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Aminimax principle is derived for the eigenvalues in the spectral gap of a possibly non-semibounded self-
adjoint operator. It allows the nth eigenvalue of the Dirac operator with Coulomb potential from below to
be bound by the nth eigenvalue of a semibounded Hamiltonian which is of interest in the context of stability
of matter. As a second application it is shown that the Dirac operator with suitable non-positive potential
has at least as many discrete eigenvalues as the Schro$ dinger operator with the same potential.

1. Introduction

The minimax principle provides a variational characterization of all eigenvalues

below (or above) the essential spectrum of a self-adjoint operator that is bounded

below (above) (see, for example, Courant and Hilbert [2, Chapter VI, §1.4] or Reed

and Simon [14, Chapter XIII.1]). It allows one to estimate, say, the nth eigenvalue

without a priori knowledge on the spectrum or eigenfunctions, which might be the

main reason why it is one of the most used and most powerful tools in the

investigation of the spectrum.

Clearly it would be desirable to have a similar variational characterization of

eigenvalues in gaps of the essential spectrum and for operators which are not

semibounded. There are important systems to which such a characterization would

be applicable. We mention periodic Schro$ dinger operators with localized perturbation

(they occur in the description of crystals with impurities) and Dirac operators. In

this paper we are mainly concerned with Dirac operators.

Minimax principles for the lowest eigenvalue of the Dirac operator are in fact

discussed in the quantum chemistry literature (see, for example, Rosenberg and

Spruch [15], Drake and Goldman [5], Kutzelnigg [9], Talman [18] and Datta and

Deviah [3]). According to Talman, and Datta and Deviah,

min
g
9max

f

(ψ,Hψ)

(ψ,ψ) : (1)

should be the first positive eigenvalue of the Dirac operator H. (As a matter of fact

Datta and Deviah not only do not refer to Talman, but also those articles that refer

to these two papers according to the Science Citation Index of January 1997 always

ignore the corresponding other author(s).) Here ψ is a Dirac spinor whose upper and

lower two components are denoted by g and f respectively. The arguments given for

(1) are not stringent but they were still convincing enough to be the motivation for

the present work on such minimax principles.
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Our main result is a minimax principle for discrete eigenvalues in a gap of the

essential spectrum of a possibly non-semibounded self-adjoint operator. It generalizes

the standard minimax principle and allows us to prove that (1), with the correction

g1 0, is indeed the lowest discrete eigenvalue of the Dirac operator for suitable

potentials. As a second application of this new minimax principle we show that the

nth eigenvalue of the Dirac operator with Coulomb potential is an upper bound for

the nth eigenvalue of an operator due to Brown and Ravenhall [1]. Hamiltonians of

this kind (also called no-pair Hamiltonians) are of interest for the description of

heavy atoms and molecules (Sucher [17]) and are used in quantum chemistry

(Ishikawa and Koc [7]). They have also been discussed in the context of stability of

relativistic matter (Lieb et al. [12, 13]). Thirdly, we show that the Dirac operator with

suitable non-positive potential has at least as many discrete eigenvalues as the

Schro$ dinger operator, more precisely the Pauli operator, with the same potential.

This generalizes to operators including a magnetic field. All these results are new to

our knowledge. Moreover, it seems hard to prove them without the minimax

principle. To conclude we would like to mention that a minimax principle for the

eigenvalues of Dirac operators has also been announced by Dolbeault et al. [4].

This work is organized as follows. In Section 2 we formulate and prove the new

minimax principle in an abstract form. Section 3 contains two applications of the

main result, the second being the comparison of the discrete eigenvalues of Dirac and

Brown–Ravenhall operators. In Section 4 we re-cover the minimax principle of

Talman and Datta and Deviah (Subsection 4.1) and finally prove the above-

mentioned lower bound on the number of eigenvalues of the Dirac operator

(Subsection 4.2).

2. The minimax principle

In this section we state and prove our main result, Theorem 3, a minimax principle

for discrete eigenvalues of a possibly non-semibounded self-adjoint operator A.

Although bounded operators are covered by this result, we state and prove it for

bounded A separately (Theorem 1), since in this case the statement is less technical

and the proof is short and simple.

We begin with a few notations. Suppose that A is a self-adjoint operator in a

Hilbert space B. Then $(A) denotes the domain and 1(A) the form-domain of A. The

operator P
(a,b)

(A) is the spectral projection of A for the interval (a, b). If A is bounded

from below then
µ
n
(A)B inf

MZ$(A)
dim(M)=n

sup
} `M
s}s="

©},A}ª

is the nth eigenvalue (counted from below and counting multiplicity) of A or, if A

has less then n eigenvalues below the essential spectrum, the bottom of the essential

spectrum [14]. As usual σ(A) denotes the spectrum of A and ρ(A)B#cσ(A). Finally

B(B) stands for the set of bounded linear operators on the Hilbert space B.

T 1. Let A¯A* `B(B) and B¯ B
+
G B

−
where B

+
v B

−
. Let P

+
¯P

(!,
¢)

(A)

and
λ
n
(A)B inf

M+
ZB

+
dim(M+)=n

sup
} `M+

G B
−s}s="

©},A}ª, n%dim B
+
.

(i) If ©},A}ª% 0 for all } ` B
−
, then

λ
n
(A)%µ

n
(AQP

+
B).



492     

(ii) If ©},A}ª" 0 for all non-zero } ` B
+
, then

λ
n
(A)&µ

n
(AQP

+
B).

R 2. (i) For B
+
¯P

+
B one can drop B

−
in the definition of λ

n
(A), that is,

the theorem is trivial in this case. (ii) The theorem says that B³ need only be

approximate spectral subspaces in the above sense in order that λ
n
(A)¯µ

n
(AQP

+
B).

Proof of Theorem 1. Set λ
n
B λ

n
(A) and µ

n
Bµ

n
(AQP

+
B), and let Λ

+
and Λ

−
be

the orthogonal projection onto B
+

and B
−

respectively.

(i) First note that Λ
+
:P

+
BMN B

+
is one-to-one. If not, there would exist a } `

B
−
fP

+
B with }1 0 so that

0&©},A}ª¯©P
+
},AP

+
}ª" 0.

Now pick ε" 0 and let MBP
(!,

µ
n+

ε)
(A) B. Then dim(M )& n and hence dim(Λ

+
M )

& n. Therefore
λ
n
% sup

} `Λ
+MGB

−s}s="

©},A}ª¯ sup
} `M+B

−s}s="

©},A}ª,

where Λ
+
MG B

−
¯MB

−
was used. To estimate this from above we first decompose

} `MB
−

as }¯}
"
}

#
, where }

"
`M and }

#
`Mvf(MB

−
), and then }

#
as }

#
¯

}
$
}

−
where }

$
`M and }

−
` B

−
. Since A}

$
`M and }

$
}

−
`Mv we have ©A}

$
,}

−
ª¯

®©A}
$
,}

$
ª. Using this, ©A}

$
,}

$
ª& 0, and ©}

−
,A}

−
ª% 0 we find

©},A}ª¯©}
"
,A}

"
ª©}

#
,A}

#
ª

¯©}
"
,A}

"
ª®©}

$
,A}

$
ª©}

−
,A}

−
ª%©}

"
,A}

"
ª% (µ

n
ε)©},}ª.

(ii) Now Λ
+
P
+
B is dense in B

+
because otherwise there exists a } ` B

+
f

(Λ
+
P
+
B)v ¯ B

+
fP

−
B with }1 0 and thus

0!©},A}ª¯©P
−
},AP

−
}ª% 0.

Since A is bounded it follows that

λ
n
(A)¯ inf

M+
ZΛ

+P+
B

dim(M+)=n

sup
} `M+

GB
−s}s="

©},A}ª& inf
MZP+

B

dim(M)=n

sup
} `M
s}s="

©},A}ª¯µ
n
(AQP

+
B).

To prove the inequality use each M
+

is of the form M
+
¯Λ

+
M for some MZ

P
+
B with dim(M )¯ n, and Λ

+
MG B

−
[M. *

Notice that in the proof of Theorem 1(ii) the assumption is only used to show that

Λ
+
P
+
B is dense in B

+
, while in the proof of Theorem 1(i) the assumption is used in the

estimate. This is the reason for the asymmetry in the set of states on which these

assumptions are imposed in the following unbounded case.

T 3. Suppose that A is a self-adjoint operator in a Hilbert space B¯ B
+
G

B
−

where B
+
v B

−
. Let Λ³ be the orthogonal projections onto B³ and let 1 be a subspace

with $(A)Z1Z1(A) and Λ³$(A)Z1. Let P
+
BP

(!,
¢)

(A), P
−
BP

(−¢,!]
(A), 1³ B

1fB³, and
λ
n
(A)B inf

M+
Z1

+

dim(M+)=n

sup
}`M+

G1
−

s}s="

©},A}ª.

(i) If ©},A}ª% 0 for all } `1
−
, then

λ
n
(A)%µ

n
(AQP

+
B).
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(ii) If ©},A}ª" 0 for all } `1(A)fB
+

and (rAr1)"/#P
−
Λ

+
`B(B), then

λ
n
(A)&µ

n
(AQP

+
B).

R 4. Notice that (rAr1)"/#P
−

is bounded, if A is bounded from below.

Proof of Theorem 3. (i) The proof of (i) is essentially the same as that for

bounded A.

(ii) Pick a"µ
n
(AQP

+
B), set f (x)B min²x, a´, let Ah B f (A), and let us assume

that

inf
M+

Z1
+

dim(M+)=n

sup
} `M+

G1
−s}s="

©},Ah }ª¯ inf
M+

ZΛ
+P+

$(A)
dim(M+)=n

sup
} `M+

G1
−s}s="

©},Ah }ª, (2)

where 1
+
on the left-hand side is replaced by Λ

+
P
+
$(A) on the right-hand side. Since

A&Ah the left-hand side is bounded from above by λ
n
(A) while the right-hand side

is bounded from below by µ
n
(Ah QP

+
B). The latter is proved in the same way as in the

bounded case. Since Ah and A have the same spectrum in (®¢, a) it follows that

λ
n
(A)&µ

n
(Ah QP

+
B)¯µ

n
(AQP

+
B). (3)

To prove (2) we first show that Λ
+
P
+
$(A) is dense in 1

+
. If this were wrong, then

there would be a }
+
` B

+
f(Λ

+
P
+
B)v ¯Λ

+
BfP

−
B with }

+
1 0, so that }

+
¯

(rAr1)−"/# (rAr1)"/#P
−
Λ

+
}
+
`1(A) and we would arrive at the contradiction 0!

©}
+
,A}

+
ª¯©P

−
}
+
,AP

−
}
+
ª% 0.

Now, pick M
+
Z1

+
, dim(M

+
)¯ n, and ε" 0. Since Λ

+
P
+
$(A) is dense in 1

+
, we

can find a subspace Mε

+
ZΛ

+
P
+
$(A) with dim(Mε

+
)¯ n such that for each }ε

+
`Mε

+
,

s}ε

+
s% 1, there is a }

+
`M

+
with

s}
+
®}ε

+
s% ε and s}

+
s¯ s}ε

+
s. (4)

(To prove the existence of Mε

+
approximate the vectors of a given basis of M

+
with

vectors of Λ
+
P
+
$(A).) Now, equation (2) follows if

sup
} `M+

G1
−

s}s="

©},Ah }ª& lim inf
ε!¢

sup
}ε`M

ε

+
G1

−
s}εs="

©}ε,Ah }εª. (5)

Since, by (3), the supremum on the right-hand side is not smaller than µ
n
(AQP

+
B)

which is non-negative, we can restrict it to vectors }ε with ©}ε,Ah }εª&®1. To prove

(5) it therefore suffices, if for any given }ε `Mε

+
G1

−
with s}εs¯ 1 and ©}ε,Ah }εª&

®1 there exists a } `M
+
G1

−
(which will depend on }ε) with s}s¯ 1 such that

©}ε,Ah }εª®©},Ah }ª! 0 (ε! 0) (6)

uniformly in }ε. Pick such a }ε and let }ε
³ BΛ³ }ε. We define }B}

+
}ε

−
where }

+
`

M
+

obeys (4), so that s}s¯ s}εs, and we define a semi-norm rrr[rrr on 1(A) by

rrrψrrr#B©ψ, (a®Ah )ψª with a `2 as in the definition of Ah . Then

)©}ε,Ah }εª®©},Ah }ª)¯ r rrr}εrrr#®rrr}rrr#r% rrr}ε®}rrr (2rrr}εrrrrrr}ε®}rrr).

Here rrr}εrrr#% a1 because ©}ε,Ah }εª&®1, and

rrr}ε®}rrr#¯ rrr}ε

+
®}

+
rrr#

%®©(}ε

+
®}

+
),AP

−
(}ε

+
®}

+
)ªas}ε

+
®}

+
s#

% consts}ε

+
®}

+
s#% const ε#,

because (rAr1)"/#P
−
Λ

+
is a bounded operator. This proves (6) and thus the

theorem. *
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3. Applications

In this section we give two applications of Theorem 3. The first exhibits its

perturbative character and is of abstract nature. It assumes that A¯A
!
A

"
where

A
!
has a gap (a, b) in the spectrum while A may have discrete eigenvalues in this gap.

These eigenvalues are provided by the minimax principle for the decomposition B¯
P
(a,¢)

(A
!
) BGP

(−¢,a]
(A

!
) B. The operator A

!
could be, for example, a periodic

Schro$ dinger operator or the free Dirac operator. As a second application we show

that the nth eigenvalue of the Coulomb–Dirac operator is an upper bound for the nth

eigenvalue of the so-called Brown–Ravenhall operator. (See the introduction.)

3.1. The case of relati�ely compact perturbations of self-adjoint operators with

spectral gap

T 5. Let A¯A
!
A

"
be the sum of the self-adjoint operators A

!
and A

"
`

B(B) in the Hilbert space B. Suppose there are real numbers a! b such that

(i) σ(A
!
)f(a, b)¯W ;

(ii) 0&A
"
"®rb®ar ;

(iii) A
"
(A

!
i)−" is compact;

and let Λ
+
¯P

(a,¢)
(A

!
) and Λ

−
¯ 1®Λ

+
. Then

µ
n
(AQP

(a,¢)
(A) B)¯ inf

M+
ZΛ

+
$(A

!
)

dim(M+)=n

sup
} `M+

GΛ
−
$(A

!
)

s}s="

©},A}ª.

Proof. We apply Theorem 3 to A®a, B³ ¯Λ³ B and 1¯$(A)¯$(A
!
). Then

1³ ¯Λ³$(A
!
) so that the right-hand side is exactly λ

n
(A). By definition of Λ³ and

by hypothesis (ii) we have ©}, (A®a)}ª% 0 for } `Λ
−
$(A

!
) and ©}, (A®a)}ª" 0

for } `Λ
+
$(A

!
). Thus

µ
n
(AQP

(a,¢)
(A) B)& λ

n
(A)& a

by Theorem 3 and the definition of λ
n
(A). If eigenvalues of A accumulate from above

at a then µ
n
(AQP

(a,¢)
(A) B)¯ a for all n and the theorem is proved. It remains to show

that (rAr1)"/#P
−
Λ

+
is bounded in the case where (a, aε) contains no eigenvalues

for some ε" 0.

From condition (iii) on A
"
it follows that σ

ess
(A)¯σ

ess
(A

!
)Z2c(a, b) and hence

(a, aε)Z (ρ(A)fρ(A
!
)). In particular the path γ :2MN# with γ(t)¯ aε}2®it is

contained in ρ(A)fρ(A
!
). Therefore

P
+
¯

1

2


1

2πi&γ

dz(z®A )−"

and similarly for Λ
+

and A
!

(Kato [8, p. 359]) which leads us to

(rAr1)"/# (Λ
+
®P

+
)¯

1

2πi&γ

dz(rAr1)"/# (z®A)−" (®A
"
) (z®A

!
)−".

Since A
"

is bounded and s(A1)"/# (z®A)−"A
"
(z®A

!
)−"s% const(1rtr)−$/# the

integral converges absolutely which implies that Ran(Λ
+
®P

+
)Z1(A) and that

(rAr1)"/# (Λ
+
®P

+
) is bounded. Hence (rAr1)"/#P

−
Λ

+
¯P

−
(rAr1)"/# (Λ

+
®P

+
) is

bounded as well. *
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3.2. Relation between the spectra of Dirac and no-pair Hamiltonians

Let B¯L#(2$ ;#%) and let α
"
,α

#
,α

$
and β denote the usual Dirac matrices

α
i
¯ 00σ

i

σ
i

0 1 , β¯ 010
0

®11 ,
σ
i
being the Pauli matrices. Let H

!
¯®iα[¡βm with $(H

!
)¯H "(2$,#%) and let H

denote the closure of the operator H
!
V where

0&V(x)&®
κ

rxr
, κ!

o3

2
.

Then H is self-adjoint [16] and $(H )¯$(H
!
) (Landgren and Rejto [10] and

Landgren et al. [11]). Let Λ
+
BP

(!,
¢)

(H
!
), and consider the quadratic form

}PN©},H}ª, } `Λ
+
$(H

!
).

It is bounded from below (in fact even positive [20]) and closable as recently shown

by Evans et al. [6]. The closure defines a unique self-adjoint operator which we denote

by B.

T 6. With the abo�e notations we ha�e for all n

µ
n
(B)%µ

n
(HQP

(−m,¢)
(H ) B).

Proof. Apply Theorem 3 to A¯Hm, B³ ¯Λ³ B and 1¯$(H
!
)¯$(H ).

Then 1³ ¯Λ³$(H
!
), and for all } `Λ

−
$(H

!
) we have ©}, (Hm)}ª%

©}, (H
!
m)}ª% 0. Hence µ

n
(HQP

(−m,¢)
(H ) B)& λ

n
(H ) by Theorem 3(i). On the other

hand we get by dropping 1
−
¯Λ

−
$(H

!
) in the definition of λ

n
(H )

λ
n
(H )& inf

M+
ZΛ

+
$(H

!
)

dim(M+)=n

sup
} `M+s}s="

©},H}ª¯µ
n
(B). *

4. Perturbed supersymmetric Dirac operators

In this section we derive the minimax principle for the Dirac operator and the

decomposition of a Dirac spinor into upper and lower (large and small) components.

(Note that Theorem 3 cannot be applied to this case, because the boundedness

assumption is not satisfied.) In particular we prove formula (1) of Talman [18], and

Datta and Deviah [3], for certain bounded potentials. Moreover, we show that the

Dirac operator with suitable non-positive potential has at least as many discrete

eigenvalues as the Schro$ dinger operator with the same potential. These results

generalize to systems including a magnetic field.

4.1. The minimax principle of Talman and Datta and De�iah

To compensate for the boundedness of (rAr1)"/#P
−
Λ

+
in the proof of our

minimax principle it suffices that the considered operator has the form QβmV

where Qβm is a so-called Dirac operator with supersymmetry and V is a bounded
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perturbation. It is therefore natural to work with the class of such generalized Dirac

operators, which in particular includes Dirac operators with magnetic and (bounded)

electric potential.

D 7. Let Q be a self-adjoint operator in a Hilbert space B and let m `
2

+
. Furthermore let β¯ β* `B(B) with σ(β)¯²³1´. If β$(Q)Z$(Q) and

βQQβ¯ 0 on $(Q)

then Qβm is called a Dirac operator with supersymmetry.

R 8. A consequence of the anticommutativity βQQβ¯ 0 is that

(Qβm)#¯Q#m#&m# which means that the spectrum of Qβm has the gap

(®m,m).

A typical example of a Dirac operator with supersymmetry is the Dirac operator

α[(®i¡A)βm with magnetic field ¡¬A(x). For many other examples we refer to

Thaller [19]. In the following we will use the notations β³ B 1}2(1³β), B³ ¯ β³ B and

V³³ B β³Vβ³QB³ if V `B(B).

T 9. Let H
!
¯Qβm be a Dirac operator with supersymmetry in the

Hilbert space B and let V `B(B) with V*¯V. Let HBH
!
V, P

+
BP

(!,
¢)

(H ) and

λ
n
(H )B inf

M+
Zβ

+
$(H)

dim(M+)=n

sup
} `M+

Gβ
−
$(H)

s}s="

©},H}ª.

(i) If V
−−

%m, then

λ
n
(H )%µ

n
(HQP

+
B).

(ii) If V
++

"®m and (V®a)H−"

!
is compact for some a `2 with ®m! a%m, then

λ
n
(H )&µ

n
(HQP

+
B).

The theorem applies in particular to the usual Dirac operator where Q¯®iα[¡
and V is multiplication with a real-valued function.

C 10. Let H¯®iα[¡βmV where V `L¢(2$). Suppose that

V(x)! 0 as rxr!¢ and ®2m!V(x)% 0 almost e�erywhere. Then for all n

µ
n
(HQP

(−m,¢)
(H ) B)¯ inf

M+
Zβ

+
$(H)

dim(M+)=n

sup
} ` M+

Gβ
−

$(H)
s}s="

©},H}ª. (7)

R 11. Specializing our assertion to n¯ 1 proves that (1) with the

correction g1 0 is indeed the lowest discrete eigenvalue of H. Note, however, that the

requirement g1 0 cannot be dropped. Already in the case of a diagonal matrix with

eigenvalues 1 and ®1 one can easily prove the corresponding assertion without this

additional condition false.

Proof of Theorem 9. Assertion (i) follows from Theorem 3(i) for (A,Λ³)¯
(H, β³) because ©},H}ª¯©}, (®mV )}ª% 0 for all } ` B

−
.

(ii) Since (V®a)H−"

!
is compact, σ

ess
(H )f(®ma,ma)¯W, and in particular

σ
ess

(H )f(0, ε)¯W for some ε" 0 by assumption on a. If the eigenvalues of H

accumulate from above at 0, then the assertion is trivial, because then µ
n
(HQP

+
B)¯
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0 for all n, while λ
n
(H )& 0 as a consequence of ©},H}ª¯©}, (mV

+
)}ª& 0 on

β
+
$(Q). We may therefore assume that (0, ε)Z ρ(H ) for some ε" 0 (ε%m). It now

suffices to show that

λ
n
(H )¯ inf

M+
Zβ

+P+
$(H)

dim(M+)=n

sup
} `M+

Gβ
−

$(H)
s}s="

©},H}ª (8)

because (ii) then follows in the same way as Theorem 3(ii) followed from (2). To prove

(8) we show that β
+
P
+
$(H ) is dense in β

+
$(H ) with respect to the form-norm of H

!
.

We do this in three steps, step (1) and step (2) being prerequisites for step (3).

Step 1. Let P!
+
BP

(!,
¢)

(H
!
). Then rH

!
r"/# (P

+
®P!

+
) is a bounded operator.

For the proof of this assertion see the proof of Theorem 5 and recall that

(0, ε)Z ρ(H ).

Step 2. Let P
−
¯ 1®P

+
. Then P

−
BfB

+
Z1(H

!
).

Let P!
−
¯ 1®P!

+
and pick } `P

−
BfB

+
. Then }¯P

−
}¯ (P

−
®P!

−
)}P!

−
} and

β
−
}¯ 0. Therefore

β
−
P!

−
}¯ β

−
(P

+
®P!

+
)}.

Since β
−

commutes with rH
!
r"/# the right-hand side belongs to 1(H

!
) by step (1).

Hence 1(H
!
) ¢ β

−
P!

−
}¯ β

−
P!

−
β
+
}. Using P!

−
¯ 1}2(1®rH

!
r−"H

!
) and Qβ

+
$(Q)Z B

−

we get ®QrH
!
r−"} `1(H

!
) which implies that

¢" sQrH
!
r−"/#}s#smrH

!
r−"/#}s#¯©}, (Q#m#) rH

!
r−"}ª¯©}, rH

!
r}ª.

This proves step (2).

Step 3. The set β
+
P
+
$(Q)Z β

+
$(Q) is dense with respect to the norm }PN

s rH
!
r"/#}s.

To see this claim, note that it is equivalent to

β
+
rH

!
r"/#P

+
$(Q)

B ¯ B
+

because rH
!
r"/# commutes with β

+
. Let us assume that this is wrong. Then there exists

a }
+
` B

+
with }

+
1 0 and

©}
+
, rH

!
r"/#P

+
}ª¯ 0 c} `$(Q). (9)

Writing now P
+
¯P

+
®P!

+
P!

+
and }¯ rH

!
r−"/#ψ with ψ `1(H

!
) one finds

rH
!
r−"/#B*}

+
P!

+
}
+
¯ 0 (10)

where B¯ rH
!
r"/# (P

+
®P!

+
) `B(B) by step 1. Thus P!

+
}
+
`1(H

!
) and hence 1(H

!
) ¢

2β
+
P!

+
}
+
¯ β

+
(1®rH

!
r−"H

!
)}

+
¯ (1mrH

!
r−")}

+
, that is, }

+
`1(H

!
). Now (9) and

step 2 mean that ψ
+
¯ rH

!
r"/#}

+
`P

−
BfB

+
Z1(H

!
), which leads to the contradiction

0!©ψ
+
, (mV )ψ

+
ª¯©ψ

+
,Hψ

+
ª¯©P

−
ψ

+
,HP

−
ψ

+
ª% 0.

This proves the theorem. *

4.2. Comparing discrete eigen�alues of Dirac and SchroX dinger operators

As an application of Theorem 9 we now compare the number of eigenvalues in

(®m,m) of the Dirac operator with the number of negative eigenvalues of the

Schro$ dinger operator with the same potential.
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T 12. Let H
!
¯Qβm be a Dirac operator with supersymmetry in the

Hilbert space B and suppose that V¯V* `B(B) commutes with β and VH−"

!
is compact.

Let H¯H
!
V. If 0&V

−−
and V

++
"®2m, then

dimP
(−m,m)

(H ) B&dimP
(−¢,!)

(Q#}(2m)V ) B
+
.

R 13. By Weyl’s theorem the spectrum of H
!
V in (®m,m) is discrete

because σ(H
!
)f(®m,m)¯W and VH−"

!
is compact. Similarly the spectrum of

Q#}2mV in (®¢, 0) is discrete because σ(Q#}2m)Z [0,¢) and V(Q#m#)−"¯
VH−"

!
H−"

!
is compact.

Let us again specialize to the case where Q¯®iα[¡ and V is multiplication with

a real-valued function.

C 14. Suppose that V `L¢(2$), V(x)! 0 as rxr!¢ and ®2m!
V(x)% 0 almost e�erywhere. Then, counting multiplicity, the operator ®iα[¡βmV

has at least as many discrete eigen�alues as®∆}(2m)V on L#(R$,##).

This can be understood as an expression of the fact that the non-relativistic kinetic

energy of an electron is at least as large as the relativistic one: p#}(2m)m&
op#m#. The proof of Theorem 12 is based on the minimax principle Theorem 9

and the following lemma, where D¯QQβ
+
$(Q). Note that Q has the form

Q¯ 00D
D*

0 1 (11)

with respect to the decomposition B¯ B
+
G B

−
(Thaller [19]).

L 15. Assume the hypotheses of Theorem 12. Define

E(}
+
)¯ sup

}
−
`β

−
$(Q)

©},H}ª
©},}ª )}=}

++
}
−

for }
+
` β

+
$(Q)c²0´. If E(}

+
)" 0 then

E(}
+
)¯©}

+
, [D*(mE(}

+
)®V

−−
)−"DmV

++
]}

+
ª©}

+
,}

+
ª−".

Proof. By the special form of Q given in (11) and because V `B(B), the map

}
−
PN©},H}ª is continuous. Therefore

E(}
+
)¯ sup

}
−
`B

−

©},H}ª
©},}ª )}=}

++
}
−

. (12)

If there exists a maximizer }
−
` B

−
of (12) then it obeys the corresponding

Euler–Lagrange equation }
−
¯ (mE(}

+
)®V

−−
)−"D}

+
. Substitute this for }

−
on the

right-hand side of

E(}
+
)©}

+
,}

+
ª¯©},H}ª®E(}

+
)©}

−
,}

−
ª

to get the claimed equation. It remains to prove the existence of a maximizer.

Choose a sequence }n ¯}
+
}n

−
for which

lim
n!¢

©}n,H}nª
©}n,}nª

¯E(}
+
).
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Since E(}
+
)" 0 also ©}n,H}nª" 0 for large n and

0!©}n,H}nª¯©}
+
, (mV

++
)}

+
ª2Re©D}

+
,}n

−
ª©}n

−
, (®mV

−−
)}n

−
ª

% const2sD}
+
s s}n

−
s®m©}n

−
,}n

−
ª.

This implies that sup
n
s}n

−
s!¢. Hence there exists a }$

−
` B

−
and a weakly convergent

subsequence, call it }n

−
again, with }n

−
U}$

−
as n!¢. Since ®mV

−−
! 0 the map

}
−
PN©},H}ª is weakly upper semicontinuous. The map }

−
PN©},}ª is weakly

lower semicontinuous. Thus

E(}
+
)¯ lim

n!¢

©}n,H}nª
©}n,}nª

% lim sup
n!¢

©}n,H}nª lim sup
n!¢

1

©}n,}nª

%
©}*,H}*ª
©}*,}*ª

%E(}
+
)

where }*¯}
+
}$

−
. Therefore }$

−
is a maximizer. *

Proof of Theorem 12. Since P
(−¢,!)

((1}2m)Q#V ) B
+
¯P

(−¢,!)
((1}2m)D*D

V
++

) B
+
, it suffices to show that

µ
n
(HQP

(−m,¢)
(H ) B)&m 3̄ µ

n 0 1

2m
D*DV

++1& 0. (13)

By Theorem 9(ii) applied to Vm and a¯m

λ
n
(H )&µ

n
(HQP

(−m,¢)
(H ) B)&m. (14)

Here we can add the condition β
+
}1 0 in the definition of λ

n
(H ), because

©},H}ª% 0, if β
+
}¯ 0. It then follows from (14) and Lemma 15 that for every

subspace M
+
Z β

+
$(Q) with dim(M

+
)¯ n

m% sup
} `M+

Gβ
−

$(H)
s}s="

©},H}ª¯ sup
}
+

`M+
s}

+
s="

E(}
+
)

¯ sup
}
+

`M+
s}

+
s="

©}
+
, [D*(mE(}

+
)®V

−−
)−"DmV

++
]}

+
ª©}

+
,}

+
ª−". (15)

Obviously the second and third supremum may be restricted to }
+
`M

+
with E(}

+
)&

m(1®2ε) and ε" 0 small. Then (mE(}
+
)®V

−−
)−"% (2m(1®ε))−" and thus (15)

implies that

0%µ
n 0 1

2m(1®ε)
D*DV

++1 0! ε! 1.

To see that this proves (13) multiply both sides by (1®ε) and use that V
++

is

bounded. *
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Note added in proof. Theorem 3 has been strengthened to make it applicable to

Dirac operators with Coulomb potentials (see Griesemer, M., Lewis and Siedentop,

H., Doc. Math. J. DMV 4 (1999) 275–283).
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