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Consider the Schrodinger operators

H(a)=—-A—aV on LxRY),

with a real-valued potential V' coupled by the positive con-
stant o > 0. If

V(zx) — O as x| — 0.

In a suitable sense, then oegs(H (av)) = [0, c0) and the
negative spectrum is discrete:

Define the counting function

N(a) = tr x—(H()),

where

(x) O forx>0
_\xr) — .
X 1 forz <O



Then
N(a) < Ca/? / V245

and hence N(a) = 0 as a — +40.

Assumedzlord:Q,VZO,VgéO.I

Then

N(a) >1 forall a>0
and
N(a) =1 as o — 0.

We call this negative eigenvalue a virtual bound state.

We have N(«) = 0O, if and only if
h(a)[u] = /|Vu\2dx — oz/V|u|2dx >0

holds for all u € C°(RY);
or equivalently, iff the Hardy type inequality

/V|u|2d:c < C’/ Vu|?dz, u € CP (R,

holds with C = o 1.



Hence lim, 4o N(a) = O, if and only if the previous
bound holds for some finite C = C (V).



> : : :
M the classical Hardy inequality holds:

2
u
/%dm <o 2)2/|Vu|2d:v u € CSP(RY)

Ford=10rd =21y >~ gand v 2 0, the bound

/V|u|2dx <cW) / Vul2dz,  ue CP(RD,
fails for arbitrary V and C' (V).

Indeed, for d = 1 fix some function v € C3°(R), for which
0<u<l, u(z) =1 for |x| < 1.

For up(z) := u(zn—1) we find

/V|un|2d:c o /Vd:c >0 as n — 0o,

/|dun

—/| |d:c—>0 as n — o0.

The completion of Cgo(Rd), d = 1, 2, with respect to the
Dirichlet metric [ |Vu|?dx cannot be realized as a function
space in the usual way.



We observe that

Existence of a virtual bound state
|ima_>_|_o N(a) >0
=
Hardy’s inequality [V |u|?dz < C [ |Vu|?dz fails
=
The topology induced by the form [ |Vu|2dx
is not compatible with the topology on Wéolc
— ’
(—A+ 072V (A 40712
does not converge to a compact operator as A — 40

Indefinite perturbations in the case of virtual bound states.
Assumed=1lord =2,V £ 0,
(1+]z)V(z) €Ly (R) if d=1,

(14 |2)V(z) €eL1(R?) if d=2 forsome e > 0.
Then [Simon]

/de <0<«= lim N(a)=0,

a——+0
/Vd:z; >0<«= lim N(a)=1.

a——+0

In particular, [ Vdxz < O implies

/V|u|2d:c <o) / Vul2dz,  ue CP(RYD).
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Consider
A=A">0 with mino(A) = 0.
Let
V=Vy -V, Vi >0, V. >0,

where V4 are (A + I)-bounded. The respective quadratic
forms are a, v, v+.

Set
A(a) =A—-—a(V3 —V_) =A—-aV,
Al(a) =A — a(VE+V_)=A- aV,
and
N(a) =tr x—(A(a)), N(a)=1trx_(A(a)),
N = Iim N(a), N = Iim N(a).
a——+0 a——+0

Condition 1. N(a) < oo for some o > 0.

Condition 2. N > 1.



Consider the special case, when O is an isolated eigen-
value of finite multiplicities of A = A(0) with the
eigenspace \ = ker A.

Then analytic perturbation theory is applicable.

Let {ur}r—, be the non-decreasing sequence of the
eigenvalues of v|p, n = dim A.

Bl lbn_y Bp_41y- s Mbn_4ng» Bn_+ng+1>---H HUn
n_ nNeg eigv ng Zero eigv n4 POS eigv

Then the eigenvalue O splits as follows:

Ae(a) =0 — aup + Op(a®) as a — 0.

We perturb the lower edge of the spectrum of A, hence
O(a?) <0, k=1,---,n.

The indices k with g, = 0 and O(a?) = 0 correspond
to ker AN ker V. Put

no,0 = dim(ker AnkerV)
= dim{¢ € Alv[¢p,u] =0 Vu}.
Then

N =n4 + ng —ng,o-



In general we do not put forward any conditions on the
spectral structure of A at the point 0. Analytic perturba-
tion theory is not applicable.

As out main result we adapt the formula

N =n4 +ng—ng,0
to the general abstract case.

2. Applications |

Let qp, q1 be continuous functions on R4,

0 < qgo(z) <qgi(x) < o0 for all z € R

For I € N the symbol V! denotes the k = (d_}‘H)-vector
of all partial derivatives

8l
I lg”’
8x1 ¢ 833‘d

Let the x x x matrix function a(x) satisfy

=11+ -+

go(x)I < a(x) < qgq1(x)l for all r € RY.
Put

alu] = /<a(az)Vlu, Vlu> dz, u € C’SO(Rd).



The function ¢ € WéolC(Rd) is said to be a limit element of

a, iff there exists a sequence {un},cn C Cgo(Rd), such
that

Up — ¢ in Wg?lc and afup] — 0 as n — oo.

Let the limit space A(a) be the set of all limit elements.
This Is a linear subspace of €2;;_1, the set of all polyno-
mials on R< of degree upto [ — 1.

Let V(z) >0,V Z0and A = (—=1){(V)Ta(x)V!,
A(a) = (D)"Y a(2)V! — aV (2).

Theorem 1. If N(«) < oo for some o > 0, then

lim N = dimA
Jim N (o) (a),

/V|p|2d:c < oo forall pe A(a).

Corollary. The inequality
/|x|§1 u|?dz < C(a,d,!) / <a(m)Vlu, Vlu> dx

holds on all uw € C(RY), iff dim A(a) = 0.



Letv = vy —v_, v4+ > O, be some quadratic form defined
on CL(RY).

Theorem 2. Assume that v > 0O and that the topology
Induced by

2
all+ [ | Pdetol]

is compatible with the topology on Wéolc. Then

N(a) =00 forall a >0
or

N = Iim N < dimA .
Jim N(a) < dim A(a)

Theorem 3. Assume that the topology induced by

2
all+ [ JuPde+ o 1]+ o [

is compatible with the topology on Wéolc and that
N(a) < oo for some a > 0. Then

N = Iim N = — :
Jim (a) =ng +ng—ng0

where n_, ng, ny, ng o are defined as above for fu|/\(a).



Assume that

co(l+ |z])" <a(@) <e1(1+ 2", =zeR™
Put m = [l — d+7"}. Then

2
2l —d <r implies A(a) = {0},
2—-d<r<2l—d implies A(a) =4, ,
r<2-—d implies A(a) =241

A typical example is

1/d d d d
A =" - {V - (—V V- —) — —V —} .
(a)u=1u Vot 1 \dzx 1+ 1dw dx de

The functions V, V1, V5 are real, bounded and of compact
support.

Wehaver =0,d=1,1 =2, A(a) =271 and

| [ Vodzx [xVodx — i [ Vidx
YIn(a) [xVodx + i [Vide [x?Vodx + [Vodxz )



0 0
U@ ~ o [vade )
and 1 = 0, up = fVQdCU. We have no,0 = 1;

/ng:c <0 implies N =0,

/ngx >0 implies N =1.

Specialcase Vo = Vo =0, V7] # OI

. N 0 —1i [ Vidx
ANa) ™\ 4 [ Vida 0 !
and 1 = —‘ fVldx|, Ho = |fV1d:U|. We have no,0 = O;

/Vld:c =0 Implies N =1,

/Vld:c =0 Implies N =2.

Specialcase Vi =V, =0, Vg # OI

2u12 = /(1 + 2%)Vodz

s [{ [ = 2ot} + o { [ ovods)”

Moreover, ng o = 0 and N = 0, 1, 2 are possible.




4. Applications Il

Let W be a bounded non-trivial function of compact sup-
port. Let 3 be the maximal coupling, for which

A= -A—3W
does not have negative spectrum. Assume that 3 > O.
The problem (—A — BW )+ = 0 has a positive distribu-

tional solution (principal eigenvalue). Due to Harnack’s in-
equality ¢ + ¢~ 1 is locally bounded.

Let V be a bounded function of compact support. Set
Ala) =A—aV = -A - W —aV.
Due to the identity
a(a)u] = /|Vu|2d:c —ﬂ/W|u|2d:c — a/V|u|2d:U
= [w2IV )Pz — a [ VPuy ! Pda
= ay[n] — avylnl, n=uyp T



N(a) =trx_(—A — W — aV)
= tr xy_(=VIy?V — aVy?).
If V' £ 0 then [Pinchover]

/szd:c <0 implies lim N(a) =0,

o—

/V@bzd:c >0 implies Iim N(a) =1.

a——+0

5. Hardy type inequalities for magnetic operators

Let gp, g1 be continuous functions on R¢, d > 2,

0 < qgo(z) <qg1(x) < o0 for all z € R
Let a(x) be a d x d-matrix, such that

po(@)I < a(z) < p1(2), z€R<

Let A(z) = (A1(x),..., A (x)) be a real vector field,
A eL1oC(Rrd) if d> 3,
A ELIQ()_fE(]Rd) forsome e€>0 if d=2.

For u € C(RY) define

aplu] = / (a(x)(iV + A(x))u, iV + A(x))u) dx .



Assume that V (x) > 0. By Kato’s inequality
/V|u|2da; < C/<avu, V) de
for all uw € C&°(RY) implies
[ ViuPde <€ [ @GV + A, (G + Au) de

for all uw € C§°(R?) [Kato, Simon].

Magnetic fields induce Hardy’s inequality:

Theorem 4. Let V(x) > 0O be bounded and of compact
support. Assume that .4 cannot be removed by gauge
transformation, that means

(GV+A)p=0
does not have a non-trivial global solution ¢ € Wéolc. Then
/V|u|2dx <OV, A a,d) / (a(GV 4+ Au, GV 4+ A)u) dz
holds for all u € C°(RY).

Corollary. In the setting of Th. 4 the operator

GV + ADTa(z)(V + A) — aV

does not have negative spectrum for sufficiently small pos-
itive «.



Let W be a bounded non-trivial function of compact sup-
port. Let 5 be the maximal coupling, for which

A=A —BW

does not have negative spectrum. Assume that 3 > O.

The problem (—A — 8W)vy = 0 has a positive distribu-
tional solution (principal eigenvalue). Due to Harnack’s in-
equality ) + ¢~ 1 is locally bounded.

Then for u € C§°(R?) and non-trivial A it holds
/ (Y + A)u|2dz — ﬂ/W|u|2d:c
= [ 216V + A) (wp ™) Pd
> CTH VAR d) [ View T Pds

> c(V, A, W, d)/V|u|2dw .

A particular interesting case Is

2
/|$|<1 lu|“dx

2 u2
§C(d,A){/|(z‘V—I—A)u|2d:c (d— 2) /" }

|2

for u € CL(R?), d > 3, A non-trivial.



In the dimension d = 2 the classical Hardy inequality fails.
It can be replaced by

2d
/ 5 ul :c2 < C/|Vu|2dw,
|z]2(1 4 log~ |z|)
which holds on all functions

u € CSO(RQ), fiaj:l u(x)dr = 0.

Let A be a continuously differentiable real vector field on
R2, such that

B — 0Aq B 0A>
 Ozo  Oxq
IS integrable. Then
b= / Bda
2T

is the (regularized) magnetic flux through the plane R2.

Theorem 5. [with A. Laptev] Assume that & € Z. Then
the bound

ul?da | )
/1 e S C(A)/|(zV—|—A)u| da

holds for all uw € C§°(R?).



