Übungsblatt zur Vorlesung Höhere Mathematik III

Aufgabe 1

- (2P) Berechnen Sie das Kurvenintegral über $F = \nabla f : \mathbb{R}^3 \to \mathbb{R}^3$, mit f(x, y, z) = xyz, entlang der nachfolgenden Wege:
 - (a) $\gamma(t) := (e^t \cos t, e^t \sin t, 3)$, $0 \le t \le 2\pi$.
- (b) $\gamma(t) := (\cos t, \sin t, t)$, $0 \le t \le \pi/4$.

Aufgabe 2

- (2P) Gegeben Sei $f(x, y, z) = xe^y \cos(\pi z)$.
 - (a) Berechnen Sie $F := \nabla f$.
 - (b) Berechnen Sie $\int_{\gamma} F \vec{ds}$, wenn $\gamma(t) := (3\cos^4 t, 5\sin^7 t, 0) \quad 0 \le t \le \pi$.
 - (c) Berechnen Sie $\int_{\gamma} F ds$, wenn $\gamma(t) := (3\cos^4 t, 5\sin^7 t, 0)$ $0 \le t \le \pi/2$.

Aufgabe 3

(3P) Gegeben sei das Vektorfeld $F(x,y,z)=(z^2-y\sin x,\cos x-2z,2xz-2y+z)$ im \mathbb{R}^3 . Überprüfen Sie, dass F ein Gradientenfeld ist und finden Sie eine stetig differenzierbare Funktion $\varphi:\mathbb{R}^3\to\mathbb{R}$, so dass

$$F = \nabla \varphi$$
.

Aufgabe 4

(2P) Die Vektorfelder V,W sowie das Skalarfeld Φ seien der Klasse C^2 . Beweisen Sie folgende Identitäten:

$$\begin{split} &\operatorname{rot} \left(\nabla \Phi \right) &= 0 \,, \\ &\operatorname{div} (V \times W) &= W \cdot \left(\operatorname{rot} V \right) - V \cdot \left(\operatorname{rot} W \right), \\ &\operatorname{rot} \left(\operatorname{rot} V \right) &= \operatorname{grad} \operatorname{div} V - \Delta V, \\ &\operatorname{div} \left(\operatorname{rot} V \right) &= 0 \,, \end{split}$$

wobei $\Delta V = (\Delta V_1, \Delta V_2, \Delta V_3)$.