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0. Introduction

0.1.

Consider the Schrödinger operators

H(α) = −∆ − αV on L2(R
d),

with a real-valued potential V coupled by the positive con-
stant α > 0. If

V (x) −→ 0 as |x| → 0.

in a suitable sense, then σess(H(α)) = [0,∞) and the
negative spectrum is discrete:

Define the counting function

N(α) = tr χ−(H(α)),

where

χ−(x) =







0 for x ≥ 0

1 for x < 0
.



Assume d ≥ 3, V ≥ 0.

Then

N(α) ≤ Cαd/2
∫

V d/2dx

and hence N(α) = 0 as α→ +0.

Assume d = 1 or d = 2, V ≥ 0, V 6≡ 0.

Then

N(α) ≥ 1 for all α > 0

and

N(α) = 1 as α→ +0.

We call this negative eigenvalue a virtual bound state.

0.2.

We have N(α) = 0, if and only if

h(α)[u] =

∫

|∇u|2dx− α
∫

V |u|2dx ≥ 0

holds for all u ∈ C∞
0 (Rd);

or equivalently, iff the Hardy type inequality
∫

V |u|2dx ≤ C
∫

|∇u|2dx, u ∈ C∞
0 (Rd),

holds with C = α−1.



Hence limα→+0N(α) = 0, if and only if the previous
bound holds for some finite C = C(V ).



0.3.

For d ≥ 3
the classical Hardy inequality holds:

∫
|u|2

|x|2
dx ≤

4

(d− 2)2

∫

|∇u|2dx, u ∈ C∞
0 (Rd)

For d = 1 or d = 2,
V ≥ 0 and V 6≡ 0, the bound

∫

V |u|2dx ≤ C(V )

∫

|∇u|2dx, u ∈ C∞
0 (Rd),

fails for arbitrary V and C(V ).

Indeed, for d = 1 fix some function u ∈ C∞
0 (R), for which

0 ≤ u ≤ 1, u(x) = 1 for |x| ≤ 1.

For un(x) := u(xn−1) we find
∫

V |un|
2dx→

∫

V dx > 0 as n→ ∞,

∫ ∣
∣
∣
∣

dun

dx

∣
∣
∣
∣

2

dx =
1

n

∫ ∣
∣
∣
∣

du

dx

∣
∣
∣
∣

2

dx→ 0 as n→ ∞.

The completion of C∞
0 (Rd), d = 1,2, with respect to the

Dirichlet metric
∫

|∇u|2dx cannot be realized as a function
space in the usual way.



0.4.

We observe that

Existence of a virtual bound state
limα→+0N(α) > 0

⇐⇒
Hardy’s inequality

∫

V |u|2dx ≤ C
∫

|∇u|2dx fails
⇐⇒

The topology induced by the form
∫

|∇u|2dx
is not compatible with the topology on W loc

2,1
⇐⇒

(−∆ + λ)−1/2V (−∆ + λ)−1/2

does not converge to a compact operator as λ→ +0

0.5.

Indefinite perturbations in the case of virtual bound states.
Assume d = 1 or d = 2, V 6≡ 0,

(1 + |x|)V (x) ∈L1(R) if d = 1,

(1 + |x|)εV (x) ∈L1(R
2) if d = 2 for some ε > 0.

Then [Simon]
∫

V dx < 0 ⇐⇒ lim
α→+0

N(α) = 0,
∫

V dx ≥ 0 ⇐⇒ lim
α→+0

N(α) = 1.

In particular,
∫

V dx < 0 implies
∫

V |u|2dx ≤ C(V )

∫

|∇u|2dx, u ∈ C∞
0 (Rd).



1. The abstract setting

1.1.

Consider

A = A∗ ≥ 0 with minσ(A) = 0.

Let

V = V+ − V−, V+ ≥ 0, V− ≥ 0,

where V± are (A+ I)-bounded. The respective quadratic
forms are a, v, v±.

Set

A(α) =A− α(V+ − V−) = A− αV,

Ã(α) =A− α(V+ + V−) = A− αṼ ,

and

N(α) =tr χ−(A(α)), Ñ(α) = tr χ−(Ã(α)),

N = lim
α→+0

N(α), Ñ = lim
α→+0

Ñ(α).

Condition 1. Ñ(α) <∞ for some α > 0.

Condition 2. Ñ ≥ 1.



1.2.

Consider the special case, when 0 is an isolated eigen-
value of finite multiplicities of A = A(0) with the
eigenspace Λ = kerA.

Then analytic perturbation theory is applicable.

Let {µk}
n
k=1 be the non-decreasing sequence of the

eigenvalues of v|Λ, n = dimΛ.

µ1, . . . , µn−
︸ ︷︷ ︸

n− neg eigv

, µn−+1, . . . , µn−+n0
︸ ︷︷ ︸

n0 zero eigv

, µn−+n0+1, . . . , µn
︸ ︷︷ ︸

n+ pos eigv

Then the eigenvalue 0 splits as follows:

λk(α) = 0 − αµk + Ok(α
2) as α→ 0.

We perturb the lower edge of the spectrum of A, hence

Ok(α
2) ≤ 0, k = 1, · · · , n.

The indices k with µk = 0 and Ok(α
2) = 0 correspond

to kerA ∩ ker V . Put

n0,0 = dim(kerA ∩ ker V )

= dim{φ ∈ Λ|v[φ, u] = 0 ∀u}.

Then

N = n+ + n0 − n0,0.



1.3.

In general we do not put forward any conditions on the
spectral structure of A at the point 0. Analytic perturba-
tion theory is not applicable.

As out main result we adapt the formula

N = n+ + n0 − n0,0

to the general abstract case.

2. Applications I

2.1.

Let q0, q1 be continuous functions on Rd,

0 < q0(x) ≤ q1(x) <∞ for all x ∈ R
d.

For l ∈ N the symbol ∇l denotes the κ =
(
d−1+l

l

)

-vector
of all partial derivatives

∂l

∂x
l1
1 · · · ∂x

ld
d

, l = l1 + · · · + ld.

Let the κ× κ matrix function a(x) satisfy

q0(x)I ≤ a(x) ≤ q1(x)I for all x ∈ R
d.

Put

a[u] =

∫ 〈

a(x)∇lu,∇lu
〉

dx, u ∈ C∞
0 (Rd).



2.2.

The function φ ∈W loc
2,l (Rd) is said to be a limit element of

a, iff there exists a sequence {un}n∈N ⊂ C∞
0 (Rd), such

that

un → φ in W loc
2,l and a[un] → 0 as n→ ∞.

Let the limit space Λ(a) be the set of all limit elements.
This is a linear subspace of Ωd,l−1, the set of all polyno-
mials on Rd of degree up to l− 1.

2.3.

Let V (x) ≥ 0, V 6≡ 0 and A = (−1)l(∇l)Ta(x)∇l,

A(α) = (−1)l(∇l)Ta(x)∇l − αV (x).

Theorem 1. If N(α) <∞ for some α > 0, then

lim
α→+0

N(α) = dimΛ(a),

∫

V |p|2dx <∞ for all p ∈ Λ(a).

Corollary. The inequality
∫

|x|≤1
|u|2dx ≤ C(a, d, l)

∫ 〈

a(x)∇lu,∇lu
〉

dx

holds on all u ∈ C∞
0 (Rd), iff dimΛ(a) = 0.



2.4.

Let v = v+−v−, v± ≥ 0, be some quadratic form defined
on C∞

0 (Rd).

Theorem 2. Assume that v ≥ 0 and that the topology
induced by

a[·] +
∫

|x|≤1
| · |2dx+ v[·]

is compatible with the topology on W loc
2,l . Then

N(α) = ∞ for all α > 0

or

N = lim
α→+0

N(α) ≤ dimΛ(a).

Theorem 3. Assume that the topology induced by

a[·] +
∫

|x|≤1
|u|2dx+ v+[·] + v−[·]

is compatible with the topology on W loc
2,l and that

Ñ(α) <∞ for some α > 0. Then

N = lim
α→+0

N(α) = n+ + n0 − n0,0,

where n−, n0, n+, n0,0 are defined as above for v|Λ(a).



3. Applications II

3.1.

Assume that

c0(1 + |x|)r ≤ a(x) ≤ c1(1 + |x|)r, x ∈ R
d.

Put m =
[

l − d+r
2

]

. Then

2l− d <r implies Λ(a) = {0} ,

2 − d <r ≤2l − d implies Λ(a) = Ωd,m ,

r ≤ 2 − d implies Λ(a) = Ωd,l−1 .

3.2.

A typical example is

A(α)u = u′′′′−α

{

V0 +
1

i

(
d

dx
V1 + V1

d

dx

)

−
d

dx
V2

d

dx

}

.

The functions V0, V1, V2 are real, bounded and of compact
support.

We have r = 0, d = 1, l = 2, Λ(a) = Ω1,1 and

v|Λ(a) ∼

( ∫

V0dx
∫

xV0dx− i
∫

V1dx
∫

xV0dx+ i
∫

V1dx
∫

x2V0dx+
∫

V2dx

)

.



Special case V0 = V1 = 0, V2 6≡ 0

v|Λ(a) ∼

(

0 0
0

∫

V2dx

)

,

and µ1 = 0, µ2 =
∫

V2dx. We have n0,0 = 1;
∫

V2dx <0 implies N = 0 ,
∫

V2dx ≥0 implies N = 1 .

Special case V0 = V2 = 0, V1 6≡ 0

v|Λ(a) ∼

(

0 −i
∫

V1dx
i
∫

V1dx 0

)

,

and µ1 = −|
∫

V1dx|, µ2 = |
∫

V1dx|. We have n0,0 = 0;
∫

V1dx 6=0 implies N = 1 ,
∫

V1dx =0 implies N = 2 .

Special case V1 = V2 = 0, V0 6≡ 0

2µ1,2 =

∫

(1 + x2)V0dx

±

√
{∫

(1 − x2)V0dx

}2
+ 4

{∫

xV0dx

}2
.

Moreover, n0,0 = 0 and N = 0,1,2 are possible.



4. Applications III

4.1.

Let W be a bounded non-trivial function of compact sup-
port. Let β be the maximal coupling, for which

A = −∆ − βW

does not have negative spectrum. Assume that β > 0.

The problem (−∆ − βW )ψ = 0 has a positive distribu-
tional solution (principal eigenvalue). Due to Harnack’s in-
equality ψ+ ψ−1 is locally bounded.

4.2.

Let V be a bounded function of compact support. Set

A(α) = A− αV = −∆ − βW − αV.

Due to the identity

a(α)[u] =

∫

|∇u|2dx− β
∫

W |u|2dx− α
∫

V |u|2dx

=

∫

ψ2|∇(uψ−1)|2dx− α
∫

V ψ2|uψ−1|2dx

= aψ[η] − αvψ[η], η = uψ−1,



it holds

N(α) = tr χ−(−∆ − βW − αV )

= tr χ−(−∇Tψ2∇− αV ψ2).

If V 6≡ 0 then [Pinchover]
∫

V ψ2dx <0 implies lim
α→+0

N(α) = 0,
∫

V ψ2dx ≥0 implies lim
α→+0

N(α) = 1.

5. Hardy type inequalities for magnetic operators

5.1.

Let q0, q1 be continuous functions on Rd, d ≥ 2,

0 < q0(x) ≤ q1(x) <∞ for all x ∈ R
d.

Let a(x) be a d× d-matrix, such that

ρ0(x)I ≤ a(x) ≤ ρ1(x)I, x ∈ R
d.

Let A(x) = (A1(x), . . . ,Ad(x)) be a real vector field,

A ∈Lloc
d (Rd) if d ≥ 3,

A ∈Lloc
2+ε(R

d) for some ε > 0 if d = 2.

For u ∈ C∞
0 (Rd) define

aA[u] =
∫

〈a(x)(i∇ + A(x))u, (i∇ + A(x))u〉 dx .



5.2.

Assume that V (x) ≥ 0. By Kato’s inequality
∫

V |u|2dx ≤ C
∫

〈a∇u,∇u〉 dx

for all u ∈ C∞
0 (Rd) implies

∫

V |u|2dx ≤ C
∫

〈a(i∇ + A)u, (i∇ + A)u〉 dx

for all u ∈ C∞
0 (Rd) [Kato, Simon].

5.3.

Magnetic fields induce Hardy’s inequality:

Theorem 4. Let V (x) ≥ 0 be bounded and of compact
support. Assume that A cannot be removed by gauge
transformation, that means

(i∇ + A)φ = 0

does not have a non-trivial global solution φ ∈W loc
2,1 . Then

∫

V |u|2dx ≤ C(V,A, a, d)
∫

〈a(i∇ + A)u, (i∇ + A)u〉 dx

holds for all u ∈ C∞
0 (Rd).

Corollary. In the setting of Th. 4 the operator

(i∇ + A)Ta(x)(i∇ + A) − αV

does not have negative spectrum for sufficiently small pos-
itive α.



5.4.

Let W be a bounded non-trivial function of compact sup-
port. Let β be the maximal coupling, for which

A = −∆ − βW

does not have negative spectrum. Assume that β > 0.

The problem (−∆ − βW )ψ = 0 has a positive distribu-
tional solution (principal eigenvalue). Due to Harnack’s in-
equality ψ+ ψ−1 is locally bounded.

Then for u ∈ C∞
0 (Rd) and non-trivial A it holds

∫

|(i∇ + A)u|2dx− β
∫

W |u|2dx

=

∫

ψ2|(i∇ + A)(uψ−1)|2dx

≥ C−1(V,A, ψ2, d)
∫

V |uψ−1|2dx

≥ c(V,A,W, d)
∫

V |u|2dx .

A particular interesting case is
∫

|x|≤1
|u|2dx

≤ C(d,A)

{
∫

|(i∇ + A)u|2dx−
(d− 2)2

4

∫
|u|2

|x|2
dx

}

for u ∈ C∞
0 (Rd), d ≥ 3, A non-trivial.



5.5.

In the dimension d = 2 the classical Hardy inequality fails.
It can be replaced by

∫
|u|2dx

|x|2(1 + log2 |x|)
≤ C

∫

|∇u|2dx,

which holds on all functions

u ∈ C∞
0 (R2),

∮

|x|=1
u(x)dx = 0.

Let A be a continuously differentiable real vector field on
R2, such that

B =
∂A1

∂x2
−
∂A2

∂x1

is integrable. Then

Φ =
1

2π

∫

Bdx

is the (regularized) magnetic flux through the plane R2.

Theorem 5. [with A. Laptev] Assume that Φ 6∈ Z. Then
the bound

∫
|u|2dx

1 + |x|2
≤ C(A)

∫

|(i∇ + A)u|2dx

holds for all u ∈ C∞
0 (R2).


