

Aufgabe 1. Berechnen Sie die Fläche im \mathbb{R}^2 , die von den Kurven

(1)
$$\varphi_1(t) = (t \cosh \pi/2, t \sinh \pi/2)$$

(2)
$$\varphi_2(t) = (t \cosh -\pi/2, t \sinh -\pi/2)$$

(3)
$$\varphi_3(t) = (\cosh t, \sinh t)$$

berandet wird.

Aufgabe 2. Es sei D das durch die Ellipsen $x^2 + 9y^2 = 9$ und $x^2 + 9y^2 = 81$ sowie die Geraden y = x und y = 0 eingeschlossene Gebiet im ersten Quadranten der xy-Ebene.

- a) Finden Sie eine Transformation von D auf ein Rechteck.
- **b)** Berechnen Sie die Jacobi-Matrix $\frac{\partial(x,y)}{\partial(r,\varphi)}$ der Transformation.
- c) Berechnen Sie mit Hilfe von a) und b) die Fläche von D und das Integral

$$I = \iint\limits_{D} \frac{xy}{x^2 + 9y^2} \, dx \, dy \; .$$

Aufgabe 3. Berechnen Sie die Länge der Kardioide

$$r = a(1 + \cos \varphi), \ 0 \le \varphi \le 2\pi$$

Aufgabe 4. Gegeben ist das Vektorfeld

$$f: \mathbb{R}^+ \times \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}^3: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \alpha \frac{z}{x} \\ \frac{z}{y} \\ \ln(xy) \end{pmatrix}$$

mit $\alpha \in \mathbb{R}$.

Berechnen Sie jeweils für $\alpha=0$ und $\alpha=1$ das Kurvenintegral von f längs K, wobei K die Parametrisierung

$$C \colon [-1,1] \to K \colon t \mapsto \begin{pmatrix} e^{(t^2)} \\ 1 \\ \sin(\pi t) \end{pmatrix}$$

besitzt.