A relative Yoneda Lemma (manuscript)

M. Künzer

March 14, 2002

Abstract

We construct set-valued right Kan extensions via a relative Yoneda Lemma.

A remark of the referee

As the referee pointed out, (2.1) 'can essentially be found in much greater generality' in
[Ke 82] G. M. Kelly, Basic concepts of enriched category theory, LMS Lecture Notes 64, Cambridge University Press, 1982.

He continued to explain that to this end, one reformulates the formula $[\mathrm{Ke} 82,4.6$ (ii), p. 113], given in terms of weighted limits, by means of [Ke 82, 3.10, p. 99] and [Ke 82, 2.2, p. 58].

Therefore, we withdraw this note as a preprint. Since (2.1, 3.1) might be of some use for the working mathematician, we leave it accessible as a manuscript. When using (2.1), the reader is asked to cite [Ke 82], when using (3.1), he is asked to cite [K 58].

0 Introduction

0.1 A relative Yoneda Lemma

The category of set-valued presheaves on a category C shall be denoted by C^{\wedge}. The Yoneda embedding, sending x to $C(-, x)$, shall be denoted by $C \xrightarrow{y_{C}} C^{\wedge}$. The presheaf category construction being contravariantly functorial, we obtain the

Proposition (2.1, the relative Yoneda Lemma). Given a functor $C \xrightarrow{f} D$, we have

$$
f^{\wedge} \dashv y_{D}^{\wedge} \circ f^{\wedge \wedge} \circ y_{C^{\wedge}} .
$$

There is a set theoretical caveat. In particular, this formula is correct only after some additional comments, see (2.1).
The right hand side is also known as the set-valued right Kan extension functor along $C^{o} \xrightarrow{f^{o}} D^{o}$. There are several formulas for right Kan extensions in the literature, for instance using ends [ML 71, X.4], all of them necessarily yielding the same result up to natural equivalence, by uniqueness of the adjoint. In particular, (2.1) is merely still another such a formula.

Letting $f=1_{C}$, we recover the (absolute) Yoneda Lemma, thus giving a solution to the exercise [ML 71, X.7, ex. 2]. Concerning its origin, Mac Lane recalled the following incident, taking place in around 1954/55 [ML 98].

Mac Lane, then visiting Paris, was anxious to learn from Yoneda, and commenced an interview with Yoneda in a café at the Gare du Nord. The interview was continued on Yoneda's train until its departure. In its course, Mac Lane learned about the lemma and subsequently baptized it.

0.2 A relative co-Yoneda Lemma

Suppose given a functor $C \xrightarrow{k} Z$. KAN constructed in [K 58, Th. 14.1] the left adjoint to the functor from Z to C^{\wedge} that sends $z \in Z$ to $Z(k(-), z) \in C^{\wedge}$. Now given a functor $C \xrightarrow{f} D$, we can specialize to $Z=D^{\wedge}$ and to a functor k that sends $c \in C$ to ${ }_{D}(-, f c) \in$ D^{\wedge}, thus obtaining a left adjoint to $C^{\wedge} \stackrel{f^{\wedge}}{\leftarrow} D^{\wedge}$. (KAN's notation is as follows. Identify $\mathcal{Z}=Z, \mathcal{V}=C, \mathfrak{M}^{\mathcal{V}}=C^{\wedge}$. The functor $H^{\mathcal{V}}\left(\mathcal{Z}_{\mathcal{V}}, \mathcal{Z}\right)$ maps from $\mathcal{Z}_{\mathcal{V}}, \mathcal{Z}$ to $\mathfrak{M}^{\mathcal{V}}$, i.e. from (the category of covariant functors from \mathcal{V} to $\mathcal{Z}) \times \mathcal{Z}$ to the category of presheaves on \mathcal{V}. Given $\mathcal{V} \xrightarrow{k} \mathcal{Z}$ and an object $z \in \mathcal{Z}$, the pair (k, z) is mapped to $\mathcal{Z}(-, z) \circ k$.) We shall rephrase this special case of KAN's formula as follows, in order to be able to compare the left and the right adjoint of f^{\wedge}.
Let $C^{\vee}:=\left(C^{o}\right)^{\wedge}$. The co-Yoneda embedding, sending x to $d(x,-)$, shall be denoted by $C \xrightarrow{y_{C}^{\prime}} C^{\vee}$. There is a tensor product $C^{\wedge} \times C^{\vee} \longrightarrow($ Set $)$, sending $v \times v^{\prime}$ to $v \otimes_{C} v^{\prime}$. The according univalent functor that sends v to $v \otimes_{C}-$ shall be denoted by $C^{\wedge} \xrightarrow{z_{C}} C^{\vee \vee}$.
Proposition ([K 58], cf. 3.1, the relative co-Yoneda Lemma). Given a functor $C \xrightarrow{f} D$, we have

$$
y_{D}^{\prime \vee} \circ f^{\vee \vee} \circ z_{C} \dashv f^{\wedge}
$$

Again, there is a set-theoretical caveat.

0.3 Acknowledgements

I would like to thank F. Borceux for pointing out set theoretical difficulties. I would like to thank R. Rentschler for kind hospitality. The author received support from the EU TMR-network 'Algebraic Lie Representations', grant no. ERB FMRX-CT97-0100.

0.4 Notation

(i) We write composition of morphisms on the right, $\xrightarrow{a} \xrightarrow{b}=\xrightarrow{a b}$. However, we write composition of functors on the left, $\xrightarrow{f} \xrightarrow{g}=\xrightarrow{g \circ f}$.
(ii) Given a functor $C \xrightarrow{f} D$, the opposite functor between the opposite categories is denoted by $C^{o} \xrightarrow{f^{o}} D^{o}$.
(iii) Given functors $C \underset{f^{\prime}}{\stackrel{f}{\longrightarrow}} D \underset{g^{\prime}}{\stackrel{g}{\longrightarrow}} E$ and natural transformations $f \xrightarrow{\alpha} f^{\prime}$ and $g \xrightarrow{\beta} g^{\prime}$, we denote by $g \circ f \xrightarrow{\beta \circ f} g^{\prime} \circ f$ the natural transformation defined by $(\beta \circ f) c=\beta(f c)$ for $c \in C$ and by $g \circ f \xrightarrow{g \circ \alpha} g \circ f^{\prime}$ the natural transformation defined by $(g \circ \alpha) c=g(\alpha c)$ for $c \in C$. More generally,

$$
\left(g \circ f \xrightarrow{\beta \circ \alpha} g^{\prime} \circ f^{\prime}\right):=\left(g \circ f \xrightarrow{\beta \circ f} g^{\prime} \circ f \xrightarrow{g^{\prime} \circ \alpha} g^{\prime} \circ f^{\prime}\right)=\left(g \circ f \xrightarrow{g \circ \alpha} g \circ f^{\prime} \xrightarrow{\beta \circ f^{\prime}} g^{\prime} \circ f^{\prime}\right) .
$$

1 Universes

Since we will iterate the construction 'forming the presheaf category over a category' once, we shall work in the setting of universes, which enables us to do such 'large' constructions when keeping track of the universe needed. Therefore, we start with a preliminary section to recall this well-known technique from [SGA 4 I, App.] and to fix some notation.

Definition 1.1 (N. Bourbaki, [SGA 4 I, App., 1, Déf. 1])

A universe is a set \mathfrak{U} that satisfies the conditions (U1-4).
(U1) $x \in y \in \mathfrak{U}$ implies $x \in \mathfrak{U}$.
(U2) $x, y \in \mathfrak{U}$ implies $\{x, y\} \in \mathfrak{U}$.
(U3) $x \in \mathfrak{U}$ implies $\mathfrak{P}(x) \in \mathfrak{U}$.
(U4) Given $I \in \mathfrak{U}$ and a map $I \longrightarrow \mathfrak{U}$, $i \longmapsto x_{i}$, the union $\bigcup_{i \in I} x_{i}$ is in \mathfrak{U}.

Here $\mathfrak{P}(x)$ denotes the power set of x.

Remark 1.2

(i) $x \in \mathfrak{U}$ implies $\{x\}=\{x, x\} \in \mathfrak{U}$.
(ii) $x \subseteq y \in \mathfrak{U}$ implies $x \in \mathfrak{U}$. In particular, if y surjects onto some set z, then z is in bijection to an element of \mathfrak{U}.
(iii) Let $(x, y):=\{x,\{x, y\}\}$. The element x is the unique element of

$$
\{a \in(x, y) \mid \text { for all } b \in(x, y) \backslash\{a\} \text { we have } a \in b\}
$$

since $\{x, y\} \in x$ would contradict von Neumann's axiom, asserting that any nonempty set S contains an element that has an empty intersection with S. Now $\{x, y\}$ is the unique element of $(x, y) \backslash\{x\}$, and y is the unique element of $\{x, y\} \backslash\{x\}$.
(iv) $X \in \mathfrak{U}$ and $Y \in \mathfrak{U}$ implies $X \times Y:=\bigcup_{x \in X} \bigcup_{y \in Y}\{(x, y)\} \in \mathfrak{U}$.
(v) Given $I \in \mathfrak{U}$ and a map $I \longrightarrow \mathfrak{U}, i \longmapsto x_{i}$, the disjoint union $\coprod_{i \in I} x_{i}:=\bigcup_{i \in I} X_{i} \times\{i\}$ is in \mathfrak{U}.
(vi) Given $I \in \mathfrak{U}$ and a map $I \longrightarrow \mathfrak{U}, i \longmapsto x_{i}$, the product $\prod_{i \in I} x_{i} \subseteq \mathfrak{P}\left(\coprod_{i \in I} x_{i}\right)$ is in \mathfrak{U}.

Assume given universes $\mathfrak{U}, \mathfrak{V}$ and \mathfrak{W} such that

$$
\emptyset \neq \mathfrak{U} \in \mathfrak{V} \in \mathfrak{W} .
$$

This may be achieved by means of Bourbaki's axiom (A.6) in [SGA 4 I, App., 4], which says that any set is element of some universe. Note that $\mathfrak{U} \subseteq \mathfrak{V} \subseteq \mathfrak{W}$.
For set theoretical purposes the following definition is convenient.

Definition 1.3 (cf. [M 65, I.2]) A small category C is a tuple ($M, K \subseteq M \times M \times$ $M), M$ being a set, subject to the conditions (i-iii). We write $M=$: Mor C, the set of morphisms of $C . K$ is the composition law of C.
(i) For every $(a, b) \in M \times M$ there exists at most one $c \in M$ such that $(a, b, c) \in K$. In this case, we write $c=a b$ and say that '(the composite) ab exists'.

Let

$$
\begin{aligned}
\operatorname{Ob} C:=\{a \in M \quad \mid & \text { for all } b \text { for which ba exists, we have } b a=b, \text { and } \\
& \text { for all } c \text { for which ac exists, we have } a c=c .\} \subseteq \operatorname{Mor} C
\end{aligned}
$$

be the set of objects of C. If $a \in \operatorname{Ob} C$, we also write $a=: 1_{a}$.
(ii) For every $a \in M$ there exists a unique source element $s(a) \in \mathrm{Ob} C$ such that $s(a) a$ exists, and a unique target element $t(a) \in \mathrm{Ob} C$ such that at (a) exists.
(iii) For $a, b \in M$ such that the composite $a b$ exists, the composites $t(a) b$ and as(b) exist.
(iv) Given $a, b, c \in M$ such that $a b$ and bc exist. Then $(a b) c$ and $a(b c)$ exist and equal each other.

The set of morphisms with start x and target y shall be denoted by $d(x, y)$.
Suppose given $a, b \in M$. Note that if $a b$ exists, we have $s(a b)=s(a)$ and $t(a b)=t(b)$. Note that $s(s(a))=s(a), t(t(a))=t(a)$. Note that $a b$ exists iff $t(a)=s(b)$.

Definition 1.4 A set X is said to be \mathfrak{U}-small if there exists a bijection from X to an element of \mathfrak{U}. The category of \mathfrak{U}-small sets is denoted by $\left(\operatorname{Set}_{\mathfrak{U}}\right)$. Note that by a skeleton argument, ($\operatorname{Set}_{\mathfrak{l}}$) is equivalent to the category of sets contained as elements in \mathfrak{U}, denoted by $\left(\operatorname{Set}_{\mathfrak{U}}^{0}\right)$.
A small category C is said to be \mathfrak{U}-small if $\operatorname{Mor} C$ is \mathfrak{U}-small. A category C is said to be essentially \mathfrak{U}-small if it is equivalent to a \mathfrak{U}-small category, or, equivalently, if it has a \mathfrak{U}-small skeleton.

Remark 1.5 The category $\left(\operatorname{Set}_{\mathfrak{L}}^{0}\right)$ is \mathfrak{V}-small since $\coprod_{(x, y) \in \mathfrak{U} \times \mathfrak{U}}\left(\operatorname{Set}_{\mathfrak{U}}{ }^{\mathfrak{l}}\right)(x, y)$ is an element of \mathfrak{V}. Hence the category $\left(\operatorname{Set}_{\mathfrak{l}}\right)$ is essentially \mathfrak{V}-small.

Given categories C and D, we denote the category of functors mapping from C to D by $\llbracket C, D \rrbracket$.

Lemma 1.6 If C and D are \mathfrak{U}-small, then $\llbracket C, D \rrbracket$ is \mathfrak{U}-small. If C and D are essentially \mathfrak{U}-small, then $\llbracket C, D \rrbracket$ is essentially \mathfrak{U}-small.

Using induced equivalences, it suffices to prove the first assertion. But then

$$
\operatorname{Ob} \llbracket C, D \rrbracket \subseteq \mathfrak{P}(\operatorname{Mor} C \times \operatorname{Mor} D)
$$

is \mathfrak{U}-small. Moreover, given $f, g \in \llbracket C, D \rrbracket$, the set

$$
\llbracket C, D \beth(f, g) \subseteq \coprod_{x \in \mathrm{Ob} C} D(f x, g x)
$$

is \mathfrak{U}-small. Hence Mor $\llbracket C, D \rrbracket$ is \mathfrak{U}-small.

Lemma 1.7 Given an essentially \mathfrak{U}-small category C, the category

$$
C^{\wedge \mathfrak{U}}:=\llbracket C^{o},\left(\operatorname{Set}_{\mathfrak{U}}\right) \rrbracket
$$

of $\left(\operatorname{Set}_{\mathfrak{U}}\right)$-valued presheaves over C is essentially \mathfrak{V}-small. Sometimes we write $C^{\wedge}=C^{\wedge \mathfrak{u}}$ if the universe is unambiguous. Likewise, the category

$$
C^{\vee_{\mathfrak{U}}}:=\llbracket C,\left(\operatorname{Set}_{\mathfrak{U}}\right) \rrbracket
$$

of $\left(\operatorname{Set}_{\mathfrak{U}}\right)$-valued copresheaves over C is essentially \mathfrak{V}-small. Sometimes we write $C^{\vee}=$ $C^{\vee_{\mathfrak{U}}}$.

This follows from (1.5, 1.6).

Definition 1.8 Given an essentially \mathfrak{U}-small category C, we have the Yoneda embedding

$$
\begin{aligned}
& C \xrightarrow{y_{C}} C^{\wedge_{\mathfrak{L}}} \\
& x \longrightarrow \\
& C(-, x)
\end{aligned}
$$

and the co-Yoneda embedding

$$
\begin{aligned}
& C \xrightarrow{y_{C}^{\prime}} C^{\vee_{\mathfrak{u}}} \\
& x \longrightarrow \\
& C(x,-)
\end{aligned}
$$

For a functor $C \xrightarrow{f} D$, we denote

$$
\begin{array}{rll}
C^{\wedge \mathfrak{U}} & \leftarrow^{f^{\wedge}} & D^{\wedge_{\mathfrak{U}}} \\
\left(u \circ f^{o} \xrightarrow{\beta \circ f^{o}} u^{\prime} \circ f^{o}\right) & \longleftarrow & \left(u \xrightarrow{\beta} u^{\prime}\right) .
\end{array}
$$

Given functors $C \underset{g}{\stackrel{f}{\longrightarrow}} D$ and a natural transformation $f \xrightarrow{\alpha} g$, we denote by $f^{\wedge} \stackrel{\alpha^{\wedge}}{\longleftrightarrow} g^{\wedge}$ the natural transformation that is given at $u \in D^{\wedge \mathfrak{L}}$ by the morphism $u \circ f^{o} \stackrel{u \circ \alpha^{o}}{\leftarrow} u \circ g^{o}$ in $C^{\wedge \mathfrak{A}}$, that evaluated at $c \in C^{o}$ in turn yields ufc $\stackrel{u \propto c}{\longleftrightarrow}$ ugc.
Analogously for $C^{\vee \mathfrak{U}} \stackrel{f^{\vee}}{\leftrightarrows} D^{\vee \mathfrak{U}}$ and $f^{\vee} \xrightarrow{\alpha^{\vee}} g^{\vee}$.

2 The right Kan extension

Proposition 2.1 (the relative Yoneda Lemma) Given essentially \mathfrak{U}-small categories C and D, and a functor $C \xrightarrow{f} D$. Then the right adjoint $C^{\wedge \mathfrak{L}} \xrightarrow{\varphi} D^{\wedge_{\mathfrak{L}}}$ of $C^{\wedge_{\mathfrak{L}}} \stackrel{f^{\wedge}}{\leftarrow} D^{\wedge_{\mathfrak{L}}}$ is given by

Keeping the name of the functor after restricting the image to $D^{\wedge \mathfrak{A}}$, we write shorthand

$$
f^{\wedge} \dashv y_{D}^{\wedge} \circ f^{\wedge \wedge} \circ y_{C^{\wedge}} .
$$

The unit of this adjunction

$$
1_{D^{\wedge}} \xrightarrow{\varepsilon} \varphi \circ f^{\wedge}
$$

at $u \in D^{\wedge \mathfrak{A}}$, i.e.

$$
u \xrightarrow{\varepsilon u} C^{\wedge}\left(f^{\wedge, o} \circ y_{D}^{o}(-), u \circ f^{o}\right),
$$

applied to $d \in D$, is given by

$$
\begin{aligned}
u d & \xrightarrow{\varepsilon u d} C^{\wedge}\left(D\left(f^{o}(-), d\right), u \circ f^{o}\right) \\
x & \longrightarrow(x) \varepsilon u d,
\end{aligned}
$$

where the natural transformation $(x) \varepsilon u d$ sends at $c \in C$

$$
\begin{aligned}
D(f c, d) & \xrightarrow{(x) \varepsilon u d} u f c \\
a & \longrightarrow(a)[((x) \varepsilon u d) c]=(x)\left(u a^{o}\right) .
\end{aligned}
$$

The counit of this adjunction

$$
f^{\wedge} \circ \varphi \xrightarrow{\eta} 1_{C^{\wedge}}
$$

at $v \in C^{\wedge}$, i.e.

$$
C^{\wedge}\left(f^{\wedge, o} \circ y_{D}^{o} \circ f^{o}(-), v\right) \xrightarrow{\eta v} v
$$

applied to $c \in C$, is given by

$$
\begin{aligned}
C^{\wedge}\left(D\left(f^{o}(-), f c\right), v\right) & \xrightarrow{\eta v c} v c \\
\xi & \longrightarrow(\xi) \eta v c=\left(1_{f c}\right) \xi c
\end{aligned}
$$

Since the set

$$
C^{\wedge}(D(f(-), d), v) \subseteq \prod_{c \in \mathrm{Ob}^{\prime} C}\left(\operatorname{Set}_{\mathfrak{L}}\right)\left({ }_{D}(f c, d), v c\right)
$$

is \mathfrak{U}-small, φ exists as the factorization of $y_{D}^{\wedge} \circ f^{\wedge \wedge} \circ y_{C^{\wedge}}$ over the inclusion $D^{\wedge \mathfrak{U}} \subseteq D^{\wedge_{\mathfrak{V}}}$. Various compatibilities need to be verified to ensure the well-definedness of ε and $\eta\left({ }^{1}\right)$.
${ }^{1}$ Given $u \in D^{\wedge \mathfrak{u}}$, we need to see that $u \xrightarrow{\varepsilon u} \varphi \circ f^{\wedge}(u)$ is a natural transformation. Suppose given $d^{\prime} \xrightarrow{a} d$ in D. We have to show that for any $x \in u d$

$$
(x)(\varepsilon u d)\left(\left(\varphi \circ f^{\wedge}\right) u a^{o}\right)=(x)\left(u a^{o}\right)\left(\varepsilon u d^{\prime}\right)
$$

is an equality of natural transformations from ${ }_{D}\left(f^{\circ}(-), d^{\prime}\right)$ to $u \circ f^{\circ}$. At $c \in C$, the element $f c \xrightarrow{a^{\prime}} d^{\prime}$ is mapped by the left hand side to $(x)\left(u\left(a^{\prime} a\right)^{o}\right)$, and by the right hand side to $\left(x\left(u a^{o}\right)\right)\left(u a^{\circ o}\right)$.
We need to see that $1_{D^{\wedge \mathfrak{u}}} \xrightarrow{\varepsilon} \varphi \circ f^{\wedge}$ is a natural transformation. Suppose given $u \xrightarrow{s} u^{\prime}$ in $D^{\wedge \mathfrak{u}}$. We have to show that for any $d \in D$ and any $x \in u d$

$$
(x)(s d)\left(\varepsilon u^{\prime} d\right)=(x)(\varepsilon u d)\left(\left(\varphi \circ f^{\wedge}(s)\right) d\right)
$$

is an equality of natural transformations from $D\left(f^{o}(-), d\right)$ to $u^{\prime} \circ f$. At $c \in C$, the element $f c \xrightarrow{a} d$ is mapped by the left hand side to $(x)(s d)\left(u^{\prime} a^{o}\right)$, and by the right hand side to $(x)\left(u a^{o}\right)(s(f c))$.

We have to show that $\left(f^{\wedge} \circ \varepsilon\right)\left(\eta \circ f^{\wedge}\right)=1_{f^{\wedge}}$. Suppose given $u \in D^{\wedge}, c \in C$ and $x \in\left(f^{\wedge} u\right) c=u(f c)$. We obtain

$$
\begin{aligned}
(x)\left(\left(f^{\wedge} \circ \varepsilon\right) u c\right)\left(\left(\eta \circ f^{\wedge}\right) u c\right) & =(x)(\varepsilon u(f c))\left(\eta\left(u \circ f^{o}\right) c\right) \\
& =\left(1_{f c}\right)[((x)(\varepsilon u(f c))) c] \\
& =(x)\left(u 1_{f c}^{o}\right) \\
& =x .
\end{aligned}
$$

We have to show that $(\varepsilon \circ \varphi)(\varphi \circ \eta)=1_{\varphi}$. Suppose given $v \in C^{\wedge \mathfrak{L}}$ and $d \in D$. Note that $\varphi v=C^{\wedge}\left(f^{\wedge, o} \circ y_{D}^{o}(-), v\right)$ and therefore $\varphi v d=C_{C^{\wedge}}\left(D_{D}\left(f^{o}(-), d\right), v\right)$. The application $((\varepsilon \circ \varphi) v d)((\varphi \circ \eta) v d)$ writes

$$
d\left(D_{D}\left(f^{o}(-), d\right), v\right) \xrightarrow{\varepsilon(\varphi v) d} C^{\wedge}\left(D\left(f^{o}(-), d\right), C^{\wedge}\left(f^{\wedge, o} \circ y_{D}^{o} \circ f^{o}(-), v\right)\right) \xrightarrow{(-) \eta v} C^{\wedge}\left(D\left(f^{o}(-), d\right), v\right)
$$

An element $\xi \in \varphi v d$, i.e. $D\left(f^{\circ}(-), d\right) \xrightarrow{\xi} v$, is thus mapped to the composite

$$
{ }_{D}\left(f^{o}(-), d\right) \xrightarrow{(\xi) \varepsilon(\varphi v) d} C^{\wedge}\left(f^{\wedge, o} \circ y_{D}^{o} \circ f^{o}(-), v\right) \xrightarrow{\eta v} v .
$$

Now suppose given $c \in C$ and $f c \xrightarrow{a} d$. We have

$$
\begin{array}{rlrl}
D_{D}(f c, d) & \xrightarrow{((\xi) \varepsilon(\varphi v) d) c} & C^{\wedge}\left(D^{\prime}\left(f^{o}(-), f c\right), v\right) & \xrightarrow{\eta v c} v c \\
a \longrightarrow & (\xi)\left((\varphi v) a^{o}\right) \\
& =(\xi)_{C^{\wedge}}\left({ }_{D}\left(f^{o}(-), a\right), v\right) & \\
& ={ }_{D}\left(f^{o}(-), a\right) \xi & & \left(1_{f c}\right) D(f c, a)(\xi c) \\
& & =(a)(\xi c),
\end{array}
$$

whence $\xi((\varepsilon \circ \varphi) v d)((\varphi \circ \eta) v d)=\xi$.
Remark 2.2 (the absolute Yoneda Lemma) In case $f=1_{C}$, we obtain $1 \dashv y_{C}^{\wedge} \circ y_{C^{\wedge}}$, which by uniqueness of the right adjoint yields the comparison isomorphism

$$
\begin{aligned}
C^{\wedge}(c(-, c), v) & \xrightarrow{\eta v c} v c \\
\xi & \longrightarrow\left(1_{c}\right) \xi c,
\end{aligned}
$$

Given $v \in C^{\wedge \mathfrak{L}}$, we need to see that $f^{\wedge} \circ \varphi(v) \xrightarrow{\eta v} v$ is a natural transformation. Suppose given $c^{\prime} \xrightarrow{b} c$ in C. We have to show that for any $\xi \in\left(f^{\wedge} \circ \varphi(v)\right) c=C^{\wedge}\left(D\left(f^{\circ}(-), f c\right), v\right)$ we have

$$
(x)(\eta v c)\left(v b^{o}\right)=(x)\left(\left(f^{\wedge} \circ \varphi(v)\right) b^{o}\right)\left(\eta v c^{\prime}\right)
$$

The left hand side yields $\left(1_{f c}\right)(\xi c)\left(v b^{o}\right)$, the right hand side yields $(f b) \xi c^{\prime}$.
We need to see that $f^{\wedge} \circ \varphi \xrightarrow{\eta} 1_{C^{\wedge} \mathfrak{u}}$ is a natural transformation. Suppose given $v \xrightarrow{t} v^{\prime}$ in $C^{\wedge \mathfrak{u}}$. We have to show that for any $c \in C$ and any $\xi \in\left(f^{\wedge} \circ \varphi(v)\right) c=C^{\wedge}\left(D^{\circ}\left(f^{\circ}(-), f c\right), v\right)$ we have

$$
(\xi)(\eta v c)(t c)=(\xi)\left(\left(f^{\wedge} \circ \varphi(t)\right) c\right)\left(\eta v^{\prime} c\right)
$$

The left hand side yields $\left(1_{f c}\right)(\xi c)(t c)$. The right hand side yields $\left(1_{f c}\right)((\xi t) c)$.
at $v \in C^{\wedge \mathfrak{L}}$ and $c \in C$, with inverse given by $\varepsilon v c$.
Corollary 2.3 If f is full, then the counit η of the adjunction $f^{\wedge} \dashv y_{D}^{\wedge} \circ f^{\wedge \wedge} \circ y_{C \wedge}$ is a monomorphism. If f is full and faithful, then η is an isomorphism.

3 The left Kan extension

For sake of comparison to (2.1), we rephrase the pertinent case of KAN's formula in our setting.

Let C be a \mathfrak{U}-small category. Let $v \in C^{\wedge \mathfrak{u}}$, let $w \in C^{\vee_{\mathfrak{u}}}$. We define the set $v \otimes_{C} w$ as the quotient of the disjoint union

$$
v \times_{C} w:=\coprod_{c \in C} v c \times w c
$$

modulo the equivalence relation generated by the following relation \sim_{C}. The equivalence class of $(p, q) \in v c \times w c, c \in C$, shall be denoted by $p \otimes q$.
Given $(p, q) \in v c \times w c,\left(p^{\prime}, q^{\prime}\right) \in v c^{\prime} \times w c^{\prime}$, we say that $(p, q) \sim_{C}\left(p^{\prime}, q^{\prime}\right)$ if there exists a morphism $c \xrightarrow{a} c^{\prime}$ such that

$$
\begin{aligned}
\left(p^{\prime}\right) v a^{o} & =p \\
(q) w a & =q^{\prime} .
\end{aligned}
$$

Thus the quotient map $v \times_{C} w \xrightarrow{\nu} v \otimes_{C} w$ has the following universal property. Given a map $v \times_{C} w \xrightarrow{\nu^{\prime}} X$ such that for any morphism $c \xrightarrow{a} c^{\prime}$, any $p^{\prime} \in v c^{\prime}$ and any $q \in w c$ we have

$$
\left(\left(p^{\prime}\right) v a^{o}, q\right) \nu^{\prime}=\left(p^{\prime},(q) w a\right) \nu^{\prime}
$$

there exists a unique map $v \otimes_{C} w \xrightarrow{\tilde{\nu}^{\prime}} X$ such that $\nu^{\prime}=\nu \tilde{\nu}^{\prime}$.
In particular, given morphisms $v \xrightarrow{m} v^{\prime}$ and $w \xrightarrow{n} w^{\prime}$, we obtain a map $m \otimes_{C} n$ that maps an element represented by $(p, q) \in v c \times w c, c \in C$, as follows.

$$
\begin{aligned}
& v \otimes_{C} w \xrightarrow{m \otimes_{C} n} \quad v^{\prime} \quad \otimes_{C} \quad w^{\prime} \\
& p \otimes q \longrightarrow(p) m c \otimes \quad(q) n c
\end{aligned}
$$

Thus the tensor product defines a functor $C^{\wedge_{\mathfrak{U}}} \times C^{\vee_{\mathfrak{U}}} \xrightarrow{=\otimes_{C}-}\left(\operatorname{Set}_{\mathfrak{U}}\right)$. We denote the univalent tensor product functor by

$$
\begin{aligned}
C^{\wedge_{\mathfrak{U}}} & \xrightarrow{z_{C}} \\
v & C^{\vee_{\mathfrak{U}} \vee_{\mathfrak{U}}} \\
& v \otimes_{C}-.
\end{aligned}
$$

Proposition 3.1 (the relative co-Yoneda Lemma, Kan [K 58, Th. 14.1]) Given \mathfrak{U} small categories C and D, and a functor $C \xrightarrow{f} D$. The left adjoint $C^{\wedge \mathfrak{L}} \xrightarrow{\psi} D^{\wedge_{\mathfrak{L}}}$ of $C^{\wedge \mathfrak{U}} \stackrel{f^{\wedge}}{\leftarrow} D^{\wedge_{\mathfrak{U}}}$ is given by

For short,

$$
y_{D}^{\prime \vee} \circ f^{\vee \vee} \circ z_{C} \dashv f^{\wedge}
$$

The unit of this adjunction

$$
1_{C^{\wedge}} \xrightarrow{\varepsilon} f^{\wedge} \circ \psi
$$

at $v \in C^{\wedge}$, i.e.

$$
v \xrightarrow{\varepsilon v} v \otimes_{C} f^{\vee} \circ y_{D}^{\prime} \circ f^{o}(-),
$$

applied to $c \in C$, is given by

$$
\begin{aligned}
v c & \xrightarrow{\varepsilon v c} v \otimes_{C D}(f c, f(-)) \\
x & \longrightarrow x \otimes_{f c} .
\end{aligned}
$$

The counit of this adjunction

$$
\psi \circ f^{\wedge} \xrightarrow{\eta} 1_{D^{\wedge}}
$$

at $u \in D^{\wedge}$, i.e.

$$
u \circ f^{o} \otimes_{C} f^{\vee} \circ y_{D}^{\prime}(-) \xrightarrow{\eta u} u,
$$

applied to $d \in D$, is given by

$$
\begin{array}{clll}
u \circ f^{o} & \otimes_{C} & { }_{D}(d, f(-)) & \xrightarrow{\eta u d} u d \\
p & \otimes & q & \longrightarrow \\
(p) u q^{o},
\end{array}
$$

where $p \otimes q$ is represented by $(p, q) \in u f c \times{ }_{D}(d, f c)$ for some $c \in C$.
Various compatibilities have to be verified to ensure the well-definedness of ε and $\eta\left(^{2}\right)$.

[^0]The left hand side yields $x \otimes f b$. The right hand side yields $x\left(v b^{o}\right) \otimes 1_{f c^{\prime}}$.
We need to see that $1_{C \wedge} \xrightarrow{\varepsilon} f^{\wedge} \circ \psi$ is a natural transformation. Suppose given $v \xrightarrow{t} v^{\prime}$ in C^{\wedge}. For any $c \in C$ and any $x \in v c$ we have

$$
(x)(t c)\left(\varepsilon v^{\prime} c\right)=(x)(\varepsilon v c)\left(t c \otimes_{D}(f c, f(-))\right)=(x) t c \otimes 1_{f c}
$$

Given $u \in D^{\wedge}$ and $d \in D$, we need to see that $\eta u d$ is a well-defined map. Suppose given $c, c^{\prime} \in C$,

We have to show that $\left(\varepsilon \circ f^{\wedge}\right)\left(f^{\wedge} \circ \eta\right)=1_{f^{\wedge}}$. Suppose given $u \in D^{\wedge}, c \in C$ and $x \in\left(f^{\wedge} u\right) c$. We obtain

$$
\begin{aligned}
(x)\left(\left(\varepsilon \circ f^{\wedge}\right) u c\right)\left(\left(f^{\wedge} \circ \eta\right) u c\right) & =(x)\left(\varepsilon\left(u \circ f^{o}\right) c\right)(\eta u(f c)) \\
& =\left(x \otimes 1_{f c}\right)(\eta u(f c)) \\
& =(x) u 1_{f c}^{o} . \\
& =x .
\end{aligned}
$$

We have to show that $(\psi \circ \varepsilon)(\eta \circ \psi)=1_{\psi}$. Suppose given $v \in C^{\wedge}, d \in D, c \in C, s \in v c$, $t \in{ }_{D}(d, f c)$, so that $s \otimes t \in \psi v d=v \otimes_{C}{ }_{D}(d, f(-))$. We obtain

$$
\begin{aligned}
(s \otimes t)((\psi \circ \varepsilon) v d)((\eta \circ \psi) v d) & =(s \otimes t)\left(\varepsilon v \otimes_{D}(d, f(-))\right)\left(\eta\left(v \otimes_{C} f^{\vee} \circ y_{D}^{\prime}\right) d\right) \\
& =\left(\left(s \otimes 1_{f c}\right) \otimes t\right)\left(\eta\left(v \otimes_{C} f^{\vee} \circ y_{D}^{\prime}\right) d\right) \\
& =\left(s \otimes 1_{f c}\right)\left(v \otimes_{C D}(t, f(-))\right) \\
& =(s \otimes t) .
\end{aligned}
$$

Remark 3.2 (the absolute co-Yoneda Lemma) In case $f=1_{C}$, we obtain $y_{D}^{\prime \vee}$ o $z_{C} \dashv$ $1_{C^{\wedge}}$, which by uniqueness of the left adjoint yields the comparison isomorphism

$$
\begin{array}{lllll}
v & \otimes_{C} & c(c,-) & \xrightarrow[\sim]{\sim} & v c \\
s & \otimes & t & \longrightarrow & (s) v t^{o}
\end{array}
$$

at $v \in C^{\wedge \mathfrak{L}}$ and $c \in C$, with inverse given by $\varepsilon v c$.

Corollary 3.3 If f is full, then the unit ε of the adjunction $y_{D}^{\prime \vee} \circ f^{\vee \vee} \circ z_{C} \dashv f^{\wedge}$ is an epimorphism. If f is full and faithful, then ε is an isomorphism.
$c \xrightarrow{b} c^{\prime}$ in C and $p^{\prime} \in u f c^{\prime}, q \in{ }_{D}(d, f c)$. Since

$$
\left(\left(p^{\prime}\right) u f^{o} b^{o}\right) u q^{o}=\left(p^{\prime}\right) u(q(f b))^{o},
$$

the universal property applies.
Given $u \in D^{\wedge}$, we need to see that $\psi \circ f^{\wedge}(u) \xrightarrow{\eta u} u$ is a natural transformation. Suppose given $d^{\prime} \xrightarrow{a} d$. For all $c \in C, p \in u f c$ and $q \in{ }_{D}(d, f c)$ we obtain

$$
(p \otimes q)(\eta u d)\left(u a^{o}\right)=(p \otimes q)\left(\left(\psi \circ f^{\wedge}(u)\right) a^{o}\right)\left(\eta u d^{\prime}\right)=(p) u(a q)^{o}
$$

We need to see that $\psi \circ f^{\wedge} \xrightarrow{\eta} 1_{D^{\wedge}}$ is a natural transformation. Suppose given $u^{\prime} \xrightarrow{s} u$ in D^{\wedge}. We have to show that for all $d \in D, c \in C, p \in u f c$ and $q \in{ }_{D}(d, f c)$, we have

$$
(p \otimes q)(\eta u d)(s d)=(p \otimes q)\left(\left(\psi \circ f^{\wedge}(s)\right) d\right)\left(\eta u^{\prime} d\right)
$$

The left hand side yields $(p)\left(u q^{o}\right)(s d)$. The right hand side yields $(p)(s(f c))\left(u^{\prime} q^{o}\right)$.

4 References

Bourbaki, N.
[SGA 4] Univers, appendice de l'exposé I de SGA 4, tome 1, SLN 269, 1972.
Kan, D. M.
[K 58] Adjoint functors, Trans. Am. Math. Soc. 87, pp. 294-329, 1958.
Mac Lane, S.
[ML 71] Categories for the Working Mathematician, GTM 5, 1971.
[ML 98] The Yoneda Lemma, Math. Japon. 47 (1), p. 156, 1998.
Mitchell, B.
[M 65] Theory of categories, Academic Press, 1965.

Matthias Künzer
Universität Ulm
Abt. Reine Mathematik
D-89069 Ulm
Germany
kuenzer@mathematik.uni-ulm.de

[^0]: ${ }^{2}$ Given $v \in C^{\wedge}$, we need to see that $v \xrightarrow{\varepsilon v} f^{\wedge} \circ \psi(v)$ is a natural transformation. Suppose given $c^{\prime} \xrightarrow{b} c$. We have to show that for any $x \in v c$

 $$
 (x)(\varepsilon v c)\left(\left(f^{\vee} \circ \psi(v)\right) b^{o}\right)=(x)\left(v b^{o}\right)\left(\varepsilon v c^{\prime}\right) .
 $$

