Arbeitsblatt II zur Vorlesung HM 3 WS 2006/07

Abgabe: 22.1.2007

Aufgabe 1

(4P)

1. Berechnen Sie folgende Integrale

$$\int_0^\infty \frac{1}{1+x^{10}} \, dx, \qquad \int_{-\infty}^\infty \frac{e^{ax}}{\cosh x} \, dx \quad (-1 < a < 1) \, .$$

2. Sei γ_N der Rand des Quadrates mit den Eckpunkten

$$\left(N + \frac{1}{2}\right)(1+i), \quad \left(N + \frac{1}{2}\right)(-1+i), \quad \left(N + \frac{1}{2}\right)(-1-i), \quad \left(N + \frac{1}{2}\right)(1-i).$$

Berechnen Sie das Integral

$$\int_{\gamma_N} f(z) dz, \quad \text{wobei} \quad f(z) = \pi z^{-2} \cot(\pi z). \tag{1}$$

Bestimmen Sie desweiteren den Grenzwert von (1) für $N \to \infty$ und zeigen Sie damit, dass

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \,.$$

Aufgabe 2

(6P) Gegeben sei eine Funktion f(t) auf $[0, \infty)$. Für gegebenes $p \in \mathbb{C}$ sei die Funktion $f(t)e^{-pt}$ integrierbar auf $[0, \infty)$). Dann definiert man die Laplace-Transformation der Funktion f im Punkt p als

$$\mathcal{L}(f)(p) = \int_0^\infty e^{-pt} f(t) dt.$$

1. Unter der Voraussetzung, dass alle entsprechende Laplace-Transformationen existieren, beweisen Sie folgende Identitäten:

$$\mathcal{L}(af(t) + bg(t)) = a\mathcal{L}(f(t)) + b\mathcal{L}(g(t)), \quad \mathcal{L}(f(t/a))(p) = a(\mathcal{L}f)(pa), \quad a > 0.$$

$$\mathcal{L}\left(e^{-at} f(t)\right)(p) = (\mathcal{L}f)(p+a), \quad a \in \mathbb{C}.$$

2. Es gelten folgende Bedingungen:

(i)
$$f, f', ..., f^{(n)}$$
 existieren.

(ii) $f^{(n)}$ ist stetig auf $[0, \infty)$.

(iii)
$$f^{(k)}(t) e^{-pt} \to 0$$
 für $t \to \infty$, $(k = 0, 1, ..., n - 1)$.

Dann gilt

$$\mathcal{L}(f^{(n)}(t))(p) = p^n(\mathcal{L}f)(p) - p^{n-1}f(0) - \dots - f^{(n-1)}(0), \quad n = 1, 2, \dots$$

3. Zeigen Sie, dass

$$\mathcal{L}(e^{-at})(p) = \frac{1}{p+a} \quad (\operatorname{Re} p > -\operatorname{Re} a), \quad \mathcal{L}(\cos \omega t)(p) = \frac{p}{p^2 + \omega^2} \quad (\operatorname{Re} p > |\operatorname{Im} \omega|),$$

$$\mathcal{L}(\sin \omega t)(p) = \frac{\omega}{p^2 + \omega^2} \quad (\operatorname{Re} p > |\operatorname{Im} \omega|).$$

4. Finden Sie die Funktionen f, g, h, deren Laplace-Transformationen durch

$$(\mathcal{L}f)(p) = \frac{p+1}{p^2(p-1)}, \quad (\mathcal{L}g)(p) = \frac{1}{p^2 + 6p + 25}, \quad (\mathcal{L}h)(p) = \frac{p}{(p^2 + \omega^2)^2}, \quad (\omega > 0)$$

gegeben sind.

Aufgabe 3

(4P) Gegeben seien zwei Kreise $K_1 = \{z : |z+2| = 2\}$ und $K_2 = \{z : |z-2| = 1\}$. Sei $U_1 = 1000V$ die Spanung auf dem Kreis K_1 und $U_2 = 0V$ die Spanung auf dem Kreis K_2 . Bestimmen Sie die Spanung in der ganzen z-Ebene.

Hinweis: Mit Hilfe geeigneter konformen Abbildung finden Sie eine Lösung der Gleichung

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

mit den Randbedingungen

$$u(z) = 1000 \quad \forall z \in K_1, \qquad u(z) = 0 \quad \forall z \in K_2.$$

Aufgabe 4

(3P) Gegeben sei die Spannung $U_+ = 10V$ auf dem Hablkreis $B_+ = \{z \in \mathbb{C} : |z| = 1, \text{Im} z \geq 0\}$ sowie die Spannung $U_- = 0V$ auf dem Hablkreis $B_- = \{z \in \mathbb{C} : |z| = 1, \text{Im} z < 0\}$. Verwenden Sie geeignete konforme Abbildungen und berechnen Sie die Spannung im Inneren des Kreises $B = B_+ \cup B_-$. Skizzieren Sie die entsprechenden Feldlinien.