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2.4.1 Analytic continuation, Laurent series and classification of singularities

The use of Laurent expansions and residues is central to this thesis. The Laurent expansion of a function
f generalizes the concept of a Taylor expansion. Unlike Taylor expansions, Laurent expansions apply not
only to points where f is analytic, but also to points where 1t fails to be analytic, i.e. to singularities.
In order to discuss the Laurent expansion, we must first define the terms analytic continuation, and
singularity. These are important in their own right; the reader will recall from the introduction that the
evaluation of harmonic sums by the Mellin transform requires that we obtain an analytic continuation

of the Dirichlet series in the amplitudes to the left or right of its fundamental strip.

Definition 2.4.3 An analytic function element (f, D) is an analytic function f(z) along with its
domain of definition D. A function element (f2, D2) is a direct analytic continuation of another
element (fi1,D1) if D = DoNDy # 0 and fi = fo in D. A complete analytic function is the collection
of all possible analytic function elements (f, D) starting with a given element (fo, Do) such that a chain
of direct continuations exists between (f, D) and (fo, Do). A singularity of a complete analytic function

ts a limit point of a domain of one or more elements that is not itself in the domain of any element.

Note that a complete analytic function may be multi-valued; the standard example is the complex
logarithm. We will briefly discuss this example, because it demonstrates one of the most common
techniques for analytic continuation used in actual applications. This technique is analytic continuation
by power series along curves; the domains D of the function elements are disks. Suppose f(z) is analytic
in a neighborhood U of zy, and we wish to obtain its analytic continuation to a point z; not in U. Let
~ be a curve that joins zg to z1. If we can expand f into a power series of radius p that such that
{z | |z — 20| < p} includes more of v than U, this series defines an analytic continuation of f along ~.
We can repeat this process with the goal of eventually reaching z1. We will reach z; if the successive
radii of convergence do not shrink to zero. There are theorems to decide when the resulting function
will be single valued; if we continue a function f around a simple closed curve, we cannot return to
the starting point with a different value unless there is a singularity of f inside the curve; alternatively,
continuation along two different curves with the same start and end points leads to the same value of f

at the end point, unless there is a singularity of f between the two curves.

Example. We study the complex logarithm. We will construct an instance where analytic continuation

around a singularity results in a different value on return to the starting point. The initial function
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element (fo, Do) has fo(z) = logz and Dy = {z | |z —1| < 1}, where fo(z) is the branch of the
logarithm defined by

: . e =1 <1,

f: (=D (= = 1)
k=0
i.e. with logl = 0. One way to continue fo(z) along v = {z | |z| = 1}, the interior of which includes
z = 0, is via the following nine function elements (here 0 < m < 8).
_ emin/4)k+1

Nk 5 .
fm(Z):m_+Z( D7 ' , D, ={z| |z—em”/4|<1}.

femim/4

The function element (f,,, Dy,) is obtained from (f,,—1, Dyp—1) by noting that the center z,, of the
disk Dy, lies inside D,,_1. Hence we can compute the Taylor expansion of f;,,_1 at z, in terms of the
expansion at zp,—1. This new expansion has radius of convergence p = 1 and defines the next function
element in the analytic continuation of (fm—1, Dm-1).

The function elements (fo, Do) and (fs, Ds) clearly cover the same domain {z | |z — 1] < 1}, but their
values at the points of this domain differ by 2xz. It is natural to ask whether there exists a paradigm to
describe this behavior. This thesis is not concerned with multivalued analytic continuation. Nonetheless
we remark in passing that such a paradigm does exist. It rests on a striking idea by Riemann, the
so-called Riemann surface of the complete analytic function f. We construct this surface so that f is
single-valued on it. We envision it as situated “over” the complex plane C. In fact it is embedded in C2,
i.e. a four-dimensional space, but there are cases when we can use the single dimension z (“height”) of
three-space to capture useful information about the shape of the surface in C2. The function elements
(f, D) of the complete analytic function f are situated “over” D. They are patches of the surface. If
two function elements are direct continuations of one another, their respective domains overlap; the
corresponding patches on the surface overlap also. If two function elements have the same domain, but
give different values for f, the corresponding two patches do not overlap. If the difference in values is
one-dimensional, we can indicate it by situating the two patches at different heights over C. If the image
f(z) of a point z € C has cardinality n = |f(z)| > 1, we map z to n different points on the Riemann
surface, one for each value in the image set. These points are said to lie on different sheets of the surface.
The sheets of the Riemann surface are copies of C connected such that we can continuously pass from
one sheet to another along suitably chosen curves and in this way obtain all the values of the complete

analytic function f(z).
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Riemann surface of log z; 5 sheets of the surface are shown.

The Riemann surface of logz is a surface that can be visualized in three-space. This is because the
difference between the values “above” a specific z is an imaginary constant (277), and can therefore be

mapped to the single three-space dimension “height”.

Theorem 2.4.2 Laurent expansion. Let ri,79 € R, 71 > 0, 79 > 0 and zq € C. Define the annulus
A={2€C | ry <|z— 2| < rs}. The combinations ri = 0 (deleted neighborhood) or ro = co (open
complement of a disk relative to C) or both (C\ 0) are permitted. Let f be analytic on A. There exist

b, € C such that we may write

o

Fz)= D balz —2)"

n=-—0oo

and this series converges absolutely on A and uniformly on any closed annulus B C A of the form
By, ={2€C | p1 < |z—z0| < p2} where 11 < p1 < ps < 1. Forvy any circle {zo+re’® | 0 <0 < 27}

around zo with radius r and r1 < r < r9 the coefficients are given by

L B {9
P = 0w | E gy

This expansion is the Laurent expansion of f around zq in A and it is unique.

A singularity of f(z) in a region A can be classified according to the Laurent expansion about the
singularity. We are concerned particularly with expansions in deleted neighborhoods, i.e. in annuli with

1“1:0.
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Definition 2.4.4 Classification of singularities. Let f be analytic in a region A that contains a deleted
neighborhood N.(z0)\{z0}, and let f fail to be analytic at zo. We say that zo is an isolated singularity.

Let {b,} be the coefficients of the Laurent expansion of f in the annulus N.(z) \ {z0}.

e Principal part. The expansion

i bo(z — z0)"

n=—0oo

1s the principal part of [ at zg.

e Pole. An isolated singularity is a pole if the principal part has only a finite number of non-zero

coefficients.

e Pole of order k. The point zg is a pole of order k if the principal part has the form

i bn(z — z0)™.

n=—k

e Simple pole. A simple pole is a pole of order 1.

¢ Essential singularity. If the number of zero coefficients in the principal part is finite, zq is an

essential singularity.
e Residue. The coefficient b_1 is the residue of f at zo. We write b_1 = Res (f(z);2 = z0).

¢ Removable singularity. The point zq is a removable singularity if all the coefficients of the

principal part are zero.

e Meromorphic functions. A function is meromorphic in a region A if it is analytic in A with

the exception of poles. A function f is meromorphic if it is meromorphic in C.
We use Sing (f(z)) to denote the set of finite singularities of f.

It is important that we be able to compute the residues of a function f at its isolated singularities;
e.g., the Mellin-Perron formula produces an integral that can be evaluated or estimated with the residue

theorem.

Lemma 2.4.3 Computation of residues. Let f have an isolated singularity at zo and let k € N be the
smallest integer such that limg_, (2 — 20)* f(2) ewists. Then f(z) has a pole of order k at zq and if we

let ¢(z) = (z — z0)" f(2), then ¢ can be defined uniquely at zq so that ¢ is analytic at zq and

¢(k—1)(20)

Res (f(z);2 = 20) = (k— 1)1
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2.5 The Cauchy residue theorem

Definition 2.5.1 Let v be a closed curve in C and zg be a point not on vy. Then the index or winding

number of v with respect to zg is defined by

1 dz
I = — .
(7, 20) 2mi /W z — 2

The curve v winds around zg I(7, zg) times.

Theorem 2.5.1 (Cauchy residue theorem.) Let A be a region and let z1, 25 ...z, be distinct points in
A. Let f be analytic on A\ {z1,2z9...2,}. Let v be a closed curve in A homotopic to, i.e. smoothly

shrinkable to, a point in A. Assume none of z1,z9 ...z, lie on . We have

ﬁlf(z)dz = ;Res (f(2);2 = 2:) I(v, ).

We will usually apply this theorem with (7, z;) = 1.

2.6 Dirichlet series

The sequences considered in this section are of the form {ay, },>1, a, € C; i.e. {a,}n>1 is an arithmetical

function.

Definition 2.6.1 (Dirichlet Series.) The Dirichlet series associated to {a,}n>1, an, € C is

a
A(s) = -,
(=3 2
n=1
The function A(s) is known as the Dirichlet generating function of {ay},>1. The generalized Dirichlet
series (A, A), with A as in Definition 2.0.3 and A = {a,},>1 is given by

E ane~*rs.

n=1

We will be concerned mostly with the first kind.

Theorem 2.6.1 (Abscissae of convergence.) If 3 |ann™*| does not converge for all s or diverge for
all s, then there exists o, € R such that A(s) = Y a,n™° converges absolutely if o > o, but does not
converge absolutely if o < 0,; 0, is the abscissa of absolute convergence of A(s).

If A(s)Y  ann~* does not converge everywhere or diverge everywhere, then there erists . € R such

that A(s) converges if o > o, but does not converge if ¢ < o.; 0. is the abscissa of convergence of A(s).
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The following remarkable theorem is due to S. Mandelbrojt.

Theorem 2.6.2 Let A be of positive step h; let D be its upper density. Let f(s) = (A, A) with o, finite.
For a > 0, B > 0 there erists a continuous function A(a, §) with A(a,0) = 0 such that for all ts € R
f(s) has a singular point in the rectangle {oc + it | 0, — A(h,D) < 0 < 04,|t —to| < 7D}. One such
function A(a, f) is

T3 — (3log(aB) — L) 3 when 3> 0

0 when = 0.

Ale, B) =

Example. For the Dirichlet series " 27%% ¢, = 0, h = log2 and with D = 1/log2 the height of the
rectangle, vertically centered at tq, becomes 27/ log2. Indeed f(s) = —1+ 2°/(2° — 1) is meromorphic
in all of C with poles at 2mik/log2, k € 7.

Theorem 2.6.2 has the following immediate corollary.

Corollary 2.6.1 (Theorem of Fabry-Pélya.) If h > 0, D = 0 and o, is finite, then every point on the

abscissa of absolute convergence is a singular point of f; i.e. o4 is a natural boundary of f.

Example. The Dirichlet series A(s) = > 1/(k + 1)!* has D = 0 and h = 400, hence the line c = 0 is a

natural boundary of f(s), and f(s) has no analytic continuation into the left half-plane.

The following theorem lists analytic properties of Dirichlet series.

Theorem 2.6.3 The Dirichlet series
[£79)
A & = —_—
(=32
n=1

is analytic in its half-plane of convergence o > o.. Its derivative A'(s) is represented in this half-plane

by the series

a, logn
Als) =" .
n=1 )

A’(s) has the same abscissa of convergence o, and abscissa of absolute convergence o, as A(s).
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2.6.1 The Riemann and Hurwitz ¢ functions

Definition 2.6.2 The Hurwitz zeta function is given by
()= Y
J n=0 (n + a)s .

The Riemann zeta function is the function

1
((s) =Cs, 1) =) —
Both series define analytic functions for o > 1.

The Riemann ¢ function is probably the most famous of all Dirichlet series. This is because it can be
used to study the distribution of primes. The relation between the Riemann ¢ function and the sequence
of primes will be explained in the next section. The following theorems list various properties of the {

function.

Theorem 2.6.4 The equality

Gt = gy [ et

where w(z) =5 e=™"T  holds for o > 1.

The term

1 o0
s/2—1 | —s/2—-1/2
s(s—])+/0 (:13 +z )w(m)dm

is meromorphic and provides the analytic continuation of {(s) to all of C.

Theorem 2.6.5 The Riemann ( function is meromorphic with a single pole at s = 1. This pole 1s

simple and Res (((s); s = 1) = 1. Riemann’s functional equation holds:

We list some special values of ((s, a).

Theorem 2.6.6 We have
1 ) 1
€(0,a) = 5~ a and ('(0,a) =logT(a) — 3 log(2)

where T'(a) is the Fuler gamma function.
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The Bernoulli polynomials, defined below, are used to compute the values of ((—m, a) where m € N.

Definition 2.6.3 The set of Bernoulli polynomials {B, (z)} is defined by the following relation.

ZEJ}Z 00 Zﬂr

= E B,(z)—.

e? —1 n( )n'
n=0

The first four Bernoulli polynomials are
1 :
Bo(x) =1, Bi(z)=a- ¢ BQ(.’IJ):I2—I+— Bg(z):zs—_—z‘-l-—r.

Theorem 2.6.7 Let m € N.

We recall some growth properties of (s, a).

Theorem 2.6.8 (Whittaker-Watson.) Let s = o + it and § € (0,1/2). The following set of relations
describes the growth of ((s,a) in (=4, 00).

O ([t['*loglt])  if s € (~4,4)

(
O (jt]*/? ifse(5,1-4
((o.0) € (1t]'/2) { )
O(|t]'="loglt]) ifse€(1—46,1+5)
0(1) if s € (1+4,00)

2.7 The analytic version of the fundamental theorem of arithmetic

Definition 2.7.1 (Dirichlet product.) Let

Cn = Zatbn/t;

tln

{en}n>1 is the Dirichlet product of {a,}n>1 and {b,}n,>1 and is written
Cp = Gp % by

This product 1s also referred to as the Dirichlet convolution of {a,}n>1 and {by}n>1.
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Theorem 2.7.1 (Dirichlet products and Dirichlet series.) Let

bn

ne

A(s) = 8n  and B(s) =

ns’
with abscissae of absolute convergence a and b. Let ¢, = a, * b,. Then

Cls=Y"=

nS

converges absolutely with abscissa ¢ = max{a, b} and

The proof of this theorem uses the following computation.

D = b = e M = 3o D= 305

tln ki=n k>11>1

Definition 2.7.2 (Multiplicative and completely multiplicative arithmetical functions.) An arithmeti-
cal function {an}n>1 is multiplicative if a,,n, = apn,an, when (ny,n2) = 1; {a,},>1 is completely

multiplicative if apn,n, = @n,an, for all ny,ns.

Note that this definition implies a; = 1 unless {an,}nz] vanishes everywhere; In : a, # 0 and hence

a, = a1d, or a; = 1.

Theorem 2.7.2 (Analytic version of the fundamental theorem of arithmetic.) Let {a,}n>1 be multi-

plicative; let A(s) be its Dirichlet series with abscissa of absolute convergence a. We have

Y=l 0k

v
p v=0 p

when ¢ > a. If {a,}n>1 is completely multiplicative, this simplifies to
an 1
Zns_gl_app_s~

The term on the right is known as the Euler product of {a,},>1.
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Proof. Let

and consider
[T A=Y 3 ety
P V1S . . - ns
p<pr v1=0 ’Ur_O r

where the product ranges over the first » primes and the sum includes those n with prime factors < p,.

We have

< lim lan] _
~ rooco ns
n=pr+1

. ay,
lim 5 —
r—00 nS

n=pr+1

. Ap .
= lim E 2| < lim
r—00 ns r—00
Ap>ripy|n

aﬂ an
P B
T

We have used the absolute convergence of A(s) in the last step. We conclude that
. An _ x An
fim Yoow =D
r

Tt remains to verify that [] Ap(s) converges. Recall that 1 + 2z <e®* =142+ ZH:Q Z_T: and hence

P<Pr
log(1 4+ z) < z for z € R,z > —1. We use this inequality to obtain

log [ 4p(s)] < D [ogAp(s)l = Y

p<pr p<pr p<pr

1og(1+§;5:)‘ <yl

p<prv=1

All the partial sums are bounded and hence the series on the left and the product both converge. We

have
an
> = e
P
This is the desired result. |

We thus have
=1 1
=1l

This relation was already known to Euler.

2.7.1 Some useful Dirichlet generating functions

The examples in this section have been selected to illustrate Theorem 2.7.2, and demonstrate additional
techniques for the evaluation of Dirichlet generating functions. We will use them later, when we evaluate

digital sums.
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Definition 2.7.3 Let {x(j)};>0 be a sequence of positive integers such that k(0) = 1 and x(j) | k(j+1),
k(j) < k(j + 1), for j > 0. Then the function v, : Z* — N is defined as

ve(n) = max{j | j € N, &(j) [ n}.

The special case k(j) = ¢/ where ¢ > 2, is denoted by vy(n);
vg(n) = max{v | v €N, ¢" | n}.

The function vy(n) gives the highest power of ¢ that divides n.
Definition 2.7.4 The function k=" (k) is defined to be an integer-valued inverse of k(j).

kTHk) =G & k(i —1) <k <R(j)
When k(j) = ¢’ where q¢ > 2,

k™' (k) = [log, k).

We evaluate several Dirichlet generating functions that contain v, and v,.

Example. By definition of v, (n) the function (—1)”‘1(") is completely multiplicative when ¢ is prime, and
multiplicative when ¢ is a prime power. We can evaluate the Dirichlet generating function of (—1)”4(")

by Theorem 2.7.2 when ¢ is prime. We have

(_])7’4(”) _ 1 N
Zins = 1;[1_ (=1)valP)p=s — 14q=* I—p—*

n>1
1—q* 1 ¢ —1 < 1 )
= S = S 1-2 .
e e =ty = (14

In fact this result holds for composite ¢ as well.

—1)valn) _1)valke) O] —1)valkg+r) 1 (k)41 9]
Z( is - Z( (;3)«: + ((k)+r)s _Z_s( ) + Zk+r
n>1 E>1 1 r=1k>0 q i1 1 r=1k>0 q
1 —1)valk) 1 1 1 1)valk 1
- s ( ks +Zk_s_ (k. )s ___sz( ks +C(S) <1 _s>
q E>1 E>1 E>1 1 q E>1 q

Further manipulation yields

(+3)E - @ (-3)

E>1
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Example. We consider the Dirichlet generating function of the following term:
vg(n) mod 2.
This function can be evaluated in two ways. The first of these uses the relation
vg(n) mod 2 = % (1 - (—1)“4(")) .

It follows that

1 1 1 1
Uq(ém)n_s: §C( )__C( ) <1_ s+1> :C(S)qs-l-l.

The second approach is more general; it proceeds directly from the definition of v4(n) mod 2.

Y m =X Y nm XY

vq(n)=1(2) k=0v,4(n)=2k+1 k= Oqu
1 1 1 1
= Z 2ks Z s =5 Z s s 2ks
7 k=0 q gtm m 7 m m g|lm m k=0 q
11 1 ¢ —1 1
TSR O R
qs 1 — q—Qs ( ) q.s ( )(1 _ q—Qs)qu ( )qs + 1

The half-plane of convergence of the last two functions is obtained by a trivial comparison with ((s);

hence the respective computations hold for o > 1.

Lemma 2.7.1 Let {k(j)};>0 be a sequence as in Definition 2.7.3. Letm > 2 and 0 < r < m, m,r € Z+.
Then

1 1 1
Z o <(s) Z (K(mk +r)® B k(mk +r+ 1)”>

'U,g(n,)Er(m,) k=0
with ¢ > 1. When &(j) = ¢/, this simplifies to

m—1

C(s)g = TT (g —wi) ™,
v=1

2mi/m

where w,, = € 1s the mth primitive root of unity.

Proof. The method used in the previous example (m = 2 and r = 1) can be used in the general case as

well.

Y =X Y 5= Y Y o

ve(n)=r(m) k=0v,(n)=mk+r k=0 NKTTJ:L:-:-t)l ti
1 1 k(mk + r)*
= 7s C(‘;) . s (1 - .s)
A:Oﬁ mk+r Z nmkg_l y { kzzzon(mk%—r) k(mk +r+1)

w(mk+tr)
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The special case x(j) = ¢/ gives x(mk + r) = (¢™)*¢" and hence

| | 1 I
,; K(mk+7)* g ,;0 (@)% g gm =1
With
m—1
ms _ s [ 1 1 _ qs -1
q - = 1E) (q _wm) and q? - q(r-l-l)s - q(r+1)s
we have the result. |

Example. The third and last example in this series is the Dirichlet generating function of v4(n) itself.

The computation is straightforward.

Syl s st () ntel)

aln (gm)* ¢

m-(-3) et

The previous example is a special case of the following lemma.

=

This gives

Lemma 2.7.2 Let {k(j)};>0 be a sequence as in Definition 2.7.3 and consider a function t : N — C.

Then

in particular,

with o > 1.

Proof. It is an instructive exercise to adapt the technique employed in the evaluation of Z ) to the
above lemma; indeed this yields a proof. We will use a restricted Dirichlet convolution to establish the

result.
ve(n %) [e%) .
Srrt=Yg ¥ =Y > e=FY s =)

5 (§)In,§>0 nzmnGgso ™ F0) =1 ) i)

The key step is the use of ) This is a Dirichlet convolution with the divisors restricted to

{x(5)
Z = (

Hence o > 2 and ¢ > 3 would suffice. In fact Theorem 2.6.3 shows that o > 1 for both series. |

n=mx(j),j>0"

U;(ln) 1 and lv,i(n)(v,i(n) +1) =

}is0. The two particular instances are obtained from v, (n) = Zj
)

n

=1’ j. Weneed to verify that the latter two converge in ¢ > 1. By definition of v, (n), v, (n) < log, n.
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2.8 Integrals of the Hurwitz (-function

The integrals of the generalized (-function that we will encounter in the remainder of this thesis are
all of a similar type. This section provides a shifting lemma that makes it possible to evaluate those
integrals.

We will use the growth estimates of Theorem 2.6.8 for ((s, a) to prove the following lemma.

Lemma 2.8.1 (Shifting lemma.) Let a € (—1,0) and let ¢ > 1. Let {T;};j>1 C R* be an increasing
sequence of real numbers such that lim;_ T; = 0o and T; > Ty, Ty a fized constant. Suppose ®(s) is
a function that is analytic on all R; = (a,c) N {s = o + it | [t| < T;} except for a finite number of
singularities, and that there erists a constant M € RY such that |®(s)| < M independently of j on the
boundary 6 R; of R;. Let S" = Sing (®(s)((s,a)/(s(s + 1))) N {a,c). Under these conditions
a+4ico c+ioo
%/ﬂ_. @(5)%[15:2%[ | <I>(s) g“ ZRes( (+“]));s:<>

100 —i00 ceSs!

This is a shifting lemma because it tells us that the integral along a line parallel to the imaginary axis

and situated at ¢ > 1 maybe shifted to o € (—1,0), taking into account the residues of the integrand.
Proof. We use the following rectangular contour, where T' = T; > Tg, and the contour is traversed
counterclockwise.

[y=Hc+it | f|<T} Ta={{o+iT |a<o<Le}
Fs={a+i | |t|<T} Ta={o—iT | a<o<c}

We apply the Cauchy residue theorem:

RS @(s ¢(s,a) . o <d>(s)§(s,a)'5 _ )
271 Jp,ur,uraur,  S(5+1) ! ;,R s(s+1) 7 ¢
RS D(s)((s,a) . - RS B (s)((s,a) RS D(s)((s,a) )
Qﬁi/r s(s+1) ds = 2 /1“1 (s-l—l) ds + 27 Jr,or, S(s+1) d
B (s,a) e )
;R ( G+1) %)

We have the result if we can show that (a) the integrals along T'; and T's converge and (b) the integrals

along I's and I'y vanish as 1" = 1T; — oo.
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We verify (a) with a comparison test. Let s = ¢ + it, ds = idt.

/+TT <(>c+<1 (/ =T / /T)‘ c-|—l;f+(lc)-|-it)i‘dt

< C /_l /
C.
To \/C +1 \/(C+]) +1

T Ty ¢
1 1 2ea M
< CH24M | dt=C+24M || =01 -2
1 i, T

The case for T's is similar. This time we use the first rather than the fourth case of Theorem 2.6.8. Let

(Lo o [P

To 1/2
< ChaM / / [t]"/log |¢] it
7o | Va2 +12\/(a+1)2+12

T 41/2og ¢t
t/"logt .,

2
T t

s = a+it, ds = idt.

IN

/O“”'T ®(s)¢(s,0) ,_
amit  S(s+1)

< C+261M

The last integral converges, as does, therefore, the integral along T's.
In order to establish (b), we consider integrals along the four types of intervals listed in Theorem
2.6.8. Take s = o +iT,ds =do, o €[l —6,1+46],d € (0,1/2). (This is the only one of the four types

we will treat; the other three are can be estimated in the same way.) We have

/1+JiiT @(S)C(S, (1) s
1

/1+5 ®(o +iT)¢ (o £iT, a) J
- —aoc
_sxir  S(s+1) 1

-5 s(s+1)

M 144 ) C3M 144 Y
< T2 |¢(e £+ iT)|do < | |+ T|'"7log| + T|do
L MlogT[ 1 ., 0 M (TP —T77)
T2 log T v K '

Hence the integrals along T's 4N {1 —4J, 14 4) vanish as T' — oo; the same estimate works for the remaining
three types. Clearly there always exists an appropriate decomposition of [a, ¢] into a sequence of intervals
that can be treated as above, e.g. [—1/4,3/2] = [-1/4,1/4][1/4,1=1/4]1[1 =1/4,1+1/4] [1+1/4,3/2].
This shows that the integrals along the horizontal segments I's and 'y vanish as claimed, and concludes

the proof of the lemma. |

There is a straightforward generalization of this lemma.
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Lemma 2.8.2 (Generalized shifting lemma.) Let m € Z%* and a1,as...a, € (0,1]. Let o € (—1,0)
and let ¢ > 1. Let {T;};>1 C R* be an increasing sequence of real numbers such that lim;_, o, T; = oo
and T; > Ty, Ty a fized constant. Suppose ®(s) is a function that is analytic on all R; = (a,c) N
{s =c+i | |t|] < T;} except for a finite number of singularities, and that there erists a con-
stant M € Rt such that |®(s)| < M independently of j on the boundary §R; of Rj. Let S' =
Sing (®(s) []_, ¢(s,an)/(s(s + 1)...(s + m))) N{a,c). Under these conditions

L\/CH_Z’OO Q)( ) H:::l C(Saan) ds = L eioo H:Lzl C(Saan) ds

278 J o ioo § s(s+1)...(s+m) 2mi Jo_ins (s) s(s+1)...(s+m)
[TheiC(s.a) _
— ;, Res < (s G+ o+ m) q)

Proof. The argument is the same as in the special case m = 1. We need to verify that the integrals

along I'y 3 and T'5 4 converge and vanish, respectively. This is immediate when we consider that

e for I'1, we have the bound

2c4 M
-2
e for ', the bound
(logt)™
C+2¢c 1M/ pryEr dt,

which converges,

e and for I's 4, the bound
eaM (log T)m=1 (Tm¢ — T—m?)
Tm+1 )

again for the type [l —4,1+4d]. |}

2.9 The Mellin-Perron formula

This section contains the definitions and lemmata that are required to state the Mellin-Perron formula
and define its domain of application. We will sketch the proof of the Mellin-Perron formula, as its use

often requires a more than superficial appreciation of the method.

2.9.1 The Mellin transform

Definition 2.9.1 (Open strip.) The open strip of compler numbers {a, ) is the set {s=oc+ it | a <
o< B}.
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Definition 2.9.2 (Mellin transform.) Let f(z) be locally Lebesgue integrable over (0, 4+00). The Mellin
transform of f(z) is defined by

+o0
M [f(x); 5] = £ (5) = / Flz)a*~de.

The fundamental strip is the largest open strip where the integral converges.

Lemma 2.9.1 The conditions

f(@)z0+ € 0 ("), f(#)ss400 € 0(2"),

when u > v, guarantee that f*(x) exists in the strip (—u, —v).

We apply this lemma to a family of Heaviside-like step functions.

Definition 2.9.3 Let

1 ifzeo]
Ho(l‘) =
0 fzx>1
be defined on [0, +00) and let
Hp(z) = (1 —2)" Ho(x) when m € Z+.

Note that Hg(z) has a discontinuity at = 1; we have limy_1_ Ho(z) = 1 and lim,_,14 Ho(z) = 0.
Note also that limy_y1- Hp,(z) = limg14 Hy(z) = 0 when m € ZF; Hp, () is continuous at z = 1.
Lemma 2.9.2 The Mellin transform H},(x) of Hp(2), where m € N, exists in (0,4+00) and is given by

m!

s(s+1)...(s+m)

H (z) =

We have Hp, (2)s—0+ € O (1) and Hp(2)z5400 € 0 (m_b) for any b > 0 and for m € N, hence H},(z)

exists in (0, +00). Note that
1
1 1
H}(2) :/ 2 e =~ 2] = -
0 S

S
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We also have

H:(s) = /1Hm(m)ms_ldx

:/Hml 51dac—/Hml Ve'dx

T1—z)m

I
3
!
=
=
B
|
»S—,
S
('J)
l'ls
!
QU
5]

= Hp_(z) - —H.(2)
This gives
m
H = H
m(m) s+ m m—l(m)

for m € Z* and the lemma follows. |

We will be concerned with the linarity and the rescaling property of the Mellin transform.

Theorem 2.9.1 (Linearity and rescaling.) Let X C 7 be a finite set of integers; let pp, A\, € RY. Let
the fundamental strip of M[f(z); s] be (a, B). We have

1 ZAkf(w);s] = (Zz:)sm[f( ) s,

k

where s € (o, 3).

Let y = pgx and dy = prdx. Note that

/00 (Z )\kf(,ukm)> ' lda
0 k

ZAk/OOO Flure)z®~tde
ZAk/ Iy ldy (ZA—L“) £(s).

B

We were able to exchange the integral with the summation because X is finite. It can be shown that
this operation extends to infinite X as long as ), Ax/ui converges absolutely. The extended property

holds in the intersection of the half-plane of convergence of )", Ax/uj and the fundamental strip (a, 3)
of f(z).
Definition 2.9.4 (Inverse Mellin transform.)

1. (Lebesgue integration.)

Let f(x) be integrable with fundamental strip (o, 3). If ¢ € (a, 3) and f*(c+it) is integrable, then
1 c+ioco

f(s)z™%ds = f(z)

2T Jo oo

almost everywhere. If f(x) is continuous, the equality holds everwhere on (0, +00).
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2. (Riemann integration.)
Let f(z) be locally integrable with fundamental strip (a, B) and be of bounded variation in a neigh-
borhood of xq. Then

[ A _ fg) + f=0)
Y
forec € (a,8).
Of course if limm_m;r flz) = limx_mo_ f(z) then
xf Ty
1)+ 163) _ g,

2.9.2 The Mellin-Perron formula

Theorem 2.9.2 (Mellin-Perron formula.) Let ¢ € R* lie in the half-plane of absolute convergence of
>k Ax/k*. Then we have

1 N 1 ctioco A d
m! E Ak (1 - _> == —I: ns 5
My Sken n 27 Je—ico > k s(s+1)...(s+m)

form € Z*. We have

Ao 1 fetie Me ) Lds
2 Mt =gy ( k_) "
E>1

1<k<n c—100

when m = 0.

This theorem is a straightforward application of Mellin inversion.

Proof. Let F(x) =3, Ak f(prx) and use the rescaling property to obtain

M [F(z); 5] = F*(s) = (Z i) 1(5).

k3
5 M

Consider Riemann-integrable f(z) and apply the Mellin inversion formula.

Flueat) + fluwe™) _ 0TS A
;A’“ 2 = 27ri/c_iT ZE F(s)ads

k
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Let f(z) = Hm(z), m € N and let gp = k. Recall that the fundamental strip of Hp, () is (0, co0); let

z = 1/n. This gives

$ LUt feaT) 5~ () + ()
2

2
k
1— 2" 4 (1= 2™ + -
2 2
1<k<n
m + —_
— Z s <1_E) +)\nHm(1 )'f'Hm(l )
n 2
1<k<n

Note that

0 ifmeZ™t.

Continuing the substitution, we have

— | ff(s)x™%ds = i — *ds
Too 27 / T (Xk: NZ) F(s)a"ds T—oo 271 /c_iT Xk: ks ) s(s+1)...(s+m) s

_ i‘/c”“’ A ds
2T Sl —~ k? ns(s—i—l)...(s—i—m)

This concludes the proof. Because the fundamental strip of H,,(z) is (0, 00), the choice of ¢ > 0 is

determined by the half-plane of convergence of >, Ax/k* only. |

2.9.3 The use of the Mellin-Perron formula when m = 1

The lemma below summarizes the usage pattern of the Mellin-Perron formula when m = 1.

Lemma 2.9.3 Let {a,}n>1 be an arithmetical function; let ag = 0 and let {by}n>1 = {AVan}n>1. If
B(s) = >_b,/n’ is the Dirichelet generating function of {b,},>1, we have

oy

where ¢ is in the half-plane of convergence of B(s).

ctioco ds
c—100 S(S + 1)

n

n—na = —
271

||th»

To see this, note first that

n—1 1 ;
1 k 1ot ds
— by [1——) = — B(s)n’®
]!]; iy ( n) 21 (s)n s(s+1)

c—i00
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or

n—1 c+ioco d
E:bk(n—k):_n—,/ B(s)n* ———.
— 2t J._; s(s+1)

~— 1200

We select m = 1 because the iterated sum on the left cancels the operator AV.

n—1 n—1 k n—1 k n—-1 k
Dbetn—k) = Y D =Y > AVa=> > (Va: — Va)
k=1 k=11=1 k=11=1 k=11=1
n—1 n—1
= Z (Vagy1r — Vai) = Z (ag41 — ag) — (n — 1)Vay
k=1 k=1

= an—a1—(n—1)a; = an — nay

2.10 Mellin-Perron formulae for the Hurwitz {-function

This section presents two Mellin-Perron formulae for the generalized (-function. They will be used in
later chapters. We include them here because their respective derivations hardly differ from that of the
standard Mellin-Perron formula.

We apply the Mellin inversion theorem to F(z) = >, Axf(pxz) with z = r/n, r,n € Z*, uy = k+a,
M=1acR,ac (0,1], f(z) = Hi(z) = (1 —z)Ho(z). As we require iz € Rt we take k € N. We have
Fla) =3 (1= (k+a)=) Ho ((k+a)=)

keN

and

1 s,a
F(s) = (Z (k+a_)s) fs) = 5§i+i)

keN

where ¢ > 1. We need to evaluate F(z). Hg(x) vanishes outside of [0,1), hence we require 0 <
(k+a)r/n<lork<n/r—a. Let N(u) = {v <u | v €N} where u € R*. We have
r
F(z) = - —).
() 3 _(1 (k+a)")
k€N(n/r—a)

With these settings the Mellin inversion formula yields the following theorem.

Theorem 2.10.1 Let ¢ > 1.
r 1 etico n®
1— (k _> . - LU
Z ( ( +a)n 278 Sl ioo r“”C(S’a)s(s—i—l) ?
k‘EN(n/r—a)

This theorem has several useful corollaries. The first of these is obtained by setting » = 1. Let

a € (—1,0).
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Corollary 2.10.1 Let n € N.

C(S,(l)mds =0

271 a—ico
Let ¢ = 1. The set of poles of ((s,a)n®/(s(s + 1)) in (a,c) is {1,0}. We apply the shifting lemma with
®(s) = n® and T; = j. Because |n*| = n” we can take M = n°.

1 a+ico n,g 1 ctico n,s
- g =
2mi /(X_Z-OO C(,a) s(s+1) N 271 J oo C(s,a) s(s+1)

nS

—Res <C(5,a)m;s - 1) — Res <C(5,a)(n7+sl) 0)
- ¥ (1—(1{7—%—&)%)—%—((0,&)

0<k<n

11
= n—ng——i(n—l)n———

C(O,a):%—a—((O,a):O

3
S
[\

The second corollary results from taking r = 4.

Corollary 2.10.2 Let n € N. The value of

1 oz+ioo] ns
2 Jri ¥
1s giwen by the following table.
n=4m | n=4m+1 n=4m+2 | n=4m+3
o<agi| 0 | dGe+d | 4@y | 23
b<ast| 0 | 4@-d [20ah][ 3@
t<agd| 0 | A9 | f0a-D [2-Y
t<agt] 0 [ 26D [1ea-d [2Ga D)

We let ¢ = 1 as before and consider the poles of C(s,a)ns/(élss(s + 1)) in (e, ¢), which are at 1 and 0.

We apply the shifting lemma with ®(s) = (n/4)*, T; = j and take M = (n/4)°.
1 a+ico ns 1 e+ioco n,g

- " ds = -

omi ). . “)435(5 )” o ). C(oa )45 s(s+ 1)

~Res <C(s )T 5+1 ) Req( s,a)ﬁﬁ:O)
= ¥ <1—(k+a)4>—g— (o,a):e(n,a)_g_c(o,a)

, n
keN(n/4—a)
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Suppose n = 4m + my where my € {0,1,2,3}. We have n/4 —a = [n/4| + m1/4—a. If m1 /4 < a, the
sum over N(n/4 — a) ranges from 0 to |n/4] — 1. If my/4 > a the sum includes [n/4]. We have two

cases.

N

a

5] ot 2] - 2 (3] - 1) |3 it
Fi-ad (42 (54012 it

We note that [n/4] = (n — my)/4 and [n/4]4/n =1 — my/n. Hence the two terms evaluate to

,_
INE
| E—

a

v

11 1 1 (I
§n+§_a+E am1—§m1—§m1

and

1 1 1 1 1,
—n—{———a—{—g a(m1—4)+§m1——m1 .

8 2 8
We conclude that
1 fotie n’ 11
— —ds = —-n— = .
i) ¢(s, 0)455(5 ) s =¢(n,a) "3 +a

This gives the tabled values when ¢(n, a) is evaluated according to m; and a.

Example. We can use this corollary to verify the following relation.

1 a+tico s 0 fn=0 mod 2

n
— (C(5,7/16) +((5,15/16)) 1o ——~ds =
27 Jo—ico 4s(s +1) %n fn=1 mod?2

We have 7/16 € (1/4,1/2] and 15/16 € (3/4, 1]. Hence we need only add the second and fourth rows of
the table, with a set to 7/16 and 15/16 respectively. This result will be useful in a later chapter.

2.11 Notes

I consulted [Cla82] as an introduction to elementary real analysis; the preliminaries of this chapter are
from [Cla82, p. 167].

There are many texts on basic complex analysis. The definitions pertaining to point sets, complex
limits, and analyticity are from [Det84, p. 13-17, 27-39]; analytic continuation is discussed on [Det84, p.
152-162] and [Mar87, p. 397-411]. Convergent series of analytic functions are discussed on [Mar87, p.
206-213]. The material on Laurent series is from [Mar87, p. 246-252, 266-272] and [Det84, p. 163-170].

The winding number is discussed on [Mar87, p. 165]; the residue theorem is given on [Mar87, p. 280].
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The material on Dirichlet series will be found in any good text on number theory. I have used the
presentation in [Apo86, p. 224-248]. This text also includes a detailed technical proof of the Mellin-
Perron formula for m = 0. T also consulted [Kra81, p. 86-87] for the proof of the analytic version of the
fundamental theorem of algebra. Theorem 2.6.2 is from [Man72, p. 1, 2, 7, 102-104].

An introduction to the Riemann ¢ function is found on [Lan93, p. 415-421]. This includes a presen-
tation of the functional equation; the reader may also wish to consult [Kar92, p. 9-11] or [WW 15, p.
262-265]. The formula for {(m, a) with m a negative integer is proved on [BMP55c¢c, p. 24-27, 35-37] or
[WW15, p. 260-262], for example. The growth estimates for (s, a) are from [WW15, p. 269-270].

[FGK*94] note and use the shifting lemma. A statement of Corollary 2.10.1 for the case @ = 1 can
be found on [FGK194, p. 297].

The presentation of the Mellin-Perron formula is from [FGK*94, p. 295-297]. The note on the use of
the Mellin transform when m = 1 is based on observations found on [FG94, p. 680-681]. The background
material on Mellin transforms is from [FGD95, p. 9-14].
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Digital Sums

The main topic of this chapter is the average order of digital sums in various bases. The results of
[FGK*94] show how to obtain a Fourier series expansion of the sum-of-digits function with constant or
exponential weights. We begin with basic definitions; then we demonstrate the method of [FGK*94]
by considering alternating digital sums in base ¢, a special case of a kind of base known as a Cantor
representation. We extend this method to periodic weights by giving a new proof of a result concerning
alternating digital sums from [KPT85]. Thereafter we return to the general problem, and show that
some classes of Cantor digital sums can also be dealt with by this method. We use the Mellin-Perron

formula to obtain an asymptotic result that is similar to a theorem in [KPT85].

4.1 Definitions

Definition 4.1.1 Let g € ZT and ¢ > 2. Forn € N,
(drd,_y .. .didg),
denotes the unique q-ary representation of n, i.e.
r
n=2_ di

7=0
where 0 < dj < g.
Example. We have m = ¢"«(™)m’ with ¢ t m', hence (m), = (m'),000 ... 000. (Side-by-side placement

vg(m) 0 digits
of two base-¢ expansions means concatenation, not product.)

Cantor representations of integers generalize the concept of base-¢q representations.

Definition 4.1.2 Let {q(j)};>0 C Z% be a sequence of positive integers such that q(0) = 1 and q(j) > 1

when j > 1. Let k(j) = .:0 q(k) for j > 0. Forn € N,

(drdp_y ... dydo)s

100



Chapter 4. Digital Sums 101

denotes the unique base-x or Cantor representation of n with respect to k, 1.e.
n= Z dik(j)
7j=0
where 0 < d; < q(j).
It should be pointed out that {«(j)} fulfills the requirements of Definition 2.7.3.
Lemma 4.1.1 The number of trailing zeros in the base-x representation of n is given by v, (n).
To see this, note that Z;IO(q(j) — 1)x(j) < (r+1). This holds for » = 0 and with
k(r+ 1)+ (@qr+1)—Dr(r+1)=r(r+Dg(r+1) < k(r+2)

for all » € Zt.
Now (1) | n implies n = E;':o djk(j) = Z;_:lo d;k(j) =0 (x(1)). Because 0 < Z;_:lo d;k(j) < (1),

this requires dg = d; = ...d;—1 = 0.

Example. The (2,3)-number system; {¢(j)} = {1,2,3,2,3,2,3...} and {x(j)} = {1,2,6,12,36,...}.

(Mo | e | vel) | 10 | () | welm) | )10 | () | wem) | ()10 | () | ()
0 0 - 4 20 1 8 110 1 12 | 1000 3
1 1 0 5 21 0 9 111 0 13 | 1001 0
2 10 1 6 100 2 10 120 1 14 | 1010 1
3 11 0 7 101 0 11 121 0 15 | 1011 0

Definition 4.1.3 A weight function w(j) is a function w : N — C. The weighted base-x digital sum

v(n) of n = 2;20 d;k(j) is

<

v(n) = w(j)d;.
7=0

An alternating digital sum uses the weight function w(j) = (=1)7.

Example. Let m = ¢" — 1, r € Z*. Hence (m); = (¢g—1)(¢—1) ... (¢ —1). The corresponding

r digits
alternating digital sum is

0 if r 1s even

g—1 if ris odd.
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4.2 Alternating digital sums

In the remainder of this section v(n) will always refer to an alternating digital sum, i.e. with weight

function w(j) = (—1)/. We have the following theorem.

Theorem 4.2.1 [KPT85] The average order
n—1
1
o 2 v(k)
n
k=1
of the alternating digital sum v(n) is given by F(log, n) where F(u) is a Fourtier series
F(u) = fo+ Z fre(2htt)miu
k€L

with coefficients

g1 e (2k + 1)mi (2k + 1)mi\ 7!
fo= 4 andfk_(?k—kl)ﬂié‘( log ¢ i log ¢ '

The proof in [KPT85] uses elementary methods and builds on an earlier result by Delange. The remainder

of this section will present a self-contained proof that uses the Mellin-Perron formula for m = 1. The

method is that of [FGK*94].

4.2.1 Application of the Mellin-Perron formula

We wish to evaluate 22;11 v(k). Consider Vu(n) = v(n) — v(n — 1), i.e. the change in v(n) fromn — 1
to n. The following diagram shows how to evaluate Vuv(n). We assume that (n), contains a prefix of

unspecified length, which ends in the digit d 4 1, followed by v,(n) zeros.

w(j)= ... Fl +1 Fl1 -1 1
(n=1)= ... d (-1 (¢=1 ... (¢—=1) (¢—1
(n)g= ... (d+1) 0 0 0 0

)
)
There are vy(n) columns to the right of the vertical line. Note that d < ¢ — 1 by definition of v4(n).

Using the diagram, we have

0 if v,(n) is even
Vv(n) = —d(—l)UQ(”) + (d+ 1)(_1)Uq(n) _ (J( )
g—1 if vy(n) is odd
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or

Vu(n) = (1)) — (g 1) (vy(n) mod 2).

Note that v(n) = v(n) — v(0) = >_,_, Vu(l) and hence Y _; Lu(k) = 2;11 Zle Vu(l). We apply
Lemma 2.9.3, i.e. the Mellin-Perron formula with m = 1 and b = V() to obtain

1 ctico ds 1 ctioco ds

k
ZZ;VU - g% . Visn s(s + 1) Y Vi(s)n s(s+1)

c—i00 c—i00

l n—
n
k=1
where V(s) =Y. VZ—(S”) is the Dirichlet generating function of Vu(n).

The next step is to determine V(s) and hence ¢. Evidently

—1)valm) — (g — v,(n) mo
Vg =3 CUY =0 1) (gl mod 2)

ns
These terms were evaluated earlier, when we discussed the analytic version of the fundamental theorem

of arithmetic (Theorem 2.7.2). We have

—1)va(n)
Z % =((s) (1

with ¢ > 1 and hence

Vi) =) (1-2 ) = 0ee) A =< (1- 22

also with ¢ > 1. Any ¢ > 1 will suffice.

)andzvq m0d2 C(S)s:_l
q

4.2.2 Evaluating the integral

We evaluate this integral by means of the shifting lemma (Lemma 2.8.1), taking

1 s — 2j
(I>(s):<1 a+ )nszq 9, and Tj = )7
g+ 1 ¢+ 1 logq

with j > 0. Along the vertical segments situated at « and ¢ (recall that the contour is rectangular, with

¢ > 1 being the right vertical boundary, and « € (—1,0) the left one)

[@(s)] = = M, and [9(s)] =

q —q‘na< “+4 .
qs_l_l —l_qoz

respectively. Along the two horizontal segments (@, c) N {s | s = o £ iT;} we have

n® = Mrp.

o (s)| = |2

—a| . 44
1 T+
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Therefore the constant M required by the lemma is M = max{M,, M., Mr}.

iT

= Teag and yp = 2L k7.

logq?

The poles of @(s)%ﬁ% in (a,c) are at s = 0 and s = p + xx where p

(There is no pole at s = 1 because the pole of {(s) at s = 1 is simple and ®(1) = 0; the zero of ¥(s)
cancels the pole, asin (1/(s —1)+...)(¢1(s — 1)+ ...) = ¢1 + ...) Hence the lemma gives

Lo ) L ()
271 _/C_Z-OO (I)(S)s(s-l-l)ds T om oo (I)(S)s(s-l-l)

+Res <<1>(5) s(g(j—)l) s = 0) + I;)Hes <¢(s) S(g(j)m s=p+ x;ﬂ) .

Note that

1 a+ico C(S) 1 a+ico ns 1 a+ico 1 ns
— ) —ds = — ——ds — 1)— ds.
278 J oy ioo (5) s(s+1) *= omi /a_ioo <) s(s+1) s (a+ )27r2' /Q_Zroo q° + IC(S) s(s+1) ?

Note also that the expansion =1—¢"+q¢* —¢* + ... is convergent since |¢*| = ¢* € (—1,0).

1
T+q°
Corollary 2.10.1 applies. We conclude that = oo () sjids = 0; both the constant term and the

27t Ja—ioc0 (s+1)

terms of the series expansion vanish.

It remains to compute the residues. Let log, n = u, and W(s) = @(5)&.

s(s+1)
a0 = T ¢s) _ g+1 g+l 1 g1
Res(W(s)ia=0) = lima() o = (1218 ) g =131 T 1o
o _ . q+1 s C(9)
(p+ xx) . ( S—p—Xk>
= pftxe ‘ lim s—p—xr— (g+1)———==
(p+ xK)(p+ Xk + 1) s=ptxn pxk=(1+1) ¢+ 1
_ uCRUm (2k + D)mi\ (g+1)logq (,  (2k+ D)mi B
a log ¢ (2k + 1)mi log q —log g
(k1w q+1 (2k 4+ 1)mi 1+(2k+1)7ri -1
N (2k + 1)mi log q log q

This concludes the proof of Theorem 4.2.1. |

4.3 Periodic weights in general

The proof of Theorem 4.2.1 serves to illustrate the general method of treating digital sums with periodic
weights. We will sketch the case
2 if j =0(3)
w(g) =495 ifj=1(3)

1 if j=2(3).
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We consider the function Vu(n), which is computed in a manner analogous to the case of an alternating

digital sum (v(n) uses the new w(j)). We have

0 if vy(n) = 0(3)

Vo(n) = —dw(vy(n)) + (d + Dw(vy(n)) — 18(g — 1) lvqgn)J —92(g—1) ifvy(n)=1(3)

T(g—1) ifwg(n) =2(3).

With |n/3] = n/3 — (n mod 3)/3 this simplifies to

2 if vg(n) =0(3)
Vu(n) = —6(g — Dvg(n) + §54+4(g—1)  ifvy(n) = 1(3)

11+5(g—1) ifvy(n)=2(3).
This is the general form of Vu(n), i.e. Vu(n) is a multiple of vy(n) and a term linear in ¢, plus a second
term linear in ¢, one for each of the residues of v4(n) modulo the period length. We recall that

) 0 gy L gmer T (g )

ns g —1

vg(n)=r(m) v=1
The Dirichlet generating function V(s) of Vu(n) is a linear combination of these two kinds of terms,
with poles corresponding to ¢* — w;, =0 or
‘ 2miv/m + 27wik
T log q
for 0 < v < m and k € Z. (The generating function of v,(n) contributes v = 0 and the residues » modulo
m the rest. Note that there may be some cancellation of poles, such as that of s = 1 in the v4(n) term.)

Continuing the example, we have

V(s) = —6(¢g—1) qf(j)l +¢(5) (2¢* +5¢" +4¢° (g = 1) + 11 +5(¢ = 1)) T — o =D
— s 20" +4¢° 4+ ¢ +59+6 1
= <) (e )

At this point it is a matter of routine computation to obtain the Fourier series expansion of the average

order of v(n). Two questions must be considered.

e Does the shifting lemma apply to V(s)n®/(s(s + 1)), i.e. how do we choose M and T; for ®(s) =
V(s)n®/((s)?
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Note that all the poles of ®(s) are staggered along the imaginary axis. Furthermore, there is only
a finite number of singularities in the interval 27i/ log q[k, k+1]. Hence we can choose Tj such that
®(s) is analytic on a closed rectangular band that includes §R;. Because ®(s) is analytic there,
|®(s)| is bounded. We need to verify that this bound is independent of j. But ®(s) contains only
terms in n® and ¢°, with |n®| = n” and |¢*| = ¢°. This observation and the analyticity of ®(s)

yield the claim.

e Does f;jl;o V(s)n®/(s(s+ 1))ds vanish? (We need this in order to ensure that there are no terms
other than the Fourier series; compare the proof of Theorem 5.1.2, where the corresponding term
does not vanish.)

This is a question of expanding (¢* — w%)™" with 0 < v < m. (We use the partial fraction

decomposition of va':_11 (¢* —w?)~'.) Note that

1 1 1 1 q° 7\’
T T+—+(—) +]...
¢ —wm W =t W Wi \Wn

converges since |¢°/w%| = ¢® and a € (=1,0). Hence we may apply Corollary 2.10.1 to (gn)**

(qn € N and 1/wk? is a constant factor with respect to s). The integral vanishes as claimed.

The above observations lead to the following statement. Suppose w(j) is a periodic weight function and

v(n) the associated digital sum. Then the average order of v(n) can be erpanded into a sum of Fourier

2miv/m+2wik

series with terms corresponding to s = ]
ogq

4.4 Intermezzo: digital sum paradigms

The preceding discussion should suffice to demonstrate that the problem of computing the average order

of a general digital sum by Mellin-transform methods requires that the two following conditions hold.

e There must exist a closed form of Vu(n) in terms of a polynomial of the “number of trailing
zeros”-function in Z or Zg, or in exponentials of this function.
Recall that the “trailing zeros”-function is given by v, (Lemma 4.1.1.) Tt follows that the types of

Vu(n) generated by periodic, constant or exponential weights all fit this condition.

e The corresponding Dirichlet generating function V(s) must have a closed form and V(s)n®/{(s)

must satisfy the requirements of the shifting lemma.
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The Lemmata 2.7.1 and 2.7.2 show that the behavior of ijlﬁ(j)_s and 3", _,k(mk + r)~*,
m > 2,0 < r < m determines that of V(s). E.g. if ijl k(j)~* does not represent a meromorphic

function in {a,¢), V(s) fails the shifting lemma.

The above criteria constitute an informal quick test for the computability of a Fourier expansion by the
Mellin-Perron formula for a given a digital sum problem. The significant part of the test is the investiga-
tionn of the properties (read: analyticity and location of poles) of ZJ 1k(F)" and Y o k(mk+7)7*

We will present two additional examples in the remainder of this chapter. The first of these exhibits a

V(s) that is well-behaved; the second shows how V(s) may fail the second condition.

4.5 Digital sums relative to x when «(j + 1)/x(j) = q(j + 1) is periodic

We treat the case
{eN}={1,2,...a+1,2,...a+1...}
and
k(Y ={1,2L . (a+ D)L 2(a+ ). .. (a+1)1*. ],

where a > 1. We select this case because it is one of a series of x that have the factorial number system
as their limit, see section 4.6.

Step 1. What is Vuv(n)? Every complete sequence of a zeros corresponds to digits a,a —1,...1 lost
from (n — 1),; the remainder corresponds to digits r,r — 1...1, where r = v.;(n) mod a. These digits

are replaced by zeros; we gain a 1 in the first non-zero digit of (n — 1).. Hence

vs(n)

a

1 1
Vu(n) =1- 5‘1(& +1) l J - E(vﬁ(n) mod a)(vg(n) mod a + 1).
Step 2. What is V(s)? Using |vg(n)/a] = vg(n)/a — (vs(n) mod @)/a, the problem reduces to finding
the Dirichlet generating functions of v, (n) mod a, % (vx(n) mod a)(v.(n) mod a+1) and v, (n). We apply

Lemma 2.7.2 to obtain the Dirichlet generating function of v, (n). Note that x(ak +7) = (a+1)!*(r+1)!

and hence .
a+1)
JZ; ;]; ak+r - a—}——;"’ 12 r+1
This function contributes poles at (a +1)!* —1 = 0. We use Lemma 2.7.1 to evaluate the remaining two
types, i.e.
vy (n) mod a 1 a-l r 1
2\ bont) mod o) mod 1) [ 72| et ) J o™
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and the relevant terms of the respective generating functions are

a—1

a—1
(a+ 1)! 1 (a+1)! 1 1 1
_ d 1) - :
(a+ 1)k — 1Z <7~+1 (r+2)!s> an a+l's—1;2TT+ <r+1)!s (r+2)!s>

Step 3. Does the shifting lemma apply? We note that V(s) is the product of ((s) and finite sum of
terms, which are in turn the product of a meromorphic function with poles at s = 27ik/log(a + 1)!
and a finite sum of entire functions (the 1/(r 4+ 1)!* terms). Therefore the shifting lemma applies with
T; = mi(2j + 1)/log(a + 1)!; the term (a + 1)!*/((a 4+ 1)!* — 1) was evaluated in the base-q problem
and the norm of the terms from 1/(r + 1)!* is bounded on the horizontal and constant on the vertical

segments.

4.6 Digital sums in the factorial number system

The factorial number system has ¢(j) = j + 1 and &(j) = (j + 1)!.

Step 1. What is Vu(n)? We have v, (n) zeros, which correspond to the digits v, (n),...2, 1, hence
Vu(n) =1 —1/2v(n)(vg(n) + 1).
Step 2. What is V' (s)? We use Lemma 2.7.2 to obtain

o0

Ve =) (1= | = [1- X o

j=1 j=1

(Compare this with the corresponding function in the previous section. The contribution from the period
length a vanishes and the finite sums in r/(r + 1)!* become an infinite series.)

Step 3. Does the shifting lemma apply? Recall that & = 0 is a natural boundary of Z;‘;l by

i
G+
Corollary 2.6.1. Hence we cannot continue this sum into the left half-plane. The shifting lemma does
not apply.

We can however extract some information from the Mellin-Perron formula. Evidently the problem

requires the evaluation of

c+ioco & ] ns
l;C@]‘;u+w G

100

With Corollary 2.10.1, this simplifies to

1 ctioco o0 ] ns
5(“—1)—/6, ¢(s) Z(j+1)!s D™

—100 J=—l
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(We could also have evaluated the first term directly, i.e. at Step 1.) Note that Theorem 2.10.1 applies

. c+ico 1 ns
i O

to

with r = (j + 1)!, a = 1. Hence

[etieo 1 n’ . G+
’/c OGrreen®=i 2 (1‘(’”” " )

—ico kEN(n/(j+1)!=1)

Note that N(n/(j + 1)! — 1) = @ when (j 4+ 1)! > n. Therefore only a finite number of terms actually

contribute to the integral in Z;i1 J/ (G + 1)!*, which justifies writing

%) . (F+1)!<n

" n : 4 1)!
Lo\ X5 ) s X0 2 (1—(’”1)(];))'

—ico i=1 P21 KEN(n/(i+1)1-1)

By definition of v, (n),
Zg/(j+1)!—2 if j < ve(n)

Nn/Gro=n) | SSP GRS i sy ().

Hence the integral splits into two sums,

;JJ<ﬁ‘l) (-5 ) - _%”“(")(v“(n)HH%nt:)(”j”!
= ——m(])(%(i)‘i‘l)“‘%” 1_(1)5(17;+1)!>
and e ien ,
B )_< i) -5 (e )

j=ua(n)+1
This formula has some utility as we shall see below. Nonetheless it must be pointed out that it
can equally well be derived by an elementary counting argument (the reader is urged to supply this
proof). There is no qualitative gain with respect to elementary methods because the function V(s) is
not meromorphic and the terms of the series merely transcribe the problem definition.
We remark in passing that n = (r + 1)! gives v, (n) = v, ((r + 1)!) = 7, in which case the second term
of the above sum drops out and 1/n Z:l_:ll v(m) is given by

g0 == (=qra 41+ o (1= Gy )) = e
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The average order of the sum of factorial digits of the first n = (r+ 1)! non-negative integers is quadratic
in the factorial inverse of n.

The work of this section suggests the following question. Considering the fact that

q(i+1)—1)

for g-ary digital sums, &(j) = ¢/, ¢ > 2 and all n, and
5(j)<n

%iu :—(lr(r-i-l)) ;Z (@G+1)-1)

m=1
(7 + DL n = (r+ 1)!, what are the conditions

for digital sums in the factorial number system, &(j)

such that
£(j)<n
w(fi) (¢ +1)—1)

N | —

7=0
is the asymptotically dominant term of the general sum-of-digits function? This question will be answered

in the next section.
We will need the following observation. Suppose ¢(j) — oo as j — co. Then £(j + 1) < n implies

@ €o(l) as n—oo.

To see this, note that
. _ kM (n)-1 “1(n)-1
k(j)  w(k71(n)—1) 1 1
= — < —— >0 as n—o0
1 w< 1 @

n n
E=j+1
4.7 The general digital sum problem

We wish to examine the role of
5(j)<n

N | —

7=0

in the behavior of
for an arbitrary weight function and an arbitrary Cantor system x. We require an expression of Vu(n)

Define s : N — C by
s0) = wl) =Y wli) oG+ - 1)
w(0)+w(v)—w(0)—ZUJ(j—1)(()—1—w0)+z w(j) —w(i - 1)qg(5)) -

j=1
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Evidently
Vu(n) = s(vg(n)).

By Lemma 2.7.2, the Dirichlet generating function V (s) is

616) (w0) + 3 =5 (wli) = wli = Dai) )

k(7)*
We proceed by the same method that was used to obtain a formula for the average order of digital sums

in the factorial number system in the previous section. The w(0) term corresponds to

by Corollary 2.10.1. Theorem 2.10.1 is used to evaluate the series. We have

/:Hoo C(s),{(})s S(S":L gia= Y <1 (k4 1)“’g)> .

e kEN(n/r(j)-1)

The sum is zero when &(j) > n. There are two cases when x(j) < n.

Case 1. k(j) | n

B )= () (1)

k=0
- ) e e )
_ n. _nmod.h‘j‘ 1 1k(j) | I nmod k(]
B 1<K<j)n l)ﬁ(j)l n 210<d2/c(j)2 nl <+nzmod /:Zj) 2 mod k(j)  (n mod k(j))?
T2 K—j) B 2 k(j) ' T2 k(J) B n + nk(j) >
- () e
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terms, we have

n

(i) (i + 1) = 1)+ gl () = 1) (ot — 107 )

It remains to evaluate the contribution from the second term of the case 2 sum. With
p(n, j) = (n mod &(j))(x(j) — n mod £(j)),

p(n, k=1 (n)) = n(k(x~" (n)) — n)

and

%nmos K(j) <1_ nm:é)ﬂ(i)) _ !

this becomes

- w(j) . . 1 -1 —1 n
= - > 1) — e —1 : -
We combine these results to obtain the following theorem.

Theorem 4.7.1 Let w(j) be an arbitrary weight function, k any Cantor system, and define

p(n, j) = (n mod k(j))((j) — n mod (j)).

The sum-of-digits function for w and k is given by

5(j)<n 1 5(j)<n (])

-l 1 - ad
mzﬂv(m)zg Z 11)(])((1(]-{-])—])_% Z k(J)

j=0 j=vk(n)

S|
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We can use this theorem to answer the question posed in the previous section. In the following, we

will assume that the w(j) are positive and that ¢(j) — oo as j — co. The term

£(j)<n
w(j) (g(j+1) = 1)

N | —

7=0

will dominate asymptotically if it dominates the second term. It is not difficult to see that

p(n, j) < % (4)?

when k(j) < n. This gives the following estimate for the —pu(n, j) part of the second term.

T iy S e =0 7S -1

> z (i +1) - =1

] ’U,CTL ' J ’U,,CTL

Using our earlier observation and a term-by-term comparison we see that the first term dominates the
—pu(n, j) part asymptotically.

We split the p(n,j+ 1) part into Z (J-H(ljn and j = k~!(n) — 1. For the first part we again have

k(j+1)<n . E(j4+1)<n . . 5
w(j) , .y k() _a(G+1)°
2 it S ) w6l ) - DG
j=vk(n) j=ux(n)
k(j+1)<n F;(_]) 1
< > w(f) (g +1) = 1)-= <Q(j+1)+1+m)-
j=vk(n)
With
14 ! 2
G+1)-17
this 1s less than or equal to
£(j+1)<n . .
. . (7 + 1 c
> wlat+n - (M50,
j=v.(n)

This part is also dominated by the first term, except for the first half of the sum when j = k7' (n) — 2,
which is

w(r™(n) = 2)(q(r™"(n) = 1) = )25

Suppose we have
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for v sufficiently large. Then certainly

<

k(v—1)

w(o = () = a0 =5

€ o(w(v—1)(q(v) —1)g(v)) Co w(f) (qG+1) 1)

7j=0
for k(v) < n. Taking v = k7'(n) — 1, we see that we have a sufficient condition for the first term to

dominate. Tt remains to test j = k~'(n) — 1, in which case w(j)/(nk(j))u(n,j + 1) becomes
W =), el =)
= i) =) < = ) (s ) < 1)
= w(x™(n) = 1)(g(x7(n)) = 1)

assuming k(k ' (n)) { n (if (571 (n)) | n the term is zero and we are done). We need only take v = k™1 (n)

and point out that ¢(v) — oo as v — oo; hence

v—1 v—1
1

w(v—1)(q(v) = 1) € —Zw gG+1) -1 co

Q(v j=0 7j=0

~
=
=

g +1)—1)

and we have proved the following theorem.

Theorem 4.7.2 Let w be a weight function such that w(j) > 0 and let ¢(j) — o0 as j — oco. If

v—1
w(v —1)(g(v) 1) € —(] S w(i) (g +1) - 1)
7=0

then
1 n—1 1n(j)<n
Emﬂv ~ 5 Jz::() w(@H @i+ —-1), n—o oo

For example, the combination w(j) = (7 + 1)~%, @ < —1 and ¢(j) = j + 1 fulfills the conditions of the

theorem.

4.8 Notes

The survey [KPT85] defines the general digital sum problem for Cantor representations of integers and
includes an extensive bibliography; the introduction to this chapter is modelled on [KPT85, p. 55-56]; I
also consulted [KT84]. Theorem 4.2.1 can be found on [KPT85, p. 63-64]. Theorem 4.7.1 is similar to
a result on [KPT85, p. 56], which is obtained with real-variable, Delange-type methods and contains a
different form of the error term. A different proof of Theorem 4.7.2 is given on [KPT85, p. 58].

A more up-to-date introduction can be found on [FGK194, p. 292-295]; the proof of Delange’s
theorem concerning binary digital sums is on [FGKT94, p. 297-299]; digital sums with exponential
weights are treated on [FGKT94, p. 303-304].



Chapter 5

Counting sums of three squares

This chapter presents a new proof of a result due to Osbaldestin and Shiu concerning integers rep-
resentable as sums of three squares. Their papers ([Shi88], [OS89]) use real-variable methods of the

Delange type; we will use the Mellin-Perron formula for m = 1.

5.1 Preliminaries

Definition 5.1.1 Let () be the set of integers n € Z7T representable as sums of three squares including

0.

Lemma 5.1.1 Ifn = 4'(8k +7), where |,k € Z%, then n is not representable as a sum of three squares;

ie. n € Q.

Proof. Note that 0,1, 4 are the only quadratic residues modulo 8. Hence z§ + 2% + 23 # 7(8). Suppose
4'(8k + T) cannot be represented as a sum of three squares and 41 (8k + 7) can, i.e. 441 (8k 4+ 7) =
z? + 22 4+ 22 This implies 4'(8k + 7) = (21/2)? + (z2/2)? + (23/2)%, a contradiction. (Note that

i+ 23423 =0 mod 4 implies 1 33 =0 mod 2.) |

In fact all n not of the form 4!(8k + 7) are representable as a sum of three squares. The following

theorem is due to Gauss.

Theorem 5.1.1 A positive integer n is representable as the sum of three squares if and only if there do

not exist k,1 € Zt such that n = 4l(8k + 7).

We let k(n) be the characteristic function of @, i.e.

1 ifneq,
k(n) =

0 ifneq@

115
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or equivalently

1 ifn=4"8k+7), where [,k € Zt
k(n) = '

0 otherwise.
Note that 8k + 7 = 4(2k + 1) 4+ 3. This shows that k(n) is the characteristic function of those integers
whose base-four representation ends in a 1 or a 3, followed by a 3, followed by a possibly empty string

of zeros. Let

QN)= > 1=N- > k(n)

n€Q,0<n<N 0<n<N
Define A(N) as follows:
5
QN) = 2N+ AW),

A(N):éN— > k(n)

0<n<N
and let A(0) = 0. Osbaldestin and Shiu consider the average order of A(N), which is given by

1 1 1
~ Y Am) = + - > k(1)
0<n< N n=1 0<i<n
N-1 n N-1 n
111 1 1 1 1
= ——(N—1)N- — k()= —N— — — — k(D).
N3l ) N L L O T an—:ll—l Q

They prove the following theorem.

Theorem 5.1.2 [OS89] There exists a periodic function F(u) with period 1 such that for N > 1,

1 3 J(N)
~ > An) =L+ F(L) + =
0<n< N
where
LN odd,
= log NV and §(N) = ®
log 4
0 N even.

with coefficients
31 3 1
48  8log4 log4

1 2mik\ " o2mik T o2mik 15
e = — 1 g L T2 ) k4o
ok 2m'k< +log4> <C <log4’16>+g<log4’16>)’ 70

We present a new proof of this theorem in the remainder of this chapter.

(¢'(0,7/16) +¢'(0, 15/16))

and
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5.2 Application of the Mellin-Perron formula

The closed form of the Dirichlet generating function K(s) =Y k(n)/n® of k(n) is obtained as follows.

. _ k(n) k(4n) k(4n + 3)
K(s) = Z pr _Z(4n)s +Zm

n>0

1 Z k(n) N E k(16n + (13)4) n Z k(16n 4 (33)4)

4s ns =t (16n 4+ (13)4)* =t (16n 4+ (33)4)*
1 1 1 1
- —_K - - - 4= - -
RS ,;) mnt7/16)¢  16° nz;:) (n+ 15/16)°
We conclude that
K(s) = —— L (¢(5,7/16) + ¢(5,15/16)) = L (¢(5,7/16) + ¢(s, 15/16))
X(Sv _43_1165( (S’ ) (S’ b )_45_145( (S’ J (S’ )
Let
. N*®
L(s) = K(s) N
The Mellin-Perron formula (Lemma 2.9.3) tells us that
N-1 n 3/24ic0 3/2+ic0
1 1 N 1
=Y Y k() = 55— I(s)ds = — L(s)ds.
N == N 271 3/2—ico : 21 3/2—i0o '

We evaluate this integral by means of the shifting lemma (Lemma 2.8.1), taking

1 N*
[ =
ST T
and
25+ 1
7=t
log 4
Note that

o= () o

Along the vertical segments situated at a and ¢

N\%* 1 N\ 1
|®(s)] < <Z> T—ae = Ma and |®(s)] < (Z) 40_1:Mc

respectively. Along the horizontal segments at +:7;

|¢()I<NC L8y L —w
5 4) =41 \4) 144 =17
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Therefore the bound independent of o,% on ®(s) that we require in order to apply the lemmais M =
max{M., M, Mr}. We have

1 3/2+i00 1 —1/4+i00
/ L(s)ds = / L(s)ds
3 _

2m1 /2—ioo 2mi 1/4—ioco

+Res (L(s);s = 1) + Res (L(s);s = 0) + Z Res <L(s); s = ]27r21:> .
k€T {0} o8

Let (o = ¢(0,7/16) + ¢(0,15/16) = 1/2—-7/16 +1/2 — 15/16 = —3/8 and let ¢; = ¢'(0,7/16) +
¢'(0,15/16). Finally, let x; = 2mik/log4 when k # 0.

N® ! NE Y
Res(L(s);s =0) = hi% <K(s_)8(8 — 1)52> - hj% <5K(s)8 - 1)

NS
s+1

= linésK(s) (logN N¥(s+1)7"' = N*(s + 1)7%) + liné (sK(s))'
s—

S$—

. s 1
= (logN — 1)311—1?(1) TR 14—5(C(s,7/16) +¢(s, 15/16)) +

lim 2= 55 (C(5,7/16) + ('(s, 15/16)) —

s 1084 (5, 7/16) + ¢(5, 15/16)) +

Jim —>—
s 45 — 1 4
45— 1—log4 s4° 1

;1_%% (43 — ])2 4_3(C(5) 7/16) + C(Sa 15/16))

= (logn—1)¢ lim

s—0log4 4¢
log 4 log 4s4°
1 lim ———— —log 4¢y lim ———— — (p lim 0820815
s—0log4 44 s—0log4 4¢ 5—02(45 — 1) log4 4*
1 ) log4s
= (1 N —1/logd4 —1 —( — (G lim ————
(log, /log )Co + log4C1 Go slj% 245 — 1)
= (1 N —1/log4 —1 — (o i
(log, /log )Co + log4C] Co lim o3
3 1
= ——(1 N —1/log4 — 3/2
og, N = 1/log— 3/2) + -6
Res(L(s)is =1) = lim(s = )E(s)——— = 2 tim —*— L (s = 1)(((s,7/16) + (5, 15/16))
SEhs = = TR Gy T 2 e e % %
_ N1,_N
21277 12
2mik N*
es< (5); s log4> s—1>nxlk(8 Xk)x(s)s(s-l—l)
eQ‘rrik‘log4N S — Xk 1
= —— lim ———— 1 15/1
e+ 1) o, o= 1 g7 (C(5:T/16) + (5, 15/16))
e27riklog4N

= m((C(Xh 7/16) + ((xx, 15/16)) slig(lk m

1 e21rz'k' log, N

= @m((f(m 7/16) + C(xk, 15/16))
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We note that

Z Res (L(s);s = ij;i) = —(F(logy N) — ¢q).

keZ\{0}

In order to evaluate

! /_1/4+ioo/: Vs = — /_1/4“00 L 7/16 15/16)—>—d
27Ti —1/4—ioo (5. s = 271'2 —1/4—ioo 45_145 (C(Sﬂ / )+C(Sﬂ / 5(5+1) s

we note that we may use the expansion

11 4ks 1 s
48—14_8:_2 45— 4s >4

- —
k=0 k=0

since 0 = —1/4. By Corollary 2.10.1 all integrals of the form

—1/4+ic0 .
% —1/4i (Cls, T/16) + <5, 15/16))5((1 +)1)ds

are zero. (The integer 48 N takes the place of the integer n.) We apply Corollary 2.10.2 in the manner
shown in the associated example and obtain
1 —1/4+ic0 1 —1/44ic0 1 s J(N)

N
L(s)ds:—ﬁ i 4_3(C(S’7/16)+C(8’15/16))s(s+])dS:_T'

2mi —1/4—ico

We are now able to compute the average order of A(n) and complete the proof of the Osbaldestin-Shiu

result.
N-1 n 3/24ic0
1 1 11 1 11
- An) = —N-———— k()= —N — — — I(s)ds
¥ 2 AW TARETRS D IPILUESTLET 27ri/3/2_ioo ()ds
0<n< N n=1 [=1
- Ay L
TR
S(N) 3 ! N
— (=2 Z(log, N — 1/1log4 — 3/2 = — (F(log, N) —
(<2 — Zog, ¥ = 1/ 10814 = 3/2) + s+ 1L (Fl1og ) = o)
3 3(N) 127 3 1
= Zlog, N+ Fllogy N)+ =2 —gpm —— = - = __
g l08a N+ Flloga V) + =5 1248 Slogd  Togd®!

3
= glog4 N + F(logy, N) +
This concludes the proof. |
5.3 Notes

The introduction is modelled on [Kra81, p. 162-163]. The Fourier series expansion is developed on

[0S89, p. 373-374].



[Apo86]

[BMP55a]

[BMP55b)]

[BMP55c]

[Bus40]

[CDM91]

[Cha40)]

[Cla82]

[Del75]

[Det84]

[DG52]

[FG94]

[FGDY5]

Bibliography

Tom M. Apostol. Introduction to analytic number theory. Springer-Verlag, New York, 1986.

California Institute of Technology Bateman Manuscript Project. Higher transcendental func-
tions. Based, in part, on notes left by Harry Bateman, and compiled by the staff of the
Bateman Manuscript Project. [Director: Arthur Erdlyi. Research associates: Wilhelm Mag-
nus, Fritz Oberhettinger, and Francesco G. Tricomi], volume 3. McGraw-Hill, New York,
1953-1955.

California Institute of Technology Bateman Manuscript Project. Higher transcendental func-
tions. Based, in part, on notes left by Harry Bateman, and compiled by the staff of the
Bateman Manuscript Project. [Director: Arthur Erdlyi. Research associates: Wilhelm Mag-
nus, Fritz Oberhettinger, and Francesco G. Tricomi], volume 2. McGraw-Hill, New York,
1953-1955.

California Institute of Technology Bateman Manuscript Project. Higher transcendental func-
tions. Based, in part, on notes left by Harry Bateman, and compiled by the staff of the
Bateman Manuscript Project. [Director: Arthur Erdlyi. Research associates: Wilhelm Mag-
nus, Fritz QOberhettinger, and Francesco G. Tricomi], volume 1. McGraw-Hill, New York,
1953-1955.

Bush. An asymptotic formula for the average sum of the digits of integers. Amer. Math.

Monthly, 47:154-156, 1940.

R. Casas, J. Diaz, and C. Martinez. Statistics on random trees. In Annual International
Colloguium on Automata, Languages and Programming, pages 186-203, 1991.

M. C. Chakrabarti. On the limit points of a function connected with the three-square prob-
lem. Bull. Calcutta Math. Soc., 32:1-6, 1940.

Colin W. Clark. FElementary mathematical analysis. Wadsworth Publishers of Canada, Bel-
mont, Calif.; 1982.

Hubert Delange. Sur la fonction summatoire de la function somme des chiffres. Enseign.

Math., 21:31-47, 1975.
John W. Dettman. Applied complezx variables. Dover Publications Inc., New York, 1984.

Drazin and Griffith. On the decimal representation of integers. Proc. Cambridge Phil. Soc
(4), 48:555-565, 1952.

Philippe Flajolet and Mordecai Golin. Mellin transforms and asymptotics: The mergesort
recurrence. Acta Informatica, 31:673-696, 1994.

Philippe Flajolet, Xavier Gourdon, and Philippe Dumas. Mellin transforms and asymptotics:
Harmonic sums. Theoretical Computer Science, 144(1-2):3-58, June 1995.

130



Bibliography 131

[FGK*94] Flajolet, Grabner, Kirschenhofer, Prodinger, and Tichy. Mellin transforms and asymptotics:

[Fri82]

[FS93]

[HSTY1]

[Kar92]

[KPTS5]

[Kra81]

[KT84]

[Lan08]

[Lan62)

[T.an93]

[ManT72]

[Mar87]

[0S89]

[Shi8§]

[Sie64]

Digital sums. Theoretical Computer Science, 123:291-314, 1994.

Francois Fricker. Einfuehrung in die Gitterpunktlehre. Number 73 in Lehrbuecher und Mono-
graphien aus dem Gebiete der exakten Wissenschaften. Mathematische Reihe. Birkhaeuser,

Basel, 1982.

Philippe Flajolet and Robert Sedgewick. The average case analysis of algorithms: Counting
and generating functions. Research Report 1888, Institut de Recherche en Informatique et
en Automatique, 1993. 116 pages.

Edmund Hlawka, Johannes Schoissengeier, and Rudolf Taschner. Geometric and analytic
number theory. Universitext. Springer-Verlag, Berlin, New York, 1991.

Anatolii Alekseevich Karatsuba. The Riemann zeta-function. De Gruyter expositions in
mathematics. Walter de Gruyter, New York, 1992.

P. Kirschenhofer, H. Prodinger, and R. F. Tichy. Uber die ziffernsumme natiirlicher zahlen
und verwandte probleme. In Edmund Hlawka, editor, Zahlentheoretische Analysis, number
1114 in Lecture Notes in Mathematics, pages 55—65. Springer Verlag, 1985. Wiener Seminar-
berichte 1980-82.

E. Kraetzel. Zahlentheorie. VEB Deutscher Verlag der Wissenschaften, Berlin, 1981.

P. Kirschenhofer and R. F. Tichy. On the distribution of digits in the cantor representation
of integers. Journal of Number Theory, 18:121-134, 1984.

E. Landau. Ueber die einteilung der positiven ganzen zahlen in vier klassen nach der minder-
stzahl der zu ihrer additiven zusammensetzung erforderlichen quadrate. Arch. Math. Phys.

(3), 13:303-312, 1908.

Edmund Landau. Ausgewaehlte Abhandlungen zur Gitterpunktlehre. Edited by Arnold Wal-
fisz. Deutscher Verlag der Wissenschaften, Berlin, 1962.

Serge Lang. Compler Analysis. Graduate texts in mathematics. Springer-Verlag, New York,
3rd. ed. edition, 1993.

Szolim Mandelbrojt. Dirichlet series. Principles and methods. Dordrecht Reidel, Dordrecht,
Netherlands, 1972.

Jerrold E. Marsden. Basic complex analysis. W. H. Freeman, New York, 1987.

A .H. Osbaldestin and P. Shiu. A correlated digital sum problem associated with sums of
three squares. Bulletin of the London Mathematical Society, 21, 1989.

P. Shiu. Counting sums of three squares. Bulletin of the London Mathematical Society, 20,
1988.

Waclaw Sierpinski. Flementary theory of numbers. Number 42 in Monografie matematyczne.
Polska Akademia Nauk, Warszawa, 1964.



Bibliography 132

[Tri95] Claude Tricot. Curves and fractal dimension / Claude Tricot; with a foreword by Michel
Mendes France. Springer-Verlag, New York, 1995.

[Tro68] Trollope. An explicit representation for binary digital sums. Math. Mag., 41:21-25, 1968.

[WW15]  E.T Whittaker and G.N. Watson. A course of modern analysis. Cambridge: University
Press, Cambridge, 2nd ed., completely rev. edition, 1915.



