(xd>> — Sa,l(W—>a

where 2’ = (x1,...,24_1), A is the Laplacian in the coordinates =" and W (x,)
IS the operator

AN ®@1a—V(zd;zgy) on G=L*’R"YHxdG.



Ford = 1,0 > 3/2 we apply the sharp LTH bound for the operator potential W _and
find

SCll(W )

~

Sea(V) < 181 [ug WU+2(a:d) dz,

+1
(~=V ()2

< L1 [ 8,414, (V(iaa)dag,

We can continue this induction procedure and find

_I_
Sga(V) < H LUJr2 /Rdvi de_sc'd(v) ]

LCI
O‘?



4. TRACE FORMULAE FOR MATRIX VALUED POTENTIALS

1. Put G = C™ and consider the system of ODE

— (dz/dac2 & 1(;> y(z) — V(z)y(z) = k?y(x), = € R.

V' Is a smooth Hermitian valued matrix function with compact support.

For given k € C\{0} fix the n x n matrix-solutions

y(z) = F(xz, k) = eikxlg as = — oo,
y(z) = G(z, k) = e *15 as z — —oo.



The pairs of matrices F'(x, k), F'(z,—k) and G(z, k), G(x, —k) form full systems
of independent solutions and

F(x,k) = G(z,k)B(k) + G(x,—k)A(k)

defines uniquely the matrix functions A(k) and B(k).

For £ € R we have

A(K)A*(k) = 1¢ + B(—k)B* (k)
and | det A(k)| > 1.



2. The Buslaev-Faddeev-Zakharov trace formulae can be generalised to matrix po-
tentials. For V= V. > O they read as follows

S§ (V) = —Ip+S1,(V)
2 2
Sgl(V) = 3L+ 53,(V)
1 dV\?
sg (V) + ZL§ /tr (—) de = —5I4+ S5 (V
s (V) + 3L, JUa( ) do 4+ 55 ,(V)

Here is
I; = / kjln\detA(k)|dk = 0,2,4
J 2w JR Y R

Because of |det A(k)| > 1 we find I; > 0.



3. Removing 31> from the second trace identity we claim

53/2,1(V) < S§>2,1(V)

and »(3/2,1) = 1. This bound holds for indefinite V' as well.

4. The first trace identity leads to the lower bound In
Sill(‘/) < Sl 1(V) < 25&'1(‘/),
2 27 2

which holds only for V' > O.



5. If we apply the LTH bound S /> 1 (V) <L 2,5¢l
getfor V=1V, >0

1/2, , (V) to the first trace identity, we

Ip = 51/2 1(V> 1/2 1(V>
< 5(1:|/2,1(V>-

Moreover, from Ss /5. 1 (V) <L 55/2 , (V') and the third trace identity it follows that

51, — S%l(\/)— (V) + L /trG< ) da

1 dV
< Zrd / tr (—) dx.
-2 %71 G dil? v



Hdolder’s inequality 12 < Igl4 implies that

3 < o (fwovs) - (fwa (9) a) = 2

We insert this into the second trace formula and scale 7 — O back and find the
upper bound in the inequality

ogs (V; h) S5, (ViM<3E.

) O(h 1) O(h-1) - o)




5. POLYHARMONIC OPERATORS

1. Consider the operators
H(V;h) == —V(z), leN
on L?(R%). Let {\,,.;(V'; h)}», be the negative eigenvalues of H;(V; h).

We study the inequalities

Sy.a1(Vi 1) < R(o,d,1)SS (V5 1)

where
Sa,d,l(V; h) = Z(_An;l(‘/; h))°



and

| _ B dxd§
s, (Vih) = / / (&% 57
— lﬁ /Vl—'—'{da;

with h; (¢, 2) = |€]2 — V(z) and

Mo+ 1IN (k+1)
2dnd/2 (lk + DMk + 0 + 1)

Ladl

2. The LTH-inequality holds true if and only if

o>0 for Kk >1,
o>0 for k=1,
oc>1—k for K <1.

YA



3. The LTH-inequality holds for non-integer values of [ as well, except possibly for
the critical case oo = 1 — k > 0, which has not been settled yet.

For/ € Nand og = 1 — k > 0 we find a two-sided estimate

an,d’lh_d/‘/dw < Sao,d,l(v; h) < Lao,d,lh_d/‘/—l—dx

—

with some positive, finite constants L, ;;and L, 4.

In analogy with [ = 1 the weak and strong coupling behaviour suggest the conjec-
ture

TK

sintk %0

7 — rcl —
LO’O,d,l _ LO’o,d,l and LUOadal -



4. For o > max{0,1 — x} the LTH bounds extend to operator valued potentials.
Thisisnotsettledforcg =1 —kifk < landforc =01if k > 1.

5. Constants in Lieb-Thirring inequalities for higher order operators are much less

studied. No sharp values of the constants are known, not even in the dimension
d=1.



