Blatt 2

Übungsblatt zur Vorlesung Höhere Mathematik III

Aufgabe 1

1. (2P) Es seien $a_k \in \mathbb{R}$ und es sei R der Konvergenzradius der Potenzreihe $\sum_{k=0}^{\infty} a_k x^k$. Bestimmen Sie den Konvergenzradius der Potenzreihe

$$\sum_{k=n}^{\infty} k(k-1)\cdots(k-n+1) a_k x^k, \quad n \in \mathbb{N}.$$

Zeigen Sie, dass die Reihe

$$\sum_{k=0}^{\infty} a_k x^k$$

für |x| < R beliebig oft gliedweise differenzierbar ist.

2. (1P) Beweisen Sie die Identität

$$\sum_{k=2}^{\infty} k(k-1) \left(\frac{1}{2}\right)^{k-2} = 2^4.$$

Aufgabe 2

Die Funktion $f: \mathbb{R} \to \mathbb{C}$ sei definiert durch

$$f(x) = \sum_{k=-\infty}^{+\infty} a_k e^{ikx}, \quad a_k \in \mathbb{C}.$$

Beweisen Sie folgende Aussagen:

- 1. (2P) Falls $\sum_{k=-\infty}^{+\infty} |a_k|$ konvergiert, dann ist f auf $\mathbb R$ stetig.
- 2. (2P) Falls $\sum_{k=-\infty}^{+\infty} |k \, a_k|$ konvergiert, dann ist f auf $\mathbb R$ differenzierbar.

Aufgabe 3

(2P) Untersuchen Sie die Funktionenfolgen

a)
$$f_n(x) = \frac{x^2}{1 + n^2 x^2}$$
, b) $f_n(x) = \frac{n^2 x^2}{1 + n^2 x^2}$

auf gleichmäßige Konvergenz für $n \to \infty$ bezüglich $x \in [0,1]$. Berechnen Sie in beiden Fällen $\varphi(x) = \lim_{n \to \infty} f_n(x)$. Ist $\varphi(x)$ stetig auf [0,1]?

Aufgabe 4

(2P) Betrachten Sie die folgenden Doppelfolgen:

a)
$$a_{n,m} = \frac{1}{1+n^2+m^2}$$
, b) $a_{n,m} = \frac{1}{1+e^{n-m}}$.

Entscheiden Sie, ob

$$\lim_{n \to \infty} \lim_{m \to \infty} a_{n,m} = \lim_{m \to \infty} \lim_{n \to \infty} a_{n,m}$$

gilt und warum. Bestimmen Sie dazu den Grenzwert

$$\lim_{n\to\infty} a_{n,n} .$$