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The statistics of random permutations, such as the cycle structure of a random permutation are of fundamen-tal importance in the analysis of algorithms, especially of sorting algorithms, which operate on random permutations.Suppose, for example, that we are using quickselect (a cousin of quicksort) to select a random element of a randompermutation. Quickselect will perform a partial sort on the array, as it partitions the array according to the pivot.Hence a permutation will be less disordered after quickselect has been performed. The amount of disorder thatremains may be analysed with generating functions. These generating functions depend in a fundamental way on thegenerating functions of random permutation statistics. Hence it is of vital importance to compute these generatingfunctions.The article on random permutations contains an introduction to random permutations.
1 The fundamental relation
Permutations are sets of labelled cycles. Using the labelled case of the fundamental theorem of combinatorialenumeration and writing P for the set of permutations and Z for the singleton set, we have

P(C(Z)) = P:Translating into exponential generating functions, we have
exp log 11� z = 11� zwhere we have used the fact that the EGF of the set of permutations (there are n! permutations of n elements) isX
n�0

n!n!zn = 11� z :
This one equation will allow us to derive a surprising number of permutation statistics. Firstly, by droppingterms from P, i.e. exp, we may constrain the number of cycles that a permutation contains, e.g. by restrictingthe EGF to P2 we obtain permutations containing two cycles. Secondly, note that the EGF of labelled cycles, i.e.of C(Z), is

log 11� z =X
k�1

zkk
because there are k!=k labelled cycles.This means that by dropping terms from this generating function, we may constrain the size of the cycles thatoccur in a permutation and obtain an EGF of the permutations containing only cycles of a given size. If there is asecondary parameter b(k) (possibly cumulative) that depends only on the size k of the cycle and which obeys

b(�) =X
c2�

b(c)
i.e. the value of b(�) for a permutation � is the sum of its values on the cycles, then we may mark cycles of lengthk with ub(k) and obtain a bivariate generating function g(z; u) that describes the parameter, i.e.
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g(z; u) = 1 +X
n�1

 X
�2Sn

ub(�)! znn! = expX
k�1

ub(k) zkkThis is a mixed generating function which is exponential in the permutation size and ordinary in the secondaryparameter u. Di�erentiating and evaluating at u = 1, we have
@@ug(z; u)

�����
u=1

= 11� zXk�1
b(k)zkk =X

n�1

 X
�2Sn

b(�)! znn!
i.e. the EGF of the sum of b over all permutations, or alternatively, the OGF, or more precisely, PGF (probabilitygenerating function) of the expectation of b.

2 Number of permutations that are involutions
An involution is a permutation � so that �2 = 1 under permutation composition. It follows that � may only containcycles of length one or two, i.e. the EGF g(z) of these permutations is

g(z) = exp�z + 12z2
� :

This gives the explicit formula for the total number I(n) of involutions among the permutations � 2 Sn:
I(n) = n![zn]g(z) = n! X

a+2b=n

1a! 2b b! = n! bn=2cX
b=0

1(n� 2b)! 2b b! :Dividing by n! yields the probability that a random permutation is an involution.
3 Number of permutations that are mth roots of unity
This generalizes the concept of an involution. An mth root of unity is a permutation � so that �m = 1 underpermutation composition. Now every time we apply � we move one step in parallel along all of its cycles. A cycleof length d applied d times produces the identity permutation on d elements (d �xed points) and d is the smallestvalue to do so. Hence m must be a multiple of all cycle sizes d, i.e. the only possible cycles are those whose length dis a divisor of m. It follows that the EGF g(z) of these permutations is

g(z) = exp
0@X

djm

zdd
1A :

When m = p, where p is prime, this simpli�es to
n![zn]g(z) = n! X

a+pb=n

1a! pb b! = n! bn=pcX
b=0

1(n� pb)! pb b! :
4 Number of permutations that are derangements
Suppose there are n people at a party, each of whom brought an umbrella. At the end of the party everyone picksan umbrella out of the stack of umbrellas and leaves. What is the probability that no one left with his/her ownumbrella? This problem is equivalent to counting permutations with no �xed points, and hence the EGF (subtractout �xed points by removing z) g(z) is

exp
0@�z +X

k�1

zkk
1A = e�z1� z :
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Now multiplication by 1=(1� z) just sums coe�cients, so that we have the following formula for D(n), the totalnumber of derangements:
D(n) = n! nX

k=0

(�1)kk! � n!e :
Hence there are about n!=e derangements and the probability that a random permutation is a derangement is1=e:This result may also be proved by inclusion-exclusion. Using the sets Ap where 1 � p � n to denote the set ofpermutations that �x p, we have�����[p Ap

����� =Xp jApj � X
p<q

jAp \Aqj + X
p<q<r

jAp \Aq \Arj � � � � � jAp \ � � � \Asj :
This formula counts the number of permutations that have at least one �xed point. The cardinalities are asfollows: jApj = (n� 1)! ; jAp \Aqj = (n� 2)! ; jAp \Aq \Arj = (n� 3)! ; : : :Hence the number of permutations with no �xed point is

n! � �n1
�(n� 1)! + �n2

�(n� 2)! � �n3
�(n� 3)! + � � � � �nn

�(n� n)!
or n!�1� 11! + 12! � 13! + � � � � 1n!

� = n! nX
k=0

(�1)kk!
and we have the claim.There is a generalization of these numbers, which is known as rencontres numbers, i.e. the number D(n;m) ofpermutations of n containing m �xed points. The corresponding EGF is obtained by marking cycles of size one withthe variable u, i.e. choosing b(k) equal to one for k = 1 and zero otherwise, which yields the generating functiong(z; u) of the set of permutations by the number of �xed points:

g(z; u) = exp
0@�z + uz +X

k�1

zkk
1A = e�z1� z euz:

It follows that
[um]g(z; u) = e�z1� z zmm!and hence

D(n;m) = n![zn][um]g(z; u) = n!m! [zn�m] e�z1� z = n!m! n�mXk=0

(�1)kk! :
This immediately implies that

D(n;m) = �nm
�D(n�m; 0) and D(n;m)n! � e�1m!for n large, m �xed.
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5 Number of permutations containing m cycles
Applying the fundamental theorem of combinatorial enumeration, i.e. the labelled enumeration theorem with G =Sm, to the set

Pm(C(Z))we obtain the generating function
gm(z) = 1jSmj

�log 11� z
�m = 1m!

�log 11� z
�m :

The term
(�1)n+mn! [zn]gm(z) = �nm

�
yields the Stirling numbers of the �rst kind, i.e. gm(z) is the EGF of the unsigned Stirling numbers of the �rstkind.We can compute the OGF of these numbers for n �xed, i.e.

sn(w) = nX
m=0

�nm
�wm:

Start with gm(z) = X
n�m

(�1)n+mn!
�nm
� zn

which yields
(�1)mgm(z)wm = X

n�m

(�1)nn!
�nm
�wmzn:

Summing this, we obtain
X
m�0

(�1)mgm(z)wm = X
m�0

X
n�m

(�1)nn!
�nm
�wmzn =X

n�0

(�1)nn! zn nX
m=0

�nm
�wm:

Using the formula for gm(z) on the left, the de�nition of sn(w) on the right, and the binomial theorem, we obtain
(1� z)w =X

n�0

�wn
�(�1)nzn =X

n�0

(�1)nn! sn(w)zn:
Comparing the coe�cients of zn, and using the de�nition of the binomial coe�cient, we �nally have

sn(w) = w (w � 1) (w � 2) � � � (w � (n� 1)) = (w)n;a falling factorial.
6 Expected number of cycles of a given size m
In this problem we use a bivariate generating function g(z; u) as described in the introduction. The value of b for acycle not of size m is zero, and one for a cycle of size m. We have

@@ug(z; u)
�����
u=1

= 11� zXk�1
b(k)zkk = 11� z zmmor
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1mzm + 1mzm+1 + 1mzm+2 + � � �
This means that the expected number of cycles of size m in a permutation of length n less than m is zero(obviously). A random permutation of length at least m contains on average 1=m cycles of length m. In particular,a random permutation contains about one �xed point.The OGF of the expected number of cycles of length less than or equal to m is therefore

11� z
mX
k=1

zkk and [zn] 11� z
mX
k=1

zkk = Hm for n � m
where Hm is the mth harmonic number. Hence the expected number of cycles of length at most m in a randompermutation is about logm:

7 Moments of �xed points
The mixed GF g(z; u) of the set of permutations by the number of �xed points is

g(z; u) = exp��z + uz + log 11� z
� = 11� z exp(�z + uz):

Let the random variable X be the number of �xed points of a random permutation. Using Stirling numbers ofthe second kind, we have the following formula for the mth moment of X:
E(Xm) = E mX

k=0

�mk
� (X)k! = mX

k=0

�mk
�E((X)k);

where (X)k is a falling factorial. Using g(z; u), we have
E((X)k) = [zn]� ddu

�k g(z; u)�����
u=1

= [zn] zk1� z exp(�z + uz)�����
u=1

= [zn] zk1� z ;
which is zero when k > n, and one otherwise. Hence only terms with k <= n contribute to the sum. This yields

E(Xm) = nX
k=0

�mk
� :

8 Expected number of cycles of any length of a random permutation
We construct the bivariate generating function g(z; u) using b(k), where b(k) is one for all cycles (every cyclecontributes one to the total number of cycles).Note that g(z; u) has the closed form g(z; u) = � 11� z

�u
and generates the unsigned Stirling numbers of the �rst kind.We have

@@ug(z; u)
�����
u=1

= 11� zXk�1
b(k)zkk = 11� zXk�1

zkk = 11� z log 11� z :
Hence the expected number of cycles is Hn, or about logn: The average length of a cycle is thus n

logn .
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9 Expected number of transpositions of a random permutation
We can use the disjoint cycle decomposition of a permutation to factorize it as a product of transpositions by replacinga cycle of length k by k � 1 transpositions. E.g. the cycle (1 2 34) factors as (1 2) (2 3) (3 4). The function b(k) forcycles is equal to k � 1 and we obtain

g(z; u) = � 11� uz
�1=u

and
@@ug(z; u)

�����
u=1

= 11� zXk�1
(k � 1)zkk = z(1� z)2 � 11� z log 11� z :

Hence the expected number of transpositions T (n) is
T (n) = n� log n:We could also have obtained this formula by noting that the number of transpositions is obtained by adding thelengths of all cycles (which gives n) and subtracting one for every cycle (which gives log n by the previous section).Note that g(z; u) again generates the unsigned Stirling numbers of the �rst kind, but in reverse order. Moreprecisely, we have

(�1)mn! [zn][um]g(z; u) = � nn�m
�

To see this, note that the above is equivalent to
(�1)n+mn! [zn][um]g(z; u)ju=1=ujz=uz = �nm

�
and that

[um]g(z; u)ju=1=ujz=uz = [um]� 11� z
�u = 1m!

�log 11� z
�m ;

which we saw to be the EGF of the unsigned Stirling numbers of the �rst kind in the section on permutationsconsisting of precisely m cycles.
10 Expected cycle size of a random element
We select a random element q of a random permutation � and ask about the expected size of the cycle that containsq. Here the function b(k) is equal to k2, because a cycle of length k contributes k elements that are on cycles of lengthk. Note that unlike the previous computations, we need to average out this parameter after we extract it from thegenerating function (divide by n). We have

@@ug(z; u)
�����
u=1

= 11� zXk�1
k2 zkk = 11� z z(1� z)2 = z(1� z)3 :

Hence the expected length of the cycle that contains q is1n [zn] z(1� z)3 = 1n 12n(n+ 1) = 12(n+ 1):
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11 Probability that a random element lies on a cycle of size m
This average parameter represents the probability that if we again select a random element of n of a randompermutation, the element lies on a cycle of size m. The function b(k) is equal to m for m = k and zero otherwise,because only cycles of length m contribute, namely m elements that lie on a cycle of length m. We have

@@ug(z; u)
�����
u=1

= 11� zXk�1
b(k)zkk = 11� z m zmm = zm1� z :

It follows that the probability that a random element lies on a cycle of length m is
1n [zn] zm1� z = ( 1

n ; if n � m0; otherwise.
12 Probability that a random subset of n lies on the same cycle
Select a random subset Q of n containing m elements and a random permutation, and ask about the probabilitythat all elements of Q lie on the same cycle. This is another average parameter. The function b(k) is equal to � km�,because a cycle of length k contributes � km� subsets of size m, where � km� = 0 for k < m: This yields

@@ug(z; u)
�����
u=1

= 11� z Xk�m
� km

�zkk = 11� z 1m zm(1� z)m = 1m zm(1� z)m+1 :
Averaging out we obtain that the probability of the elements of Q being on the same cycle is�nm

��1[zn] 1m zm(1� z)m+1 = �nm
��1 1m [zn�m] 1(1� z)m+1or

1m
�nm

��1�(n�m) + mm
� = 1m:

In particular, the probability that two elements p < q are on the same cycle is 1=2:
13 Number of permutations containing an even number of even cycles
We may use the Fundamental Theorem of Combinatorial Enumeration directly and compute more advanced permu-tation statistics. (Check that page for an explanation of how the operators we will use are computed.) For example,the set of permutations containing an even number of even cycles is given by

P(Codd(Z))Peven(Ceven(Z)):Translating to EGFs, we obtain
exp�12 log 1 + z1� z

� cosh�12 log 11� z2
�

or
12 exp

�12
�log 1 + z1� z + log 11� z2

��+ 12 exp
�12

�log 1 + z1� z � log 11� z2
�� :

This simpli�es to
12 exp

�12 log 1(1� z)2
�+ 12 exp

�12 log(1 + z)2�
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or
12 11� z + 12(1 + z) = 1 + z + 12 z21� z :This says that there is one permutation of size zero containing an even number of even cycles (the emptypermutation, which contains zero cycles of even length), one such permutation of size one (the �xed point, whichalso contains zero cycles of even length), and that for n � 2, there are n!=2 such permutations.

14 Permutations that are squares
Consider what happens when we square a permutation. Fixed points are mapped to �xed points. Odd cycles aremapped to odd cycles in a one-to-one correspondence, e.g (1 8 9 11 13) turns into (1 9 13 8 11). Even cycles split intwo and produce a pair of cycles of half the size of the original cycle, e.g. (5 13 6 9) turns into (5 6) (9 13). Hencepermutations that are squares may contain any number of odd cycles, and an even number of cycles of size two, aneven number of cycles of size four etc., and are given by

P(Codd(Z))Peven(C2(Z))Peven(C4(Z))Peven(C6(Z)) � � �which yields the EGF
exp�12 log 1 + z1� z

� Y
m�1

cosh z2m2m =r1 + z1� z Ym�1
cosh z2m2m :

15 Odd cycle invariants
The types of permutations presented in the preceding two sections, i.e. permutations containing an even number ofeven cycles and permutations that are squares, are examples of so-called odd cycle invariants, studied by Sungand Zhang (see external links). The term odd cycle invariant simply means that membership in the respectivecombinatorial class is independent of the size and number of odd cycles occurring in the permutation. In fact wecan prove that all odd cycle invariants obey a simple recurrence, which we will derive. First, here are some moreexamples of odd cycle invariants.
15.1 Permutations where the sum of the lengths of the even cycles is sixThis class has the speci�cation

P(Codd(Z)) (P3(C2(Z)) + C2(Z)C4(Z) + C6(Z))and the generating function r1 + z1� z
 16

�z22
�3 + z22 z44 + z66

! = 516z6
r1 + z1� z :The �rst few values are

0; 0; 0; 0; 0; 225; 1575; 6300; 56700; 425250; 4677750; 46777500; 608107500; : : :
15.2 Permutations where all even cycles have the same lengthThis class has the speci�cation

P(Codd(Z)) (P�1(C2(Z)) +P�1(C4(Z)) +P�1(C6(Z)) + � � � )
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and the generating functionr1 + z1� z
�exp�z22

�� 1 + exp�z44
�� 1 + exp�z66

�� 1 + � � �� :
There is a sematic nuance here. We could consider permutations containing no even cycles as belonging to thisclass, since zero is even. The �rst few values are

0; 1; 3; 15; 75; 405; 2835; 22155; 199395; 1828575; : : :
15.3 Permutations where the maximum length of an even cycle is fourThis class has the speci�cation

P(Codd(Z))P(C2(Z) + C4(Z))and the generating function r1 + z1� z exp
�z22 + z44

� :
The �rst few values are

1; 2; 6; 24; 120; 600; 4200; 28560; 257040; 2207520; 24282720; 258128640; : : :
15.4 The recurrenceObserve carefully how the speci�cations of the even cycle component are constructed. It is best to think of themin terms of parse trees. These trees have three levels. The nodes at the lowest level represent sums of productsof even-length cycles of the singleton Z. The nodes at the middle level represent restrictions of the set operator.Finally the node at the top level sums products of contributions from the middle level. Note that restrictions of theset operator, when applied to a generating function that is even, will preserve this feature, i.e. produce another evengenerating function. But all the inputs to the set operators are even since they arise from even-length cycles. Theresult is that all generating functions involved have the form

g(z) = h(z)r1 + z1� z ;where h(z) is an even function. This means that11 + z g(z) = h(z) 1p1� z2is even, too, and hence 11 + z g(z) = 11� z g(�z) or (1� z) g(z) = (1 + z) g(�z):
Letting gn = [zn]g(z) and extracting coe�cients, we �nd thatg2m+1(2m+ 1)! � g2m(2m)! = � g2m+1(2m+ 1)! + g2m(2m)! or 2 g2m+1(2m+ 1)! = 2 g2m(2m)!which yields the recurrence

g2m+1 = (2m+ 1)g2m :
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16 A problem from the 2005 Putnam competition
There is a link to the Putnam website in the section External links. The problem asks for a proof thatX

�2Sn

�(�)�(�) + 1 = (�1)n+1 nn+ 1 ;
where the sum is over all n! permutations of n, �(�) is the sign of �, i.e. �(�) = 1 if � is even and �(�) = �1 if� is odd, and �(�) is the number of �xed points of �.Now the sign of � is given by �(�) =Y

c2�
(�1)jcj�1

, where the product is over all cycles c of �, as explained e.g. on the page on even and odd permutations.Hence we consider the combinatorial class
P(�Z + VZ + C1(Z) + UC2(Z) + U2C3(Z) + U3C4(Z) + � � � )

where U marks one minus the length of a contributing cycle, and V marks �xed points. Translating to generatingfunctions, we obtain
g(z; u; v) = exp

0@�z + vz +X
k�1

uk�1 zkk
1A

or
exp��z + vz + 1u log 11� uz

� = exp(�z + vz)� 11� uz
�1=u :

Now we have
n![zn]g(z;�1; v) = n![zn] exp(�z + vz)(1 + z) = X

�2Sn
�(�)v�(�)

and hence the desired quantity is given by
n![zn] Z 1

0
g(z;�1; v)dv = X

�2Sn

�(�)�(�) + 1 :
Doing the computation, we obtainZ 1

0
g(z;�1; v)dv = exp(�z)(1 + z)�1z exp(z)� 1z

�
or �1z + 1� (1� exp(�z)) = 1z + 1� exp(�z)� 1z exp(�z):Extracting coe�cients, we �nd that the coe�cient of 1=z is zero. The constant is one, which does not agree withthe formula (should be zero). For n positive, however, we obtain

n![zn]�� exp(�z)� 1z exp(�z)
� = n!��(�1)n 1n! � (�1)n+1 1(n+ 1)!

�
or

(�1)n+1
�1� 1n+ 1

� = (�1)n+1 nn+ 1 ;which is the desired result.
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As an interesting aside, we observe that g(z; u; v) may be used to evaluate the following determinant of an n� nmatrix:
d(n) = det(An) =

�����������

a b b � � � bb a b � � � bb b a � � � b... ... ... . . . ...b b b � � � a

�����������
:

where a; b 6= 0. Recall the formula for the determinant:
det(A) = X

�2Sn
�(�) nY

i=1
Ai;�(i):

Now the value of the product on the right for a permutation � is afbn�f , where f is the number of �xed pointsof �. Hence d(n) = bnn![zn]g �z;�1; ab� = bnn![zn] exp�a� bb z� (1 + z)
which yields

bn�a� bb
�n + bnn�a� bb

�n�1 = (a� b)n + nb(a� b)n�1

and �nally
d(n) = (a+ (n� 1)b)(a� b)n�1 :

17 Expected number of inversions
This parameter is not computed from the cycle structure of the permutation � 2 Sn: An inversion is a pair (p; q)where p < q and �(p) > �(q) , i.e. the elements at positions p and q are not in order.Now n will not contribute any inversions, because it is the largest element; n � 1 may contribute one or zeroinversions (with n); n� 2 may contribute two, one, or zero inversions (with n or n� 1), etc. so that the OGF g(z)ofthe set of permutations by inversions is

g(z) = 1 (1 + z) (1 + z + z2) � � � (1 + z + z2 + � � �+ zn�1):We use this to compute the expected number I(n) of inversions of a random permutation:
I(n) = 1n!

� ddz g(z)
� �����

z=1or
I(n) = 1n!

 n�1Y
k=0

(1 + z + z2 + � � �+ zk) n�1X
k=1

1 + 2z + 3z2 + � � �+ kzk�11 + z + z2 + � � �+ zk
!�����

z=1which yields
I(n) = 1n! n! n�1X

k=1

1=2k(k + 1)k + 1 = 12 n�1X
k=1

k = 14(n� 1)n:
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18 External links
� Alois Panholzer, Helmut Prodinger, Marko Riedel,http://www.geocities.com/markoriedelde/papers/qsdis-jalc.pdf Measuring post-quickselect disorder.
� Putnam Competition Archive,http://www.unl.edu/amc/a-activities/a7-problems/putnam/ William Lowell Putnam Competition Archive
� Philip Sung, Yan Zhang,http://www.tjhsst.edu/~yzhang/techlab/proj4/squareperms.pdf Recurring Recurrences in Counting Permutations
Category:Combinatorics
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