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Conventions

Some of them are repeated in the text.

1. We freely use the notations of maps on the left, on the right, as an upper index etc.

2. For a, b ∈ Z we denote the integral interval by

[a, b] := {x ∈ Z | a 6 x 6 b}.

3. Let n > 1 be an integer. Let
Sn := Aut Sets[1, n]

be the group of permutations of n elements, which are written in cycle notation, so that e.g.
(124)(35) sends 1 to 2, 2 to 4, 4 to 1 and interchanges 3 and 5. We write composition of permuta-
tions on the right, so that e.g. (123)(12) = (23). The sign of a permutation σ ∈ Sn is denoted by
εσ.

4. Throughout, the letter n is reserved to denote the number of permuted elements, i.e. ‘the n as
in Sn’. This convention does not extend to variables such as nλ etc. Also exception is made in
case we regard a single symmetric group. Moreover, p denotes an arbitrarily chosen integral prime
number, except stated otherwise.

5. Conjugation in a group G is denoted by gh := h−1gh, hg := hgh−1, where g, h ∈ G. Analogously
conjugation with units in a ring.

6. ∂ sometimes denotes Kronecker’s delta. I.e. for elements x, y taken from some set, we let
∂x,y = 1 for x = y and ∂x,y = 0 for x 6= y.

7. Let 1 =
∑
λ ε

λ be the orthogonal decomposition of the 1 ∈ QSn into rational central primitive
idempotents ελ. Here ελ acts on the Specht lattice Sλ as the identity, λ being a partition of n (cf.
4.1.1). Let

Qλ := ελZSn
be the quasiblock associated to λ.

8. More generally, for an arbitrary R-order Λ, R being an integral domain with field of fractions K,
and a central primitive idempotent ε of K ⊗R Λ, the R-order Λε is called a quasiblock of Λ. A
Λ-lattice X is called simple provided K ⊗R X is a simple KΛ-module. A simple Λ-lattice is not
a simple Λ-module.

9. By vp(a) we denote the valuation at p of a rational number a (e.g. v2(−9/40) = −3). By ap we
denote the p-part of a rational number a, provided it follows from the context that p is not an
ordinary index (e.g. (−9/40)2 = 1/8). Thus pvp(a) = ap. Analogously prime ideal valuations on
the field of fractions of a Dedekind domain.

10. The direct sum of m copies of a single object X is denoted by Xm. In case X is an ideal of a ring,
this must not be confused with its mth power as an ideal.

11. The additive group of morphisms between left (or right) modules X and Y over the ring A is
sometimes denoted by

HomA(X,Y ) =: A(X,Y ).

In case A is commutative, we frequently use the abbreviation X/a := X/aX, a ∈ A.

12. The Circonference Lemma asserts that for a commutative triangle in an abelian category the
induced sequence on the kernels and on the cokernels is 6-term long exact.

13. (C x), (A X), (S x.y) or (S x.y.z) refers to a chapter, an appendix, a section or a subsection
respectively. The sole number (x.y.z) refers to a lemma, a definition . . . So that e.g. (C.3.5) refers
to assertion 3.5 in the appendix C, whereas (C 3) refers to chapter 3, and (A C.3) refers to the
third section of appendix C.
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Chapter 0

Introduction

0.1 The problem

0.1.1 The situation

Wedderburn’s Theorem describes the structure of the rational group ring QG of a
finite group G as follows. Consider a direct sum decomposition of QG as a left module
over itself into indecomposable summands. By Maschke’s Lemma, indecomposable left
QG-modules are simple. Therefore, using Schur’s Lemma, the Peirce decomposition
of QG corresponding to this direct sum decomposition consists of a direct product of
matrix rings over the endomorphism skewfields of these indecomposable summands. The
isomorphism from QG to this direct product can be described by sending a group element
g ∈ G to the tuple of left multiplications on a system of representatives of isomorphism
classes of simple QG-modules - one column per ring direct factor.

In case of the symmetric group, these endomorphism skewfields coincide with Q. This is
the same as to say that the irreducible QSn-modules, that is, the rational Specht modules,
are absolutely irreducible [J 78, 4.12]. Choosing simple ZSn-lattices, not necessarily the
Specht lattices, inside the rational Specht modules, we obtain an inclusion of Z-orders

ZSn -
�� ∏

λ

Znλ×nλ ,

called Wedderburn embedding, where λ runs over the partitions of n. Viewed as an

inclusion of abelian groups, it is of finite index

√
n!n!/

∏
λ n

(n2
λ)

λ (cf. 1.1.4), whence it allows
a description by congruences between matrix entries, called ties. The aim is to gain
control of these ties in order to obtain a workable isomorphic copy of the integral group
ring ZSn as a subring of the direct product of integral matrix rings

∏
λ Znλ×nλ .

0.1.2 Guiding examples

The complexity of the resulting system of ties strongly depends on the chosen Z-linear
bases of the Specht lattices. In the examples directly calculated by computer, we start
from the combinatorially given integral representations on the Specht lattices and use
‘obvious conjugations’ by elementary matrices to simplify (cf. S 0.5). For n 6 6, the

ix



x Introduction

complexity of the respective system of ties collapsed at a certain point, and we obtained
the systems displayed in (C 2). For n = 7, we contended ourselves with the quasiblocks,
that is, with the images of the projections into the single integral matrix rings.

We regard an embedding ZSn -
�� ∏

λ Znλ×nλ , corresponding to a choice of bases, as sat-
isfactory, if we can read off a Peirce decomposition of the localized versions Z(p)Sn as well
as the associated Morita equivalent basic Z(p)-order from its description via ties. In this
sense, the examples we calculated are in fact satisfactory, in contrast to the embeddings
that use the combinatorially given bases.

But by means of such a vague notion (‘we can read off’), we cannot determine the bases
uniquely. However, any satisfactory embedding allows to search for interpretations of the
resulting system of ties. This is what we use our guiding examples for.

0.1.3 Modular morphisms

Suppose given ZSn-lattices X and Y , that is, finitely generated ZSn-modules free over
Z. A modular morphism from X to Y is a ZSn-linear map from X/m to Y/m for some
integer m > 2. A necessary condition for an element of the direct product of integral
matrix rings to lie in the image of the Wedderburn embedding is, besides that it should
act on X and Y , the congruence resulting from the diagram that expresses ZSn-linearity.

If we denote by ξ the operation of Sn on X, by η the operation on Y , and by X -f Y a
Z-linear map, then f yields a ZSn-linear map modulo m if and only if the congruence

ξσf ≡m fησ.

holds for all σ ∈ Sn. And since the operations ξ and η are pieced together from the tuple
of operations on simple lattices in a way independent of σ, the tuples lying in the image of
the Wedderburn embedding satisfy certain resulting congruences between matrix entries
(usually several ones per morphism).

We shall exhibit several generic modular morphisms between simple lattices, by which
we understand a family of such modular morphisms given by a formula depending poly-
nomially on combinatorial data (cf. S 4.5).

The specializations of the generic modular morphism given in (4.3.31) already suffice to
describe Z(p)Sp, p prime (cf. 4.2.8).

But e.g. for Z(3)S6, which is of index 3558 in
∏

λ Znλ×nλ
(3) , the specializations of our generic

modular morphisms between simple lattices merely describe an intermediate order, which
is of index 3397 in

∏
λ Znλ×nλ

(3) (cf. 4.4.2).

The reason for this failure is the following. Suppose given a ZSn-linear mapX/m - Y/m,
and assume, for sake of simplicity, that HomQSn(QX,QY ) = 0, i.e. that X and Y are
rationally disjoint. The long exact Ext-sequence on

(∗) 0 - Y -m Y - Y/m - 0

supplies us with the isomorphism

(∗∗) HomZSn(X/m, Y/m) -∼ Ext1
ZSn(X, Y )[m],
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which maps X/m - Y/m to the pullback

(∗∗∗) 0 - Y - E -X - 0

of (∗) along X -X/m - Y/m. Here [m] denotes the m-torsion part. Thus we obtain a
ZSn-lattice E, which might now itself be source or target of another modular morphism,
say E/m′ - Z/m′ or Z/m′ - E/m′. The operation on E being pieced together from
the operation on X and the operation on Y by means of the cocycle corresponding to
(∗∗∗), we thus obtain congruences that involve the quasiblocks already involved in X and
Y , and in addition those involved in Z. But modular morphisms between simple lattices
involve exactly two quasiblocks only.

0.1.4 Extensions

To see that there exists a set of modular morphisms that yields a complete system of ties,
by which we understand a system of congruences of matrix entries necessary and, taken
together, also sufficient for a tuple of integral matrices to lie in the image of the Wedder-
burn embedding, we start at the other extreme and writes the regular representation ZSn
as an iterated extension of simple lattices. This is possible a priori, since a ZSn-lattice is
either simple itself, or contains a proper pure sublattice. We thus obtain a finite binary
tree of extensions. Now by dint of the correspondence (∗∗), we obtain a corresponding
tree of modular morphisms, yielding a complete system of ties. See (S 0.1.5) for more
details.

Fortunately, a tree that unscrews the regular representation in combinatorial terms had
already been established by James. This tree consists of James lattices, that is, gen-
eralized Specht lattices. The unscrewing proceeds by means of James extensions ([J 78,
17.13], cf. 5.1.18), which even ensures that the simple lattices we end up with are actually
Specht lattices. The only piece of information that had to be added was to give the inverse
of (∗∗) explicitly, that is, to construct a diagram

0 - Y - E - X - 0

? ?

0 - Y -m Y - Y/m - 0

starting from a James extension in the upper row. As a byproduct, we extract a formula,
polynomial in the combinatorial data, for the order of an occurring James extension as
an element of the abelian group Ext1.

The collection of all maps occuring in this procedure furnishes a rather complicated dia-
gram, which can be viewed as a module over a path algebra, and which is called the truss
(cf. 5.3.8, S 5.4.2). Our initial aim to find a suitable set of bases now boils down to find
a normal form for the truss. This is not a well defined problem, but informally, a normal
form might be regarded as satisfactory provided its choice of bases yields a satisfactory
Wedderburn embedding.

This hypothetical procedure is modelled on the case Z(p)Sp, in which a long exact sequence
of modular morphisms between simple lattices already gives a complete set of ties – a
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choice of bases adapted to this long exact sequence yields a satisfactory Wedderburn
embedding.

A complete solution to this normal form problem seems to be out of reach, and we have
tried our hands only on the cases n = 3, 4. One might hope that certain parts of the truss
will yield partial results, for instance after localization. Or one could try to regard the
image of a projection into a certain subdirect product of

∏
λ Znλ×nλ , that is, a generalized

quasiblock. But we have not pursued such attempts here. In particular, we do not dispose
of a general satisfactory normal form for the truss.

0.1.5 A tree

We shall sketch the general framework employed in (S 0.1.4).

Let R be an integral domain with field of fractions K. Let Λ ⊆ Γ be a full inclusion of
R-orders. Consider a finite binary tree of Λ-lattices

T∅

T0 T1�
���

H
HHH

�
���

H
HHH

T00 T01 T10 T11

�� @@ �� @@ �� @@ �� @@
T000 T001 T010 T011 T100 T101 T110 T111

�
��

A
AA

�
��

A
AA

�
��

A
AA

�
��

A
AA

�
��

A
AA

�
��

A
AA

�
��

A
AA

�
��

A
AA

. . .

ending at possibly different stages, such that the ends carry Γ-lattices which sum up to
Γ, such that T∅ ' Λ and such that there exist short exact sequences

0 - Te0 -e0∗ Te -e1
∗

Te1 - 0,

e being a word in 0 and 1’s. Moreover, assume given e0∗e0
∗ = me ∈ R, which allows to

construct
(e0∗ e1∗ )

(
e0∗
e1∗

)
= me.

Suppose an element g ∈ Γ acts on Te0 via ge0 and on Te1 via ge1. It acts on Te if and only
if

ge :=
1

me

(e0∗ e1∗ )
(
ge0 0
0 ge1

) (
e0∗
e1∗

)
is integral. It acts on T∅ if and only if it is contained in Λ. e0∗ induces a modular
morphism on the cokernels

Te1 - Te0/me,

which is respected by g if and only if ge is integral.

0.1.6 Quasiblocks

In principle, the ties describing a quasiblock Qµ, defined as the image of the composition

ZSn -
∏
λ

Znλ×nλ - Znµ×nµ ,
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can be deduced from the ties that describe a satisfactory embedding, thus explaining its
ties as being ‘caused’ by modular morphisms involving in general several lattices. It would
be interesting, however, to have an interpretation in terms of the properties of the Specht
lattice Sµ alone, by which it is also determined alone, after all. At least an approximation
is given by the Gram matrix Gµ of the Sn-invariant bilinear form on Sµ, which forces

Qµ ⊆ Znµ×nµ ∩ (Gµ)−1Znµ×nµGµ.

Though comparably small, the isolated quasiblocks seem to be hard to describe com-
binatorially. Moreover, an index formula for the inclusion Qµ ⊆ Znµ×nµ is missing (cf.
1.1.3).

0.2 An example

Consider the well known case ZS3 [Rog 80, 0.7.2]. The image Λ of the embedding of
Z-orders

ZS3
- Z × Z2×2 × Z

(12) - 1 ×
(−2 −1

3 2

)
× −1

(123) - 1 ×
(−2 −1

3 1

)
× 1

allows a description as

Λ = { x1
11 ×

(
x2

11 x
2
12

x2
21 x

2
22

)
× x3

11 | x1
11 ≡2 x

3
11, x

1
11 ≡3 x

2
11, x

2
22 ≡3 x

3
11, x

2
21 ≡3 0}

⊆ Z × Z2×2 × Z =: Γ,

which we rather depict as

1

a b

2

a

3 c

3

c b

a x1 ≡3 x2

b x1 ≡2 x3

c x2 ≡3 x3.

This is a satisfactory embedding in the sense of (S 0.1.2). For instance, localized at 3 we
obtain the Peirce decomposition

1×
(

1 0
0 1

)
× 1 =

(
1×

(
1 0
0 0

)
× 0
)

+
(
0×

(
0 0
0 1

)
× 1
)
.

Consider the exact sequence of Z-linear maps

0 - Z1
-

(
1
0

) Z
Z2

-(0 1) Z3
- 0,
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the indices denoting merely the number of the quasiblock we have taken the column
from. This sequence becomes an exact sequence of ZS3-linear maps when tensored with
Z/3⊗Z −. Conversely, a tuple

x1
11 ×

(
x2

11 x
2
12

x2
21 x

2
22

)
× x3

11 ∈ Γ

respects both maps modulo 3 if and only if the ties at 3 given above are satisfied, that is,
if and only if x1

11 ≡3 x
2
11, x2

22 ≡3 x
3
11 and x2

21 ≡3 0 hold.

Actually, this exact sequence is a specialization of a generic one (S 4.2.1), and it is not
by chance that we have obtained all ties at 3 (cf. 4.2.8).

Let us regard the inclusions of simple lattices over the second quasiblock. There is a
S3-invariant bilinear form defined on its column

(
Z
Z

)
, given by the Gram matrix

(
6 3
3 2

)
,

yielding the inclusion of the Specht lattice
(
Z
Z

)
into its dual. This dual lattice

(
Z
Z

)∗
is

isomorphic to the other column
(
Z
3

)
, where 3 stands for (3), via(
Z
3

)
-∼

(
Z
Z

)∗(
1
0

)
- (2 1)(

0
3

)
- (3 2) ,

as can be derived e.g. from restriction of the map given by the Gram matrix to
(
Z
3

)
⊆
(
Z
Z

)
followed by division by 3. Using this isomorphism for isomorphic substitution, we see
that the inclusion of the Specht lattice into its dual is isomorphic (as a diagram) to the
inclusion

(
3
3

)
⊆
(
Z
3

)
. Thus an element of the second quasiblock remains integral by left

conjugation with
(

3 0
0 1

)
, which means that x2

21 is divisible by 3.

0.3 Motivation

We would like to explain why we consider the problem described in (S 0.1) to be worth-
while. So suppose given a satisfactory description of Z(p)Sn as a full suborder of

∏
λ Znλ×nλ

(p)

in the sense of (S 0.1.2), so that a Peirce decomposition and the corresponding Morita
multiplicities can be read off.

Therefore, the Peirce components of the corresponding basic Z(p)-order as rings resp. as
bimodules are given in a very explicit manner, viz. in Z(p)-linear bases, with multiplication
derived from matrix multiplication. A path algebra being a universal Peirce decomposi-
tion, we may map some convenient path algebra over Z(p) onto this Z(p)-order to obtain a
presentation as a path algebra modulo relations. E.g. the principal block of Z(2)S5 turns
out to be Morita equivalent to

Z(2)Ξ/(A
2 − 2A,NJ − 2F, (AJN)2 − (JNA)2 − 2(AJN − JNA)),

where

Ξ := rE -J

�
N

rF
���

A
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(cf. S 2.2.5). Reformulated as a path algebra modulo relations or not, the Peirce decom-
position is the main reason to search for a tie form. The path algebra presentation
sometimes reveals algebra automorphisms (cf. S 2.3.4).

The calculation of the radical of Z(p)Sn may be done as follows. To begin with, we re-
duce to the calculation of the radicals of the endomorphism rings of the indecomposable
projective modules. Moreover, we may reduce to the calculation of the radicals of the
quasiblocks of such an endomorphism ring, since its radical can be recovered by intersec-
tion (E.1.28). Again, we are reduced to the calculation of the endomorphism rings of the
indecomposable projectives of such a quasiblock. Furthermore, if in such an endomor-
phism ring, embedded into a single matrix ring, either the position ij or its transpose ji
carries a single p-tie for each i 6= j, its radical is given by imposing single p-ties on the
main diagonal entries (E.1.30).

For instance, consider the Z(3)-order Z(3)S3, isomorphic to its image Λ under the embed-
ding given in (S 0.2). Its radical is given by

rΛ = 3×
(

3 Z(3)
3 3

)
× 3

where 3 stands for (3).

Using the isomorphism

Λ/rΛ -∼ F3 × F3

x1
11 ×

(
x2

11 x
2
12

x2
21 x

2
22

)
× x3

11
- x1

11 × x3
11

we obtain its unit group to be

Λ∗ = {x1
11 ×

(
x2

11 x
2
12

x2
21 x

2
22

)
× x3

11 ∈ Λ | x1
11 6≡3 0, x3

11 6≡3 0}.

One also may pick subsets of the unit group with extra properties, such as torsion units
(use characteristic polynomials) or central units (cf. also 1.1.4). We will not pursue this
possibility, however.

Units are a prominent example for the usage of matrix multiplication. In general, the
tie form allows to think of calculations in the group ring as of calculations in matrices
subject to some ties. For instance, the center, or also a maximal commutative suborder
(a torus) become visible.

The decomposition matrix may be calculated by counting multiplicities of simple lattices
in projective indecomposable lattices. Let Sλ denote the Specht lattice over Z(p)Sn to
the partition λ of n, p prime. Let µ be a p-regular partition, let Dµ = Sµ/rSµ be the
corresponding simple module, let P µ denote its projective cover over Z(p)Sn. Consider
the semisimple Loewy layers

Xi := (riSλ + pSλ)/(ri+1Sλ + pSλ).
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We obtain the decomposition number

[Sλ : Dµ] =
∑

i>0 dimFp HomFpSn(Dµ, Xi)
=

∑
i>0 dimFp HomZ(p)Sn(P µ, Xi)

= dimFp HomZ(p)Sn(P µ, Sλ/pSλ)

= dimFp

(
HomZ(p)Sn(P µ, Sλ)/HomZ(p)Sn(P µ, pSλ)

)
= dimFp

(
HomZ(p)Sn(P µ, Sλ)/pHomZ(p)Sn(P µ, Sλ)

)
= rkZ(p)

HomZ(p)Sn(P µ, Sλ)

= dimQ HomQSn(QP µ,QSλ).

Moreover, usage of the radical enables us to refine this calculation to the Loewy layers of
Sλ/pSλ. We write P µ = Z(p)Sneµ, eµ being a primitive idempotent of Z(p)Sn and obtain

HomFpSn(Dµ, Xi) = HomZ(p)Sn(P µ, Xi)

= HomZ(p)Sn(P µ, riSλ + pSλ)/HomZ(p)Sn(P µ, ri+1Sλ + pSλ)

= eµ(riSλ + pSλ)/eµ(ri+1Sλ + pSλ).

For instance, in the situation of (S 0.2) we obtain for n = 3, p = 3, λ = (2, 1), µ = (3),
e(3) = 1×

(
1 0
0 0

)
× 0 and i = 1

HomF3S3(D(3), X1) = e(3)(rS(2,1) + 3S(2,1))/e(3)(r2S(2,1) + 3S(2,1))
=

(
1 0
0 0

) (
Z
3

)
/
(

1 0
0 0

) (
3
3

)
= Z/3.

As a disadvantage we mention that the subgroups are hidden. For instance, to calculate
vertices of indecomposable lattices over Z(p)Sn, p prime, one seems to be forced to use
the representing matrices, due to the fact that the group ring of a subgroup in general
does not allow a convenient description in the same product of matrix rings over Z(p) into
which Z(p)Sn is embedded. For some representing matrices, we refer to (C 2).

0.4 Necessity of prime powers

We want to stress by an experiment the necessity, even for ordinary modular represen-
tation theory, of the prime powers occurring in the ties resp. in the modular morphisms
evoking the ties. In general, changing the prime powers for these modular morphisms
changes the objects (such as modules, morphism groups, . . . ) obtained by reduction
modulo that prime. To see this, we shall lower by one an exponent of such a prime power
in an example.

Consider the Z(2)-order

E := {x× y × z | y ≡4 z, 2x ≡8 y + z} ⊆ Z(2) × Z(2) × Z(2) =: Γ,

which is the endomorphism ring of an indecomposable projective Z(2)S4-module (S 2.1).
Note that therefore E/2 is the endomorphism ring of an indecomposable projective F2S4-
module.

Sending X to 0× 2×−2 and Y to 0× 0× 8, we obtain the presentation

Z(2)[X, Y ]/(X2 − 2X − Y, XY + 2Y, Y 2 − 8Y ) -∼ E,
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whence the reduction modulo 2 reads

F2[X]/(X3) -∼ F2[X, Y ]/(X2 − Y, XY, Y 2) -∼ E/2.

Consider the linear map

U := Z(2)
-f
′

Z(2) × Z(2) =: V ′

1 - 2 × −2,

where the left hand side consists of the first and the right hand side of the second and
third ring direct factor of Γ. This linear map factors over the E-sublattice

V := {y × z | y ≡4 z} ⊆ V ′,

and this factorization

U -f V

is E-linear modulo 4. Conversely, E consists of those tuples in Γ that act on V and that
respect this map modulo 4.

We pass to the intermediate order E ⊆ E ′ ⊆ Γ consisting of those tuples x × y × z ∈ Γ

that still act on V but that commute with U -f V modulo 2 and not necessarily modulo
4. This amounts to the description

E ′ = {x× y × z | y ≡4 z, 2x ≡4 y + z} ⊆ Γ.

Sending X to 0× 2×−2 and Y to 0× 0× 4 yields the presentation

Z(2)[X, Y ]/(X2 − 2X − 2Y, XY + 2Y, Y 2 − 4Y ) -∼ E ′,

whence the reduction modulo 2

F2[X, Y ]/(X2, XY, Y 2) -∼ E ′/2,

which is not isomorphic to E/2 since the radical square of E ′/2 vanishes.

0.5 A washing machine

The problem in formalizing the direct calculational simplification of a given system of ties
lies in the choice of a suitable conjugation of a single representation by an elementary
matrix, i.e. we have to formalize the meaning of an obvious step. In case one chooses
the respective step by hand - which is possible, say, for ZS5 -, one makes use of the human
ability of pattern recognition.

The automatized solution to this problem is rather simple. It is efficient for n 6 7, but
it is of non-algorithmic nature. It is doubtful whether a practicable algorithm exists.
Note that we deal with a finite problem of huge proportions.

We shall now give a sketch of the method employed instead of giving a complete docu-
mentation in the main text.
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To begin with, we start with the ties given by Serre’s Inverse Fourier Transformation For-
mula (1.1.1) for an arbitrarily chosen embedding, thus avoiding an n!×n!-matrix inversion.

Conjugation of a representation by an elementary matrix is performed by a multiplication
from the left and the inverse multiplication from the right. To keep control of the effect
on the ties, we test either only multiplication from the left or only multiplication from the
right, translated to the effect on the tie matrix, i.e. on the matrix which records the ties.
For a fixed position of the non main diagonal entry of the conjugating elementary matrix,
the entry with maximal reduction of the number of involved nonzero positions in the
tie matrix is determined. The conjugation itself then is, of course, carried out correctly
from both sides. Now we let the position of this non main diagonal entry run through our
conjugating elementary matrix. Thus we have two methods at hand, one testing from the
left and one testing from the right, which we more or less alternate.

The resulting process is a non-algorithm in the sense that even for the vague aim of a
satisfactory embedding (cf. S 0.1.2) there is no theoretical reason to be achieved. For n 6 7,
however, the system of ties almost collapses down to a sensible one: the resulting ties
regularly involve at most one entry per quasiblock, and, exceptionally, up to three entries
per quasiblock.

As a consequence of using a process which is not an algorithm, the tie matrix of Z(3)S7

needs two successive treatments by the program until it is cleaned - as one might expect of
a washing machine.

The tie matrix being simplified, there remains the extra task of parallelizing the ties oc-

curring in a Peirce component eZ(p)Snf . By parallel ties, we understand ties of the same

shape for all matrix tuple positions belonging to this Peirce component. Parallelization is

necessary for to see Morita multiplicities (cf. e.g. S 2.1.1). But so far, parallel ties are not

distiguishable by computer from their non-parallel linear combinations. This is the reason

why we haven’t obtained satisfactory embeddings for Z(p)S7 for p = 2, 3, 5 yet, although our

washing machine has been able to handle them. For to proceed further in this direct manner,

one should attempt to automatize also this parallelization as far as possible, algorithmically

or not. For possible theoretical obstacles, cf. (D.1.4).

Trying to deal with ties without computer – not only in this first step for to calculate
satisfactory embeddings directly, but also in the subsequent search for generic ties – would
be similar to trying to do astronomy without telescope. We should not overestimate our
eyes.

0.6 Some results

0.6.1 A one-box-shift morphism

We use the language of James [J 78]. We shall give a formula for a morphism

Sλ/m -f̄ Sµ/m,

in case µ arises from λ by shifting one box to the left and down, m being the length
of the path covered by the shifted box (4.3.31, cf. S 0.6.3). This morphism is induced by
a morphism from the free ZSn-module on one generator, denoted by F λ and equipped
with the λ-tableaux as Z-linear basis, to the Specht lattice Sµ. The image of a λ-tableau
[t] under this morphism is given by a sum of µ-polytabloids according to the following
combinatorial rule. Take an entry of the tableau t from the column of the box which
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is to be shifted and replace an entry in some column further to the left with it. Take
this replaced entry and replace an entry in a column further to the left with it. And
so on. Put the last replaced entry into the shifted box, but at its position in µ (cf.
e.g. S 4.3.5). Form an integral linear combination of the resulting µ-polytabloids with
coefficients polynomial in the column lengths of λ. Finally, divide out a redundant and
likewise polynomial factor, which occurs because of a linear dependence of the resulting
µ-polytabloids that ensues from the Garnir relations [G 50, p. 56], cf. (4.1.4). The result

passes down to Sλ/m -f̄ Sµ/m. f̄ 6= 0, even modulo primes dividing m, can be seen by
a standard polytabloid argument.

Based on [CL 74], Carter and Payne [CP 80] in particular show that such a nonzero
morphism exists over an infinite field of characteristic p dividing m (cf. 4.3.33, S 4.3.5).
This ensues also from (4.3.31).

For the application to integral representation theory, however, we need morphisms modulo
prime powers, and moreover, we need to know their behaviour under composition, for
instance in order to describe Z(p)Sp, p prime (cf. e.g. 4.2.4, 4.2.8, S 4.4.2).

Furthermore, Carter and Payne assert the nonvanishing of Hom in the situation of
the simultaneous shift of several boxes from a column to another column further down
to the left. We could figure out some modular morphisms in simple special cases of
this combinatorial situation (cf. 4.4.3, 4.4.5), but we haven’t been able to generalize the
one-box-shift morphism (4.3.31) accordingly.

A. Kleshchev [Kles 98] has given an argument for the dimension of the Hom-space
treated by Carter and Payne to be one-dimensional in case of a one-box-shift in char-
acteristic 6= 2 (cf. 4.3.33).

Further exceptional modular morphisms appeared modulo 2, one of them specializing
to the nontrivial endomorphism of S(3,1,1)/2, causing a tie with two entries in a single
quasiblock (4.2.11). This endomorphism is described, up to Morita equivalence, by the
matrix (

0 0 0
0 0 0
1 0 0

)
.

Thus the element
(
x11 x12 x13
x21 x22 x23
x31 x32 x33

)
of the matrix ring containing the according quasiblock

respects this endomorphism modulo 2 if and only if(
x13 0 0
x23 0 0
x33 0 0

)
=
(
x11 x12 x13
x21 x22 x23
x31 x32 x33

)(
0 0 0
0 0 0
1 0 0

)
≡2

(
0 0 0
0 0 0
1 0 0

)(
x11 x12 x13
x21 x22 x23
x31 x32 x33

)
=
(

0 0 0
0 0 0
x11 x12 x13

)
,

i.e. if and only if x12 ≡2 x13 ≡2 x23 ≡2 0 and x11 ≡2 x33. These ties already describe that
quasiblock (cf. S 2.2.4).

A table of some modular morphisms is given in (S 4.5).

0.6.2 A retraction up to an integer

In (S 0.1.4) it has been explained that the missing detail in order to describe ZSn via
ties arising from modular morphisms, using an unscrewing of the regular lattice by James
extensions, is a retraction to the inclusion of an occurring James extension up to its order
in Ext1. The kernel of such an occurring James extension is given by a Specht lattice Sν ,
its middle term is given by a James lattice Sλ⊆ν (cf. 5.1.2). There is an epimorphism from
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F ν onto Sλ⊆ν for which generators of the kernel are known. This enables us to exhibit a

retraction up to the Ext1-order as being induced from a ZSn-morphism F ν -f Sν (5.2.25,
cf. S 0.6.3)

The formula for f is very similar to that described in (0.6.1), and I do not know why.
Suppose given a ν-tableau [t] which is to be mapped. Let y be the entry of t at the unique
position outside of λ (modulo 5.3.3). Replace an entry to the right of y by y. Take the
replaced entry to replace an entry to the left of it. Take the replaced entry to replace an
entry to the left of it. And so on. In the last step, insert the replaced entry at the original
position of y. Form an integral linear combination of the resulting ν-polytabloids with
coefficients polynomial in the column lengths of ν and divide out a factor of redundancy.

0.6.3 Announcement of results

We shall give an account of (4.3.31, 5.2.25), slightly deviating in notation from our working
language of (C 4, C 5).

Let

N -λ N0

i - λi

be a partition of n, i.e. assume
∑

i λi = n and λi > λi+1 for i ∈ N. Let P λ := {i× j ∈
N×N | j 6 λi} be the picture of λ. A λ-tableau is a bijection

P λ -[a]
[1, n]

i× j - aij.

σ ∈ Sn acts on the set of λ-tableaux T λ via composition [a] -
σ

[a]σ. Let F λ be the free
Z-module on T λ with the induced action of Sn. Let

P λ -ρ N P λ -κ N
i× j - i i× j - j

denote the projections and let

T λ -r N[1,n] T λ -c N[1,n]

[a] - [a]−1ρ [a] - [a]−1κ
.

The fibers of r are called tabloids, and the fiber containing [a] is denoted by {a}. The
free Z-module on the set of tabloids, equipped with the induced action of Sn, is denoted
by Mλ. Let

C[a] := {σ ∈ Sn | [a]c = ([a]σ)c}

be the column stabilizer of [a]. Let the Specht lattice Sλ be the ZSn-sublattice of
Mλ generated over Z by the λ-polytabloids

〈a〉 :=
∑
σ∈C[a]

{a}σεσ.

λ′ denotes the transposed partition of λ, i.e. j 6 λi ⇐⇒ i× j ∈ P λ ⇐⇒ i 6 λ′j.
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Let s, t ∈ N, s < t, assume λ′t > λ′t+1, and assume s = 1 or λ′s−1 > λ′s. These assumptions
ensure

µ′i :=


λ′i + 1 for i = s
λ′i − 1 for i = t
λ′i else

to define a partition µ of n. Let l > 1. A path of length l is a map

[0, l] -γ P λ ∪ P µ

k - αk × βk

such that k < k′ implies βk < βk′ , such that α0 × β0 = µ′s × s and such that βl = t. For a
λ-tableau [a] define the µ-tableau [aγ] by

aγij := aij for i× j ∈ P µ\(γ([1, l]) ∪N× {t})
aγαkβk := aαk+1βk+1

for k ∈ [0, l − 1]

aγit := ait for i < αl
aγit := ai+1,t for i > αl.

For i ∈ [s+ 1, t− 1] we denote Xi := (t− λ′t)− (i− λ′i). Let

xγ := (−1)αl

∏
i∈[s+1,t−1], µ′i>µ

′
i+1
Xi∏

k∈[1,l−1]Xβk

.

Let m := 1 + (t− λ′t)− (s− λ′s). Let Γ be the set of paths of some length l ∈ [1, t− s].

Theorem 0.6.1 (formula for a modular morphism, equivalent to (4.3.31)) There
is a commutative diagram of ZSn-linear maps

[a] -
∑

γ∈Γ xγ〈aγ〉
F λ -f Sµ[a]

?

〈a〉
? ?

〈b〉

?

〈b〉Sλ -f̄ Sµ/m

f can be written as an integral matrix such that at least one entry equals ±1. In particular,
f̄ does not vanish.

A prepartition of n is a map

N -ν N0

i - νi

such that
∑

i νi = n. The notation in case of a partition carries over verbatim up to the
definition of Mν .

Let λ be a partition of some number such that P λ ⊆ P ν . Let [a] be a ν-tableau, let

P ν\P λ -
�� ι P ν . Let

C[a],λ := {σ ∈ Sn | [a]c = [a]σc, ι[a] = ι[a]σ}
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be the column stabilizer of [a] inside λ. Let the James lattice Sλ⊆ν be the ZSn-sublattice
of Mν generated over Z by the λ ⊆ ν-semitabloids

〈a〉λ :=
∑

σ∈C[a],λ

{a}σεσ.

Note that Sλ⊆ν = Sλ̃⊆ν , where λ̃1 := ν1, λ̃i := λi for i > 2.

Let z > 2. Assume λz < λz−1 and λz < νz. The assignments

(λAz)i :=

{
λi + 1 for i = z
λi for i 6= z

(νRz)i :=


νi + νz − λz for i = z − 1
λz for i = z
νi for i 6= z − 1, z

define a partition λAz of some number with P λAz ⊆ P ν and a prepartition µRz of n with
P λ ⊆ P νRz . For a ν-tableau [a], we define the νRz-tableau [aRz] by

(aRz)ij := aij for i× j ∈ P νRz\{z − 1} × [νz−1 + 1, νz−1 + νz − λz]
(aRz)z−1, νz−1+j := ai,λz+j for j ∈ [1, νz − λz].

Theorem 0.6.2 (James, [J 78, 17.13, proof of 17.12], cf. (5.1.18))
The sequence of ZSn-lattices

0 - SλAz⊆ν - Sλ⊆ν - Sλ⊆νRz - 0,
〈a〉λAz - 〈a〉λAz

〈a〉λ - 〈aRz〉λ

called the James extension, is short exact.

Simple case. Let t := ν1 and suppose P ν\P λ = {ν ′s× s} for some s ∈ [1, t]. Let z := ν ′s.
Note that SλAz⊆ν = Sν . Let l > 0. A cycle of length l is a map

[0, l] -γ P ν

k - αk × βk

such that k < k′ implies βk < βk′ and such that α0×β0 = z×s. For a ν-tableau [a] define
the ν-tableau [aγ] by multiplication of [a] with the corresponding (l + 1)-cycle in Sn,

[aγ] := [a] · (aα0,β0 , . . . , aαl,βl).

For i ∈ [s+ 1, t] we denote Yi := (s− ν ′s)− (i− ν ′i). Let

yγ :=

∏
i∈[s+1,t], ν′i>ν

′
i+1
Yi∏

k∈[1,l] Yβk
.

Let Γ be the set of cycles of some length l ∈ [0, t− s]. Let

m := (ν ′s + t− s)
∏

j∈[s+1,t], ν′j−1>ν
′
j

(Yj + 1).
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Theorem 0.6.3 (formula for a retraction up to m, equivalent to (5.2.25, 5.2.26))
There is a morphism of short exact sequences

0 - Sν - Sλ⊆ν - Sλ⊆νRz - 0

?

〈a〉λ

?∑
γ∈Γ yγ〈aγ〉 ?

0 - Sν -m Sν - Sν/m - 0

in which the upper sequence is the James extension (0.6.2), having order m in Ext1.
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Chapter 1

Preliminaries

We need a certain amount of theory a priori in order to handle our guiding examples, in

particular, to prove that they are correct, independent of computer calculations. For this

purpose we give a total index formula, describing the quantity of the system of ties, we

recall the modified Coxeter relations, giving a presentation of Sn in terms of a transposition

and an n-cycle, and finally we recall the point of view of path algebras as universal Peirce

decompositions. By rights, also appendix (A D), containing the notions of a homogenus

ring, i.e. of a ring which has a Peirce decomposition such that the summands are either

isomorphic or lie in different genera, and of a naive localization, i.e. a way to work at

a single prime while keeping the global ground ring, should have appeared at this point.

However, due to its length, the according section has been shifted to the back.

1.1 Serre’s Fourier inversion formula

The reader who is merely interested in our guiding examples may restrict his attention to

(S 1.1.1). This section may be regarded as a long corollary to the vertical orthogonality

relations of the character table. We do not claim originality, in fact, we have rediscovered

several well known assertions (1.1.4, 1.1.5, 1.1.8, 1.1.10, 1.1.13) by this ad hoc method (cf.

S 1.1.6).

1.1.1 The tie matrix and the total index

Let G be a finite group. Let {ρλ} be a complete set of complex irreducible representations
of G, given by matrix valued functions ρλ = (ρλij)i×j∈[1,nλ]×[1,nλ], where nλ := dim ρλ.

The vertical orthogonality relation applied to the first column of the character table of G,
belonging to 1 ∈ G, and to the column belonging to the conjugacy class of an arbitrary
element g ∈ G reads ∑

λ

nλ Tr ρλ(g)
(∗)
= |G| ∂1,g.

Hence, composing the linear maps

CG -r
∏

λ Cnλ×nλ

g - (ρλ(g))λ

1
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and ∏
λ Cnλ×nλ -t CG

(ξλ)λ -
∑

g

(∑
λ nλTr(ξλρλ(g−1))

)
g,

whose matrix arises from the matrix of r via transposition, a reordering of the rows and
columns and a multiplication of the rows with respective factors nλ, we obtain the

Lemma 1.1.1 (Serre’s Fourier inversion formula [Se 77, 6.2 prop. 11])

rt = |G|.

Given h ∈ G, we plug in ξλ := (h)r = ρλ(h) to get∑
g

(∑
λ,i,j nλρ

λ
ij(h)ρλji(g

−1)
)
g =

∑
g

(∑
λ,i nλρ

λ
ii(hg

−1)
)
g

(∗)
= |G|

∑
g ∂h,gg

= |G|h.

Note that both maps r and t depend on the chosen representations.

For (ξλ)λ ∈
∏

λ Cnλ×nλ we have, using rt = |G| and tr = |G|, the

Remark 1.1.2 (cf. [Klei 96, Prop. 1])

(ξλ)λ ∈ (ZG)r ⇐⇒ ((ξλ)λ)t ∈ |G|ZG.

We return to the case G = Sn, in which we may realize the ρλ integrally [J 78, 4.2, 4.3,
4.12]. For such a tuple of representations, the restriction of r to ZSn yields an inclusion

ZSn -
�� r ∏

λ

Znλ×nλ ,

for which we have used the system of ties given by (1.1.2) in order to calculate our guiding
examples (C 2) directly by the method described in the introduction (S 0.5).

Corollary 1.1.3 The elementary divisors of the inclusion ZSn -
�� r ∏

λ Znλ×nλ divide n!,
i.e.

n!
∏
λ

Znλ×nλ ⊆ (ZSn)r ⊆
∏
λ

Znλ×nλ .

Since
(det r)(det t) = n!n!,

and, considering the matrices as explained above,

| det t| = | det r|
∏
λ

n
(n2
λ)

λ ,

we obtain the

Proposition 1.1.4 (total index formula)

| det r| =
√

n!n!∏
λ n

(n2
λ)

λ

is the index of the inclusion of abelian groups

ZSn -
�� r ∏

λ

Znλ×nλ .
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1.1.2 Total index, more general version

Keep the notation of (S 1.1.1) in the general case. Let {ρλ}λ∈L be a complete set of complex irreducible
representations of G.

Let R be a principal ideal domain with field of fractions the algebraic number field K.
Suppose that the endomorphism rings of the simple KG-modules are commutative and
galois over K.

Let {rµ}µ∈M be a complete set of K-rational irreducible representations of G, let Kµ be the endomor-
phism ring of rµ. Let dµ := |Kµ/K|, let Γµ := Gal(Kµ/K). Note that via

C ⊗K Kµ -∼ ∏
σ∈Γµ C

z ⊗ x - (zσ(x))σ

we may further blockwise decompose the tensor product

CG = C⊗K KG -∼ ∏
µ C⊗K (Kµ)mµ×mµ -∼ ∏

µ

∏
σ∈Γµ Cmµ×mµ

g - (rµ(g))µ - (σ(rµ(g)))σ,µ.

Therefore we have a surjection L -M corresponding to the Galois orbits of {ρλ}λ∈L. Let {ρµ}µ∈M be
a set of representatives of these orbits, so that in particular nµ = mµ.

Suppose the the complex matrix ρµ can be chosen to have entries in the integral closure Rµ

of R in Kµ.

In case Rµ is a principal ideal domain, this condition is automatically fulfilled by choosing a Rµ-basis for
the RG-lattice

∑
g∈G gR

µB, B being a Kµ-basis of our simple KG-module.

Restricting on the left to RG ⊆ CG and on the right to M ⊆ L we obtain

RG -r
′ ∏

µ∈M (Rµ)nµ×nµ

g - (ρµ(g))µ,

which becomes an isomorphism under C⊗R − since we may compose with

C⊗R Rµ = C ⊗K Kµ -∼ ∏
σ∈Γµ C

z ⊗ x - (zσ(x))σ

to recover
CG -r

∼
∏
λ∈L

Cnλ×nλ .

Consider the linear map∏
µ∈M (Rµ)nµ×nµ -t

′

CG

(ξµ)µ - ∑
g

(∑
µ∈M nµ

∑
σ∈Γµ Tr(σ(ξµ)σ(ρµ(g−1)))

)
g

=
∑
g

(∑
µ∈M nµTrKµ/K(Tr(ξµρµ(g−1)))

)
g

The image of t′ is contained in RG. Serre’s Fourier inversion formula (1.1.1) reads

r′t′ = |G|.

Let {xµ1 , . . . , x
µ
dµ
} be an R-linear basis of Rµ and write an element a ∈ Rµ as

a =
∑

s∈[1,dµ]

asx
µ
s

with coefficients as ∈ R.

The R-linear matrix attached to r′ in the obvious bases has the entry

ρµijs(g)
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at the position (g, µijs). The matrix attached to t′ has the entry

nµTrKµ/K(xµs ρ
µ
ji(g

−1)) =
∑
t∈[1,dµ] nµTrKµ/K(xµsx

µ
t )ρµjit(g

−1)

at the position (µijs, g). Denoting the discriminant by ∆µ := det(TrKµ/K(xµsx
µ
t ))st, we obtain

det t′ = ± det r′
∏
µ∈M

∆
(n2
µ)

µ n
(n2
µdµ)

µ .

The argument from (S 1.1.1) together with an elementary divisor argument in order to pass down to Z
gives the

Proposition 1.1.5 (total index formula II) Suppose R to be the integral closure of Z in K.

The index of

RG -r
′ ∏

µ∈M
(Rµ)nµ×nµ

as abelian groups is √√√√√∣∣∣∣∣NK/Q

 |G||G|∏
µ∈M ∆

(n2
µ)

µ n
(n2
µdµ)

µ

∣∣∣∣∣ .
In particular, in case R = Z, each prime divisor of ∆µ also divides |G|.

1.1.3 Rough estimates for quasiblock indices

Retain the notation from (S 1.1.1), case G = Sn. Let L be a subset of the set of partitions of n, let
εL :=

∑
λ∈L ε

λ.

Lemma 1.1.6 The generalized quasiblock index, i.e. the index of the inclusion

QL := ZSnεL -rL ∏
λ∈L Znλ×nλ =: ΓL

sεL - (ρλ(s))λ∈L

is independent of the choice of the integral representations ρλ.

NB in case L consists of all partitions of n this follows from the total index formula (1.1.4). Consider a
tuple A := (αλ)λ∈L ∈ ΓL such that the determinant of αλ ∈ Znλ×nλ is nonzero and such that

αλρλ(s)(αλ)−1

is integral for each λ ∈ L and each s ∈ Sn, i.e. such that rL maps into

ΓL ∩ ΓAL ⊆
∏
λ∈L

Qnλ×nλ .
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Consider the diagram of abelian groups, where on the right hand side we insert the respective cokernels
C,

ZSnε -rL ΓL ∩ ΓAL
- C

6

C
C
C
C
C
C
CO

�
�
�
�
�
�3

ΓL
��

��*
C

6 HH
HHY

C ′′

?

�
�
�
�
�
�
��

Q
Q
Q
Q
Q
Qs

ΓAL HHHHj
C

?
�
����

C ′.

Using an elementary divisor form of A, we conclude that C ′ and C ′′ are isomorphic as abelian groups, so
that the assertion results from the Circonference Lemma.

NB the quasiblock Q(3,1) (
Z Z Z
Z Z Z
4 4 Z

)
'
(

Z Z 2
Z Z 2
2 2 Z

)
of ZS4 (2.1) shows that the elementary divisors of QL -rL ΓL are not well defined.

Now we set out to give estimates for this generalized quasiblock index. Let

ΓL -tL ZSn
denote the restriction of t to ΓL, let

ZSn -r
′
L

ΓL

denote the composition of rL and the projection to ΓL. By virtue of (1.1.1) we conclude that

(ΓL -tLr
′
L

ΓL) = n!.

For a linear map a between Z-lattices, let |det a| denote the product of the nonnegative elementary
divisors of a. Regarding the corresponding matrices we notice that

|det tL| = |det r′L|
∏
λ∈L

n
(n2
λ)

λ .

Denote by (−̄) the reduction modulo n!. Let ML be the image of t̄L, let WL be the cokernel of r̄′L, i.e.
the cokernel of rL, so that wL := |WL| is the generalized quasiblock index of QL. Note that ML is the

cokernel of QL ∩ ZSn -rL ΓL (intersection in QSn), for we have a pullback diagram

QL ∩ ZSn - ZSn

?

rL

?

n!

ΓL -tL ZSn,
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so that mL := |ML| is the index of the inclusion QL ∩ ZSn -
�� rL ΓL. In particular we see, since the

greatest common divisor nL of the nλ, λ ∈ L, divides tL by construction, that

Lemma 1.1.7

n!/nL
∏
λ∈L

Znλ×nλ ⊆ (QL ∩ ZSn)rL ⊆ (QL)rL ⊆
∏
λ∈L

Znλ×nλ .

I.e. for a generalized quasiblock as well as for its intersection with ZSn all ties can be written modulo
n!/nL.

By definition we have

mL =
n!
∑
λ∈L n

2
λ

|det tL|
=

n!
∑
λ∈L n

2
λ

|det r′L|
∏
λ∈L n

(n2
λ)

λ

and
wL = |det r′L|.

Furthermore, the Circonference Lemma applied to t̄Lr̄
′
L = 0 yields

n!
∑
λ∈L n

2
λ

∣∣∣∣ (n!n!/mL)wL.

Hence,

Lemma 1.1.8 (cf. [P 80/2, II.3]) (1) The product of the index wL of (QL)rL in
∏
λ∈L Znλ×nλ with

the index mL of (QL ∩ ZSn)rL in
∏
λ∈L Znλ×nλ is

wLmL =
n!
∑
λ∈L n

2
λ∏

λ∈L n
(n2
λ)

λ

.

Since QL ∩ ZSn ⊆ QL, we obtain in particular

n!2(
∑
λ∈L n

2
λ)−n!∏

λ∈L n
(n2
λ)

λ

∣∣∣∣∣ w2
L

∣∣∣∣∣ n!
∑
λ∈L n

2
λ∏

λ∈L n
(n2
λ)

λ

In practice, both the upper and the lower bound tend to be far from the actual value. For L being the

set of all partitions of n we recover the total index formula (1.1.4).

1.1.4 Ties for the center

The embedding Z(ZSn) -
�� ∏

λ Z is the bonsai version of the embedding ZSn -
�� ∏

λ Znλ×nλ .

It might be illuminating to have seen it in advance.

Retain the notation from (S 1.1.1), case G = Sn. By (1.1.2), (ξλ)λ ∈
∏

λ Znλ×nλ is central
in (ZSn)r iff ξλ = xλ · 1λ is a multiple of the identity matrix for all λ and

((ξλ)λ)t =
∑
g

(∑
λ

nλx
λTr(ρλ(g−1))

)
g ∈ n! ZSn.

1An earlier version of our proof of the estimate contained a simplification due to S. König, the idea
of which also went into the present proof.
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Let χλ(g) := Tr(ρλ(g)). Via

Z(ZSn) -r∼ {(xλ)λ|
∑
λ

xλnλχ
λ(g) ≡n! 0 for all g ∈ Sn} ⊆

∏
λ

Z

the center of ZSn resp. of its localizations can be read off the character table.

Remark 1.1.9
(i). Because of

ελ =
nλ
n!

∑
s∈Sn

χλ(s−1)s

we know that n!
nλ
ελ ∈ ZSn, in accordance with (1.1.7).

(ii). Let p be a prime. We claim that Z((ZSn)[p]) = Z(ZSn)[p], the naive localizations

taken inside
∏
λ Znλ×nλ and

∏
λ Z respectively (cf. D.2.10). Z((ZSn)[p]) is a p-order (or

equal to
∏
λ Z, cf. D.2.8) since the diagram comparing the inclusion and the inclusion of

the centers is a pullback. This gives ⊇. To see ⊆, we consider an element z that is central
in the naive localization (ZSn)[p], and thus central in

∏
λ Znλ×nλ . Now z is contained in

Z(ZSn)[p] iff there is some integer m coprime to p such that mz ∈ Z(ZSn). But there is
such an m multiplying z into ZSn, thus also into Z(ZSn).

Lemma 1.1.10 (central index formula, [CPW 87, 4.1]) (2) Let pn be the number of
partitions of n. Let cλ be the length of the conjugacy class of elements of cycle type λ.

The index of the inclusion Z(ZSn) -r
∏

λ Z is

1∏
λ nλ

√
n!
pn∏

λcλ.

Let γλ denote the conjugacy class of elements of cycle type λ, so cλ = #γλ. Let
∑
γλ

denote the sum of its elements in ZSn. The restriction of r to Z(ZSn) maps∑
γµ -r (

∑
g∈γµ ρ

λ(g))λ

= (
1

nλ

∑
g∈γµ χ

λ(g))λ

= (
cµ
nλ
χλ(γµ))λ,

the first equality resulting from knowing the image element to be central, the index of
ZSn in

∏
λ Znλ×nλ being finite.

Now t/n! is a ring isomorphism, in particular, t respects the centers. More precisely, the
restriction of t to

∏
λ Z maps

(∂µλ)λ -t
∑

λ ∂µλnλ
∑

ν χ
λ((γν)−1)

∑
γν

= nµ
∑

ν χ
µ((γν)−1)

∑
γν .

Thus the matrix for t arises from the matrix for r by transposition, reordering columns
and imposing factors n2

λ on each row λ and 1/cµ on each column µ, whence

| det t| = | det r|
∏
λ

n2
λ

cλ
.

2G. Nebe provided the reference.
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Now
(det r)(det t) = n!pn

yields the required formula.

Example 1.1.11 According to (1.1.10), the index of Z(ZS5) ⊆
∏
λ Z is

1

12 · 42 · 52 · 6
√

1207 · 24 · 30 · 20 · 20 · 15 · 10 · 1 = 2103454.

We multiply the rows of the character table of S5 [J 78, 6.3] with the degree of the respective
representation and reduce modulo 8 to obtain, in the notation of loc. cit.,

1 1 1 1 1 1 1

4 0 4 4 0 0 0

0 3 −3 3 −3 −3 1

−2 0 0 0 4 0 4

0 −3 3 3 −3 3 1

4 0 4 4 0 0 0

1 −1 −1 1 1 −1 1


.

Column simplifications yield 

0 0 0 0 0 0 1

0 0 0 4 0 0 0

1 0 2 0 0 0 0

−2 0 0 0 0 4 −2

1 0 0 0 0 0 0

0 0 0 4 0 0 0

0 0 −2 0 0 4 1


,

whence

Z(ZS5)[2]
-∼ {x2 × x4 × x6 × x7 × x5 × x3 × x1| x5 + x6 ≡8 x

1 + x2 ≡8 2x7, x7 ≡2 x
1 ≡4 x

6, x3 ≡2 x
4}

⊆ Z× Z× Z× Z× Z× Z× Z,

the numbering of the quasiblocks chosen as in (2.2.1), viz.

1 : (1, 1, 1, 1, 1)
2 : (1, 1, 1, 1, 1)′

3 : (2, 1, 1, 1)
4 : (2, 1, 1, 1)′

5 : (2, 2, 1)
6 : (2, 2, 1)′

7 : (3, 1, 1).

The following basis, written as consisting of row vectors,

0 1 0 0 0 1 0

0 0 0 0 0 2 0

1 0 1 1 1 0 1

0 0 4 2 0 0 4

0 0 0 2 4 0 −4

0 0 0 0 8 0 0

0 0 0 0 0 0 8


confirms the 2-part of the central index. Let

A := {x2 × x6 × x7 × x5 × x1|x5 + x6 ≡8 x
1 + x2 ≡8 2x7, x7 ≡2 x

1 ≡4 x
6}

B := {x3 × x4|x3 ≡2 x
4}

so that Z(ZS5)[2] ' A×B. Let a ⊆ A(2) be the ideal having
0 0 4 2 0 0 4

0 0 0 2 4 0 −4

0 0 0 0 8 0 0

0 0 0 0 0 0 8





Serre’s Fourier inversion formula 9

as Z(2)-linear basis. Then

1 + a -∼ A∗(2)/Z
∗
(2)

is a multiplicative isomorphism. Also note that essentially the only nontrivial central invo-
lution is given by [

1 1 1 1 1 −1 1.
]

1.1.5 A refinement of the total index formula

We shall refine the total index formula (1.1.4) to the Peirce components.

Let R = Z(p), p prime. Retain the notation of (S 1.1.1).

Suppose given a Peirce decomposition 1 =
∑
i∈[1,s] ei of the image Λ of the embedding RSn into Γ :=∏

λR
nλ×nλ . Refine it to a Peirce decomposition of 1 =

∑
i∈[1,s], γ∈[1,ri]

ei,γ of Γ.

Lemma 1.1.12 Suppose given two orthogonal primitive idempotent decompositions

1 =
∑
i∈[1,t] fi

1 =
∑
j∈[1,u] gj

of Γ. Then t = u, and there exists a unit x ∈ Γ∗ and a permutation σ such that

fi = gxiσ

for all i.

Since each fi is primitive in Γ, we may group the decomposition into the fi’s by multi-
plication with the central primitive idempotents of Γ into decompositions of these central
primitive idempotents. Thus we may assume Γ = Rm×m. Moreover, we may assume gi to
be the i-th main diagonal primitive idempotents of Γ, and m = u.

Since Rm×m-proj ' R-proj has only one indecomposable projective module, up to isomor-

phism, we have t = m by comparison of ranks, and, moreover, isomorphismsRm -bi
∼ Rm×mfi.

Since

(
f1

...
fm

)
and (f1 ... fm ) are mutually inverse isomorphisms between

⊕
iR

m×mfi and

Rm×m, we obtain, letting Rm -bifi Rm×m be given by right multiplication with a column,
the equation (

b1f1

...
bmfm

)
fi = gi

(
b1f1

...
bmfm

)

in Rm×m,

(
b1f1

...
bmfm

)
being a unit therein.

Therefore, we may assume the ei,γ to be the main diagonal primitive idempotents of Γ.

Let Mij be the matrix describing the embedding

eiΛej ⊆ eiΓej ,

for some R-linear basis of eiΛej and for the canonical basis of eiΓej , consisting of matrix tuples with one
nonvanishing entry equal to 1. This is, the rows of Mij furnish a basis of eiΛej in terms of the canonical
basis of eiΓej , and the columns are indexed by matrix tuple positions.

Collect the bases of eiΛej to a basis B of Λ, and collect the bases of eiΓej to a basis C of Γ, such that
the embedding Λ ⊆ Γ is given by a main diagonal block matrix M consisting of the Mij ’s. Let G be the
basis of Λ consisting of the images of the group elements of Sn.

Write the matrix of the embedding r with respect to the bases G and C as a product of the base change
matrix U from G to B with M .
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The matrix of t with respect to the bases C and G arises from the matrix of r by transposition; followed by
a permutation of the rows corresponding to transposition of the factors Rnλ×nλ , given by a permutation
matrix T ; followed by left multiplication with nλ of each row for the respective λ the corresponding matrix
tuple position belongs to, given by a diagonal matrix D; followed by a permutation of the columns
corresponding to group element inversion, given by a permutation matrix V . Hence Serre’s Fourier
inversion formula rt = n! (1.1.1) reads

(UM)(DTM tU tV ) = n!.

Lemma 1.1.13 (basis-ties duality) We abbreviate

wij := rk eiΛej = rk ejΛei

and obtain
MijDijTijM

t
ji ∈ n! GLwij (R),

where Tij permutes the rows of M t
ji such that the matrix tuple position corresponding to the k-th row of

Mji and to the k-th column of Mij are mutually transposed. Dij is a main diagonal matrix consisting of
nλ’s according to the matrix tuple position corresponding to the respective column of Mij, or, equivalently,
the respective row of TijM

t
ji.

In particular, a basis of
eiΛej

furnishes a complete set of ties for
ejΛei,

in the sense that an element of ejΓei is in ejΛei iff, written as a column in the same ordering as the
columns of Mij are written, its product with MijDij is in n!Rwij .

Suppose given an element x with
MijDijx = n! y,

y being an integral vector. We have to show that there exists an integral vector z such that x = TijM
t
jiz.

Letting

z = (
1

n!
MijDijTijM

t
ji)
−1y,

we obtain

TijM
t
jiz = TijM

t
ji(

1

n!
MijDijTijM

t
ji)
−1y = x.

Let
wλij := rk(eiR

nλ×nλej)

and note that

detDij =
∏
λ

n
wλij
λ .

Taking p-parts of determinants, (1.1.13) admits the

Corollary 1.1.14 (refined index formula)

(detMij)p(detMji)p =

 n!wij∏
λ n

wλij
λ


p

.

In particular,

(detMii)p =

(√
n!wii∏
λ n

wλii
λ

)
p

.

NB already Z(3)S3 shows that in general (detMji)p depends on the chosen embedding RSn -
�� r Γ.
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We recover the total index formula (1.1.4) by remarking that it is of local nature and that the product
over the indices of the inclusions

eiΛej ⊆ eiΓej
yields the local total index, since

∑
ij w

λ
ij = n2

λ and
∑
ij wij = n!.

Question 1.1.15 Consider the index of the inclusion

eiΛej ⊆
⊕
γ,δ

ei,γΛej,δ

resulting from ‘dropping those ties which involve more than one position’. Is it independent
of the choices made? Is it invariant under exchange of i and j?

Example 1.1.16 Let R := Z(2), let the inclusion Λ ⊆ Γ be as given further down in
(S 2.1), localized at (2). Let

e1 := 0 × 0 ×
(

1 0 0
0 0 0
0 0 0

)
×

(
1 0 0
0 0 0
0 0 0

)
×

(
1 0
0 0

)
e2 := 0 × 0 ×

(
0 0 0
0 1 0
0 0 0

)
×

(
0 0 0
0 1 0
0 0 0

)
×

(
0 0
0 1

)
e3 := 1 × 1 ×

(
0 0 0
0 0 0
0 0 1

)
×

(
0 0 0
0 0 0
0 0 1

)
×

(
0 0
0 0

)
We obtain

M11 =

 1 1 1

0 2 −2

0 0 8

 , M13 =

[
1 1

0 2

]
, M31 =

[
4 4

0 8

]
, M33 =


1 1 1 1

0 2 0 2

0 0 4 4

0 0 0 8

 ,
and, moreover, M11 = M12 = M21 = M22, M13 = M23, M31 = M32.

We index the factors of Γ from left to right with λ = 1, 2, 3, 4, 5. For M11, the columns are in-
dexed by matrix tuple positions (λ, i, j) = (5, 1, 1), (3, 1, 1), (4, 1, 1), forM13 by (3, 1, 3), (4, 1, 3),
for M31 by (3, 3, 1), (4, 3, 1), for M33 by (3, 3, 3), (4, 3, 3), (1, 1, 1), (2, 1, 1). The positions for
the remaining matrices arise from these by parallel shift. Furthermore, we have D11 =
diag(2, 3, 3), D13 = diag(3, 3), D31 = diag(3, 3), D33 = diag(3, 3, 1, 1). Finally, we note that
all permutation matrices Tij equal the identity and obtain

M11D11M
t
11 = 24 ·

 1/3 0 1

0 1 −2

1 −2 8


M13D13M

t
31 = 24 ·

[
1 1

1 2

]
M31D31M

t
13 = 24 ·

[
1 1

1 2

]

M33D33M
t
33 = 8 ·


1 1 1 1

1 2 1 2

1 1 4 4

1 2 4 8

 .
The formulas of (1.1.14) yield

(detM11)2 = 2(3·3−1)/2

(detM33)2 = 2(4·3−0)/2

(detM13)2 · (detM31)2 = 2(2·3−0),

returning the local total index at 2 as

24·(3·3−1)/2+(4·3−0)/2+2·(2·3−0) = 234

(cf. S 2.1.1).
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1.1.6 det exp

G. Nebe pointed out that (1.1.4, 1.1.5, 1.1.8, 1.1.10, 1.1.13) may be derived more con-
ceptionally using the associative bilinear form on ZSn (cf. 1.1.18). Here, we have left our
arguments unchanged, to gain some variety (3).

We keep the notation of (S 1.1.1), for a general finite group G. exp denotes the formal
exponential function.

Lemma 1.1.17 For g ∈ G the equalities∏
λ

(det exp(t · ρλ(g)))nλ = det exp(t · g(−)) =

{
exp(|G|t) for g = 1
1 for g 6= 1

.

hold in C[[t]]. g(−) is to be read as the linear endomorphism of CG given by left multiplication with g.

The first equality follows by Wedderburn’s isomorphism and by det(A(−)) = (detA)k for A ∈ C[[t]]k×k.

We claim the second equality. Choosing G as basis of CG and sorting it into cosets modulo the cyclic
subgroup 〈g〉 6 G we are reduced to the case G = Cm, m > 1. The case m = 1 corresponds to g = 1, so
we may assume m > 2 and claim the result to be 1.

Let the generalized hyperbolic sine be defined by

sm,i(t) :=
∑

j∈Z, i+jm>0

ti+jm/(i+ jm)!,

depending on i only modulo m. Note that

d

dt
sm,i(t) = sm,i−1(t)

With respect to the basis (1, g, g2, . . . , gm−1), we obtain

exp(t · g(−)) = (sm,i−j(t))ij .

On the one hand we have

d

dt
det(sm,i−j(t))ij =

∑
u∈[1,m]

det

({
sm,i−j−1(t) for j = u
sm,i−j(t) for j 6= u

)
ij

=
∑

u∈[1,m]

0,

on the other hand we see
det(sm,i−j)ij(0) = 1.

Corollary 1.1.18 For g ∈ G the equalities∑
λ

nλ tr ρλ(g) = tr (g(−)) =

{
|G| for g = 1
0 for g 6= 1

hold. In particular, the associative bilinear form 〈g, h〉 := ∂g,h−1 , g, h ∈ G, reads

〈g, h〉 =
1

|G|
∑
λ

nλ tr(ρλ(g)ρλ(h)).

3At the time this subsection was written, I was unaware of Jacobi’s formula det exp = exp trace.
See for instance I. P. Goulden, D. M. Jackson, Combinatorial Enumeration, Wiley 1983, page 11,
formula 7. For the conceptional approach mentioned in the text, cf. e.g. arxiv, math.NT/0102048.
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Consider the first derivative of the identities in (1.1.17) and evaluate at zero. Note that for A ∈ C[[t]]k×k

we have

(
d

dt
det(1 + tA))(0) =

∑
u∈[1,k]

det(1 + tA)u(0)

= tr(
d

dt
A)(0),

where Bu denotes the matrix B with uth column replaced by its derivative. Or use a modification of the
argument of (1.1.17) to argue directly.

1.1.7 Strong horizontal orthogonality relations

Two asides.

Retain the notation from (S 1.1.1), case G = Sn. The horizontal orthogonality relations of the character
table are equivalent to its vertical orthogonality relations. These have as a corollary Serre’s Fourier
inversion formula rt = n! (1.1.1), which in turn is equivalent to tr = n!. This formula, applied to a tuple
of matrices having only one nonzero entry 1 at position ij in the factor µ, written (∂µij,λst)λst, yields

(∂µij,λst)λst -t ∑
g

(∑
s,t,λ nλρ

λ
ts(g

−1)∂µij,λst

)
g

=
∑
g nµρ

µ
ji(g

−1)g

-r (
∑
g nµρ

µ
ji(g

−1)ρλst(g))λst,

hence

Lemma 1.1.19 (strong horizonal orthogonality relations [Se 77, 2.2 cor. 2, cor. 3])∑
g

ρµji(g
−1)ρλst(g) =

n!

nµ
∂µij,λst.

In particular, suppose the entry at the position of µij of any element of (RSn)r to be divisible by pα and
the entry at the position of µji of any element of (RSn)r to be divisible by pβ. I.e. suppose we have a
pα-tie at the single position µij and a pβ-tie at the single position µji. Then

pα+β
∣∣∣ n!

nλ
.

Cf. e.g. Z(3)S6 (S 2.3.3).

In particular, letting χλ(g) :=
∑
i ρ
λ
ii(g), we conclude that the horizontal orthogonality relations∑

g

χµ(g−1)χλ(g) = n! ∂µ,λ

hold, so that the circle of implications is closed again.

Now consider the matrix G = (γij)ij :=
∑
g ρ

λ(g)tρλ(g), which is invertible, since xtGx > 0 for any

nonzero rational vector x, and which has the property that ρλ(h)tGρλ(h) = G for any h ∈ Sn, i.e.
ρλ(h)tGρλ(h−1) = Gρλ(h−2). Thus∑

m

∑
g γimρmj(g

−2) =
∑
kl

∑
g ρ

λ
ki(g)γklρ

λ
lj(g
−1)

(1.1.19)
=

n!

nλ

∑
kl ∂ik,ljγkl

=
n!

nλ
γij ,

i.e. G
∑
g ρ

λ(g−2) =
n!

nλ
G, whence the
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Lemma 1.1.20 ([Se 77, 13.2 prop. 39])∑
g

ρλ(g2) =
n!

nλ
.

In particular, the tuple of scalar matrices (n!/nλ)λ is contained in the image of r, in accordance with
(1.1.7).
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1.2 Modified Coxeter relations

In order to be able to check the correctness of a representation of Sn given by the operation matrices of
a transposition w and an n-cycle z, we recall the relations that generate as a normal subgroup the kernel
of the map from the free group on two elements W and Z to the Sn which maps W to w and Z to z.

First we regard the ordinary Coxeter relations. We claim that the group epimorphism from the

S̃n :=

〈
Wi

∣∣∣∣∣ i ∈ [1, n− 1],

 W 2
i for i ∈ [1, n− 1]

[Wi,Wj ] for i− j > 2,
Wi+1WiWi+1 = WiWi+1Wi for i ∈ [1, n− 2]

〉

onto the Sn via
Wi

- (i, i+ 1)

is injective. We have a morphism
S̃n−1

- S̃n
Wi

- Wi

and claim that its image has index 6 n in S̃n, thus proving S̃n -∼ Sn. Let

Xk :=

{
Wn−1Wn−2 · · ·Wk for k ∈ [1, n− 1]
1 for k = n.

We claim more precisely that each right coset of the image of S̃n−1 in S̃n contains an Xk. In case Wn−1

appears in a word representing an element of S̃n, we claim that we can find a representing word of the
same element with indices decreasing with step 1 from some Wn−1 to the right and also no further Wn−1

to the left of it. Regard the first Wn−1 from the left, then regard the first letter to the right of this
Wn−1 (possibly = Wn−1) not having a successor with index decreasing by 1 (called ‘the successor’). For
example, for n = 6, in W3W5W4W2W5W1 we regard W4, the successor being W2. In the occurring cases
we will give the method pars pro toto, letting n = 6, Wn−1 = W5.

Case 1. The index of the successor increases by 1. Then

W5W4W3W2W3 = W5W4W2W3W2

= W2W5W4W3W2.

Case 2. The index of the successor increases by > 2. Then

W5W4W3W2W4 = W5W4W3W4W2

= W5W3W4W3W2

= W3W5W4W3W2.

Case 3. The index of the successor decreases by > 2. Then

W5W4W3W1 = W1W5W4W3.

Since none of the reduction steps produces a new letter Wn−1 to the left of the picked letter Wn−1, this
proves the claim.

We define

Ŝn :=

〈
Z,W

∣∣∣∣∣


W 2

Zn

(ZW )n−1

W (WZ)W = (WZ)W (WZ)

[W,WZi ] for i ∈ [2, n− 2]

〉
,

the relations of which we shall call modified Coxeter relations, and obtain mutually inverse group
morphisms

S̃n -� Ŝn
Wi

- WZi−1

W1
� W

Wn−1Wn−2 · · ·W1
� Z

which is verified in direction � using the isomorphism S̃n -∼ Sn.
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1.3 The universal Peirce decomposition

We formalize the point of view of path algebras as universal Peirce decompositions in a
fairly obvious and well-known manner.

Let k be a commutative ring.

Definition 1.3.1 A quiver is a quadruple Q = (V,Λ, s, t), consisting of a finite set of vertices V and

a set of arrows Λ, together with two maps Λ -s V - the start - and Λ -t V - the target. A morphism
of quivers is a pair of maps, one on the vertices, one on the arrows, which is compatible with s and t.
The quivers as objects and the morphisms of quivers as morphisms furnish the category quiv.

The category of k-algebras with Peirce decompositions, k-algpeirce, is defined as follows. Objects
are pairs

(A, (ei)i∈I)

(more formally, (A, I -e(−)

A)), consisting of a k-algebra A and a tuple (ei)i∈I which gives a finite orthog-
onal decomposition

∑
i∈I ei = 1 into idempotents. A morphism

(A, (ei)i∈I) -(u,v)
(B, (fj)j∈J)

is a pair, consisting of a morphism A -u B of k-algebras and a map I -v J of indexing sets such that

eiu = fiv.

For short, we also denote (A, (ei)i∈I) by A and a morphism (u, v) by u.

NB we do not require primitivity for the occurring idempotents.

Lemma 1.3.2 The forgetful functor

k-algpeirce -(
~−)

quiv

A - ~A

which associates with (A, (ei)i∈I) the quiver having the set I as set of vertices and the set eiAej as set of
arrows with start i and target j, has a left adjoint

quiv -k(−)
k-algpeirce

Q - kQ,

where kQ has, as a module over k, a basis consisting of these words in the arrows of Q in which the target
of each letter coincides with the start of the subsequent letter, if existent. In particular, to each vertex i
we associate an empty word ei, which has by convention i as start and target. The product is defined on
this basis as the concatenation of these words if possible, and as zero otherwise. The tuple of idempotents
is given by the empty words, indexed by the associated vertices.

Both functors are to be read as operating on the morphisms in the expected manner.

The unit of this adjunction
Q - (kQ)~

is given by sending the vertices and the arrows to themselves.

The counit of this adjunction
k ~A - A

is given on the basis of the algebra by sending a word, i.e. a formal product of letters being elements in
various Peirce components, to its actual product in A, and on the indexing set by sending an index to
itself.

The adjunction triangles have to be verified.
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Corollary 1.3.3 (the morphism construction principle) Suppose given an algebra A and an or-
thogonal decomposition 1A =

∑
i∈I ei into idempotents. Let Q be a quiver having I as set of vertices.

Each map which sends an arrow of Q with start i and target j to an arbitrarily chosen element of eiAej
can be prolonged uniquely to an algebra morphism from kQ to A, sending i to ei.

Apply the universal property of Q - (kQ)~ expressed as adjunction in (1.3.2) as follows. We have a
bijection

k-algpeirce(kQ,A) -∼ quiv(Q, ~A)

given by an application of (~−) followed by composition with the unit Q - (kQ)~. Giving a map which
sends an arrow of Q with start i and target j to an element of eiAej amounts to give a morphism of
quivers

Q -q ~A

By adjunction there is a unique morphism in k-algpeirce

kQ -u A

such that

(Q - (kQ)~ -
~u

~A) = (Q - ~A),

i.e. such that u restricts to q in this sense.
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Chapter 2

Guiding examples

Our guiding examples consist of embeddings of ZS4, ZS5, ZS6 and the quasiblocks of ZS7

into products of integral matrix rings.

We discuss the case ZS4 in full detail and abbreviate later on. From ZS5 on, we make
use of the possibility of giving different embeddings at the various primes together with
a constructive argument that this suffices to give a simultaneous embedding. Which we
refrain from calculating, since it would contain no new information.

In case of the quasiblocks of ZS7 the reader is asked to trust the computer calculations

insofar that we won’t give a way to check the details of its correctness by theoretical means.

However, it is of course still possible to check its correctness via computer. The reason for

this inconvenience is that we do not dispose of an index formula for the quasiblocks

(cf. S 1.1.3). Because of its preliminary nature and because of its length, the section on

these quasiblocks is presented as an appendix (A F).

2.1 ZS4

2.1.1 Description of ZS4

Definition 2.1.1 A tie is a congruence of matrix entries.

This notion is used in the context of embeddings of suborders of a product of integral
matrix rings, where a set of ties describes the suborder as an abelian subgroup. I.e. writing
the set of ties as a linear map to a torsion module, the suborder is given as the kernel of
this map.

The index of ZS4 in Γ :=
∏

λ Znλ×nλ is√
2424

1111393924
= 23433,

cf. (1.1.4).

We claim that ZS4 can be embedded into

Γ = Z× Z× Z3×3 × Z3×3 × Z2×2

19
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such that the image allows the following description. The respective lower right
number indicates the position of the factor in the product of matrix rings, counted from
left to right.

1

e

f

2

e

g

3

a

a

a

a

b

b

b

b

c

c

c

4 4

d d

e

4

a

a

a

a

b

b

b

b

c

c

c

4 4

d d

e

5

b b

b b

g

f

3

a x3 ≡4 x4

b x3 + x4 ≡8 2x5

c x3 ≡2 x4

d x3 ≡8 x4

e x1 − x3 ≡8 x2 − x4 ≡4 0
f x1 ≡3 x5

g x2 ≡3 x5

This is to be read as the subset of the product of the matrix rings, consisting of elements
satisfying the ties a to g as given in the table as well as the one-entry-ties as given by
number in the picture, indicating the entry to be divisible by this number. The ties given
in the table have to be read parallel for the matrix entries, so that e.g. the tie labelled
by a reads as, xkij being the entry in the i-th row and the j-th column of the quasiblock k,

x3
11 ≡4 x4

11

x3
12 ≡4 x4

12

x3
21 ≡4 x4

21

x3
22 ≡4 x4

22

The embedding is given by

1 2 3 4 5

(12) - −1 × 1 ×
(−11 −24 2

5 11 −1
0 0 −1

)
×

(
1 0 0
1 −1 1
0 0 1

)
×

(−5 24
−1 5

)
(1234) - −1 × 1 ×

(
26 57 2
−11 −24 −1
−4 −8 −1

)
×

(−2 1 0
−3 0 1
−4 0 1

)
×

(
4 −15
1 −4

)
For this map to give a morphism we check the modified Coxeter relations (S 1.2).

The correspondence of the quasiblocks to the partitions (cf. 4.1.1) is given by, the dash
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indicating transposition,
1 : (1, 1, 1, 1)
2 : (1, 1, 1, 1)′

3 : (2, 1, 1)
4 : (2, 1, 1)′

5 : (2, 2),

as we check using a character table. This comparison also shows that rationally we have
obtained all simple modules and that therefore the morphism ZS4

-
∏

λ Znλ×nλ as given
above is injective.

For a non dashed partition λ of this list we use the Specht lattice Sλ (4.1.1), for its transpose

λ′ we use the lattice Sλ,− ' Sλ′,∗ (cf. 6.2.5) for our embedding.

Denote by A the abelian subgroup A described by the ties given above inside Γ.

At this stage we do not know yet that A equals the subring Λ generated by the images of
(12) and (1234), being an isomorphic copy of ZS4. We proceed in three steps.

(i) Let A[p] be the kernel of the map from Γ to (Γ/A)(p), p prime. A equals Λ iff A[p]

equals the naive localization Λ[p] (D.2.10) for each prime p dividing 4!, as follows
by intersection.

(ii) We show that A[p] is in fact a subring, from which we conclude that Λ[p] ⊆ A[p]

after having checked that the ties are satisfied by the images of the generators
(12) and (1234).

(iii) We show that the index of A[p] in Γ equals the index of Λ[p] in Γ, viz. 234 for p = 2
and 33 for p = 3. By (ii) we may now conclude that Λ[p] = A[p].

To carry out (i-iii), we exhibit a Peirce decomposition A[p] =
⊕

ij eiA[p]ej, ei and ej being
idempotents of Γ contained in A[p]. We shouldn’t call them ‘idempotents of A[p]’ until we
know that A[p] is a ring, but such a direct sum decomposition exists regardless whether A[p]

is a subring or not. Then we exhibit Z-linear bases for the Peirce components eiA[p]ej, so
that we are reduced to showing that the products of basis elements of Peirce components
which multiply nontrivially are contained in A[p], which is a calculation.

Moreover, for (ii) we may regard the candidate ring direct factors of A separately. I.e. in
case the projection of A[p] to a product of a subset of the factors of Γ is contained in A[p],
we may consider such projections instead of A[p].

Furthermore, in case the ties describing A[p] are ordered blockwise in a parallel manner,
we may as well choose parallel bases for the Peirce components. Therefore, concerning
the question whether A[p] is a subring we may shrink these blocks to the size of 1 × 1 -
which then becomes Morita reduction for the homogenus ring A[p] (D.1.1) as soon as (ii)
is proven.

Choosing the basis elements of the Peirce components eiAej a priori in an upper triangular
manner allows to check (iii) easily. Note that the Morita multiplicities enter when mul-
tiplying the separate indices of the Peirce components of the Morita reduction together
again.
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The case p = 3.

Instead of A[3] we consider its projection A′ to the product of the factors 1, 2, and 5 of Γ.
For the idempotents

1 2 5
e := 1 × 0 ×

(
0 0
0 1

)
f := 0 × 1 ×

(
1 0
0 0

)
we exhibit bases of the corresponding Peirce components

eA′e = Z〈 e = 1 × 0 ×
(

0 0
0 1

)
,

x := 0 × 0 ×
(

0 0
0 3

)
〉

eA′f = Z〈 g := 0 × 0 ×
(

0 0
1 0

)
〉

fA′e = Z〈 h := 0 × 0 ×
(

0 3
0 0

)
〉

fA′f = Z〈 f = 0 × 1 ×
(

1 0
0 0

)
,

y := 0 × 0 ×
(

3 0
0 0

)
〉.

Thus A[3] is a subring of Γ with index 33, so A[3] = Λ[3].

For A[3] to be homogenus (D.1.1) it suffices to show that (eA′e)/3 and (fA′f)/3 are
indecomposable as left modules over themselves, since Ae and Af lie in different genera
because of different annihilators (D.1.5, D.2.21). But now both rings are isomorphic to
the local ring F3[X]/X2.

The case p = 2.

We shrink A[2] blockwise to obtain the following abelian subgroup B in Γ′ := Z × Z ×
Z2×2 × Z2×2 × Z.

1

e

2

e

3

4

a b

c

cd

e

4

4

a b

c

cd

e

5

b

a x3 ≡4 x4

b x3 + x4 ≡8 2x5

c x3 ≡2 x4

d x3 ≡8 x4

e x1 − x3 ≡8 x2 − x4 ≡4 0

We choose the idempotents

e := 0× 0×
(

1 0
0 0

)
×
(

1 0
0 0

)
× 1

f := 1× 1×
(

0 0
0 1

)
×
(

0 0
0 1

)
× 0
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and exhibit bases for the corresponding Peirce components

eBe = Z〈 e = 0 × 0 ×
(

1 0
0 0

)
×

(
1 0
0 0

)
× 1 ,

x := 0 × 0 ×
(

2 0
0 0

)
×

(−2 0
0 0

)
× 0 ,

y := 0 × 0 ×
(

0 0
0 0

)
×

(
8 0
0 0

)
× 0 〉

eBf = Z〈 g := 0 × 0 ×
(

0 1
0 0

)
×

(
0 1
0 0

)
× 0 ,

h := 0 × 0 ×
(

0 0
0 0

)
×

(
0 2
0 0

)
× 0 〉

fBe = Z〈 i := 0 × 0 ×
(

0 0
4 0

)
×

(
0 0
−4 0

)
× 0 ,

j := 0 × 0 ×
(

0 0
0 0

)
×

(
0 0
8 0

)
× 0 〉

fBf = Z〈 f = 1 × 1 ×
(

0 0
0 1

)
×

(
0 0
0 1

)
× 0 ,

u := 0 × 0 ×
(

0 0
0 4

)
×

(
0 0
0 −4

)
× 0 ,

v := 0 × 2 ×
(

0 0
0 0

)
×

(
0 0
0 2

)
× 0 ,

w := 0 × 0 ×
(

0 0
0 0

)
×

(
0 0
0 8

)
× 0 〉.

Hence, checking products of these basis elements, B is a subring in Γ′. Therefore also A[2]

is a subring of Γ. Moreover A[2] has index 2(4·4+2·1+2·5+1·6) = 234 in Γ, the Morita factors
taken into account. Thus A[2] = Λ[2].

For A[2] to be homogenus (D.1.1) it suffices to show that (eBe)/2 and (fBf)/2 are local
rings, since Be and Bf lie in different genera because of different annihilators (D.1.5,
D.2.21) and since parallel ties yield isomorphic corresponding indecomposable projectives.

But, for α, β, γ ∈ Z/2 the equation

αe+ βx+ γy = (αe+ βx+ γy)2 = α2e+ β2y

has only trivial solutions.

And also, for α, β, γ, δ ∈ Z/2 the equation

αf + βu+ γv + δw = (αf + βu+ γv + δw)2 = α2f

has only trivial solutions.

Altogether, A equals Λ, which is isomorphic to ZS4. A[2] and A[3] are homogenus.

2.1.2 F2S4 as path algebra modulo relations

We shall write, up to Morita equivalence, Z(2)S4 and, derived from this, F2S4, as path algebra modulo
relations. This is of course possible in a trivial manner - take one point and one arrow for each element
of a generating subset of the group, modulo the relations defining the group (as a semigroup). Therefore,
we require the points to correspond to primitive idempotents.

Maintain the notation from (S 2.1.1). Consider the quiver

Ξ := rE -G

�
I

rF
���

X

@@I

V

A ring morphism

ZΞ - B
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is defined by sending the capital to the small letter elements (1.3.3). Since

y = −gvi
h = gv
j = −vi
u = ig
w = −igv,

this morphism is surjective. In order to calculate its kernel, we regard the multiplication trees of Ξ,
consisting of concatenable words in the arrows. We shall give ideal generators which on the one hand
lie in the kernel and which on the other hand allow to express the nonunderlined elements as linear
combinations of the underlined ones modulo this ideal. This shows that this ideal coincides with the
kernel, since the rank of ZΞ modulo this ideal is less or equal than the rank of B.

E F
����

PPPP
����

PPPP

X G I V

�� @@ �� @@ �� @@ �� @@

X2 XG GI GV IX IG V 2 V I

�� @@ �� @@ �� @@

GV I GV 2 IGV IGI V IX V IG

�� @@ �� @@

GV IX GV IG IGV 2 IGV I

The kernel is generated as an ideal by

X2 − (2X −GV I)
XG − (2G− 2GV )
GI − 2X
V 2 − 2V
IX − (2I − 2V I)

V IG − IGV.

The kernel K of F2Ξ - B/2 now is generated as an ideal by

X2 − GV I
XG
GI
V 2

IX
V IG − IGV,

thus giving a Morita equivalence between F2Ξ/K and F2S4. In K. Erdmann’s notation [Er 90, Tables,

p. 295] the algebra F2Ξ/K is called D(2B)k=1,c=0,s=2. It differs from the algebra given in [GR 92, p. 74]

already by the sizes of the Peirce components (4).

4M. Kauer provided the reference.
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2.2 ZS5

2.2.1 Setup

The index of ZS5 in Γ :=
∏

λ Znλ×nλ is√
120120

1111416416525525636
= 2130342535,

cf. (1.1.4).

A complete set of integrally realized ordinary irreducible representations gives an embed-
ding

ZS5
- Z × Z × Z4×4 × Z4×4

× Z5×5 × Z5×5

× Z6×6

(12) - −1 × 1 ×
[−1 0 0 −1

0 −1 0 1
0 0 −1 −1
0 0 0 1

]
×

[ 1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 −1

]
×

[−1 0 1 0 −1
0 −1 −1 0 0
0 0 1 0 0
0 0 0 −1 −1
0 0 0 0 1

]
×

[ 1 0 −1 0 1
0 1 1 0 0
0 0 −1 0 0
0 0 0 1 1
0 0 0 0 −1

]

×

−1 0 1 0 1 0
0 −1 −1 0 0 1
0 0 1 0 0 0
0 0 0 −1 −1 −1
0 0 0 0 1 0
0 0 0 0 0 1


(12345) - 1 × 1 ×

[ 0 0 0 1
−1 0 0 −1

0 −1 0 1
0 0 −1 −1

]
×

[ 0 0 0 1
−1 0 0 −1

0 −1 0 1
0 0 −1 −1

]
×

[ 0 0 −1 −1 −1
0 0 0 1 0
0 0 0 −1 −1
1 0 −1 −1 0
0 1 1 1 1

]
×

[ 0 0 −1 −1 −1
0 0 0 1 0
0 0 0 −1 −1
1 0 −1 −1 0
0 1 1 1 1

]

×

 0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 −1 0 −1 0
0 1 1 0 0 −1
0 0 0 1 1 1

 ,
as we check via the modified Coxeter relations (S 1.2) and via a comparison of characters,
yielding the correspondence of the quasiblocks to the partitions of 5 as

1 : (1, 1, 1, 1, 1)
2 : (1, 1, 1, 1, 1)′

3 : (2, 1, 1, 1)
4 : (2, 1, 1, 1)′

5 : (2, 2, 1)
6 : (2, 2, 1)′

7 : (3, 1, 1),

where we have numbered the factors of Γ from left to right.

We conjugate this embedding separately at the primes 2, 3 and 5 via tuples of SL-elements.
Since

SLnλ(Z) - SLnλ(Z/8)× SLnλ(Z/3)× SLnλ(Z/5)

is surjective (A.2.1), we may map the conjugators Cp needed at a prime divisor p of 5! to
SLnλ(Z/pvp(n!)) and choose an inverse image C of this tuple in SLnλ(Z). Conjugation with
the C yields the same ties at p as conjugation with Cp, since the matrices CpC

−1 map to
1 ∈ SLnλ(Z/pvp(n!)), having no effect on the ties (1.1.2). Hence we obtain an embedding

ZS5
-∼ (ZS5)[2] ∩ (ZS5)[3] ∩ (ZS5)[5] ⊆ Γ,
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where the occurring naive localizations are realized as subrings of Γ by the ties given
below (S 2.2.2, S 2.2.3, S 2.2.4).

The proof of (A.2.1) is constructive in the case of SLm(Z), but applied to our present

argument this construction would yield absolutely large matrix entries not carrying any

extra information, so it does not make sense to compute them.

Moreover, we use the language of Morita multiplicities. At each prime we first claim
the naive localization (D.2.10) to be homogenus (D.1.1). Then the associated Morita
equivalent basic ring is displayed, together with the multiplicities of the indecomposable
projective left lattices in the naive localization, displayed on top of each involved qua-
siblock column, where the sets of isomorphism classes of indecomposable projectives of
both rings are identified via Morita equivalence.

E.g. to describe A[2] in the case p = 2 of (S 2.1.1) in terms of the picture describing B, we

would place the Morita multiplicity 2 on top of the left columns of the quasiblocks 3 and

4 and on top of the quasiblock 5, and the Morita multiplicity 1 on top of the remaining

columns.

2.2.2 (ZS5)[5]

We claim that (ZS5)[5] is homogenus and takes the following form.

1

a

1

3

c

5 a

3 1

7

c 5

d

3 3

4

d

5 b

3 1

2

b

1

5

5

6

5

a x1 ≡5 x3

b x2 ≡5 x4

c x3 ≡5 x7

d x4 ≡5 x7

First proof (theoretical). (4.2.8).

Second proof (pedestrian). Needed to illustrate the results of (S 4.2).

We conjugate the embedding given in (S 2.2.1) from the left with the
∏

λ SLnλ(Z)-element

1 × 1 ×
[ 0 1 0 0

0 0 1 0
1 0 0 0
−1 1 −1 1

]
×

[ 1 0 0 0
0 0 1 0
0 −1 0 0
−1 1 −1 1

]
×

[1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]
×

[1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]

×

1 0 0 −1 1 0
0 1 0 −1 0 1
1 −1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 2 1
0 0 0 1 1 2
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to obtain the embedding

ZS5
- Z × Z × Z4×4 × Z4×4

Z5×5 × Z5×5

× Z6×6

(12) - −1 × 1 ×
[−2 1 1 1

1 −2 −1 −1
1 −1 −2 −1
−5 5 5 4

]
×

[ 2 1 1 1
1 2 1 1
1 1 2 1
−5 −5 −5 −4

]
×

[−1 0 1 0 −1
0 −1 −1 0 0
0 0 1 0 0
0 0 0 −1 −1
0 0 0 0 1

]
×

[ 1 0 −1 0 1
0 1 1 0 0
0 0 −1 0 0
0 0 0 1 1
0 0 0 0 −1

]

×

−2 1 1 −5 5 0
1 −2 −1 −5 0 5
−4 4 3 0 5 −5

0 0 0 −3 1 1
0 0 0 −4 2 1
0 0 0 −4 1 2


(12345) - 1 × 1 ×

[ 1 −1 −2 −1
−2 1 1 1
−1 1 1 1

5 −5 −5 −4

]
×

[ 1 1 1 1
1 1 2 1
2 1 1 1
−5 −5 −5 −4

]
×

[ 0 0 −1 −1 −1
0 0 0 1 0
0 0 0 −1 −1
1 0 −1 −1 0
0 1 1 1 1

]
×

[ 0 0 −1 −1 −1
0 0 0 1 0
0 0 0 −1 −1
1 0 −1 −1 0
0 1 1 1 1

]

×

−4 4 3 0 5 −5
−2 1 1 −5 5 0
−1 1 1 0 0 0

1 1 0 11 −4 −4
0 3 1 16 −4 −8
1 1 0 12 −4 −4

 .
The ties are satisfied on these generators.

In order to prove that the abelian subgroup A described by the ties given above coincides
with the image of the embedding given above, we shrink A to the overall Morita multiplic-
ity 1, drop the quasiblocks 5 and 6 and call the resulting subgroup B (cf. 2.1.1). Writing
the factors ordered 1, 3, 7, 4, 2 - as in the picture -, we obtain a Peirce decomposition

e := 1 ×
(

0 0
0 1

)
×

(
0 0
0 0

)
×

(
0 0
0 0

)
× 0

f := 0 ×
(

1 0
0 0

)
×

(
1 0
0 0

)
×

(
0 0
0 0

)
× 0

g := 0 ×
(

0 0
0 0

)
×

(
0 0
0 1

)
×

(
1 0
0 0

)
× 0

h := 0 ×
(

0 0
0 0

)
×

(
0 0
0 0

)
×

(
0 0
0 1

)
× 1

into idempotents.

Bases for the Peirce components are given by, dropping zero matrices,

eBe = Z〈1 ×
(

0 0
0 1

)
× × × ,

0 ×
(

0 0
0 5

)
× × × 〉

eBf = Z〈 ×
(

0 0
5 0

)
× × × 〉

fBe = Z〈 ×
(

0 1
0 0

)
× × × 〉

fBf = Z〈 ×
(

1 0
0 0

)
×

(
1 0
0 0

)
× × ,

×
(

0 0
0 0

)
×

(
5 0
0 0

)
× × 〉

fBg = Z〈 × ×
(

0 5
0 0

)
× × 〉

gBf = Z〈 × ×
(

0 0
1 0

)
× × 〉

gBg = Z〈 × ×
(

0 0
0 1

)
×

(
1 0
0 0

)
× ,

× ×
(

0 0
0 5

)
×

(
0 0
0 0

)
× 〉

gBh = Z〈 × × ×
(

0 1
0 0

)
× 〉

hBg = Z〈 × × ×
(

0 0
5 0

)
× 〉

hBh = Z〈 × × ×
(

0 0
0 1

)
× 1,

× × ×
(

0 0
0 5

)
× 0〉

Thus the index of A in Γ is

51·1+3·1+3·0+9·1+9·1+9·0+9·1+3·0+3·1+1·1 = 535.
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This idempotent decomposition remains primitive modulo 5, since eBe/5, fBf/5, gBg/5
and hBh/5 are isomorphic to F5[X]/X2. The indecomposable projectives Be, Bf , Bg
and Bh lie in different genera because of different annihilators (D.1.5, D.2.21). Thus A is
homogenus.

2.2.3 (ZS5)[3]

We claim that (ZS5)[3] is homogenus and takes the following form.

2

f

1

5

f

3 g

1 4

3

g

4

1

e

1

6

e

3 h

1 4

4

h

4

7

6

e x1 ≡3 x6

f x2 ≡3 x5

g x3 ≡3 x5

h x4 ≡3 x6

We conjugate the embedding given in (S 2.2.1) from the left with the
∏

λ SLnλ(Z)-element

1 × 1 ×
[1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

]
×

[1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
×

[ 0 1 0 0 0
−1 1 2 0 −3

1 0 0 1 −1
0 −2 0 −1 3
0 0 1 0 −1

]
×

[ 0 1 0 0 0
−1 1 2 0 −3

1 0 0 1 −1
0 −2 0 −1 3
0 0 1 0 −1

]

×

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


to obtain the embedding

ZS5
- Z × Z × Z4×4 × Z4×4

Z5×5 × Z5×5

× Z6×6

(12) - −1 × 1 ×
[−1 0 0 −1

0 −1 0 1
0 0 −1 −1
0 0 0 1

]
×

[ 1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 −1

]
×

[−2 −1 −1 −1 1
−3 −4 −3 −3 8
−3 −3 −4 −3 7

9 9 9 8 −16
0 0 0 0 1

]
×

[ 2 1 1 1 −1
3 4 3 3 −8
3 3 4 3 −7
−9 −9 −9 −8 16

0 0 0 0 −1

]

×

−1 0 1 0 1 0
0 −1 −1 0 0 1
0 0 1 0 0 0
0 0 0 −1 −1 −1
0 0 0 0 1 0
0 0 0 0 0 1


(12345) - 1 × 1 ×

[ 0 0 0 1
−1 0 0 −1

0 −1 0 1
0 0 −1 −1

]
×

[ 0 0 0 1
−1 0 0 −1

0 −1 0 1
0 0 −1 −1

]
×

[ 1 3 3 2 −6
−12 −15 −15 −12 28
−9 −16 −15 −12 29
12 15 14 12 −26
−6 −9 −9 −7 17

]
×

[ 1 3 3 2 −6
−12 −15 −15 −12 28
−9 −16 −15 −12 29
12 15 14 12 −26
−6 −9 −9 −7 17

]

×

 0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 −1 0 −1 0
0 1 1 0 0 −1
0 0 0 1 1 1

 .

The ties are satisfied by these generators.
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For Peirce decompositions of the ring direct factors in spe, viz. 2, 5, 3 and 1, 6, 4, see
Case p = 3 of (S 2.1.1). The index of the subring described by these ties in Γ is

32(1·1+4·1+4·0+16·1) = 342.

2.2.4 (ZS5)[2]

We claim that (ZS5)[2] is homogenus and takes the following form.

1

p

t

1

2

p s

t

1

5

n r

t

2 j

n j

1 4

6

n s

t

2 j

o

n k j k

1 4

7

t

2 j 2 n

k j k 2 n

s

o

r

t

1 4 1

3

i

4

4

i

4

i x3 ≡2 x4

j x5 + x6 ≡8 2x7

k x6 ≡2 x7

n x5 − x6 ≡4 x7

o x6 ≡4 2x7

p x1 ≡2 x2

r x5 ≡2 x7

s x2 − x6 ≡4 2x7

t x1 + x2 + x5 + x6 ≡8 2x7
11 + 2x7

33 ≡4 0

We conjugate the embedding given in (S 2.2.1) from the left with the
∏

λ SLnλ(Z)-element

1 × 1 ×
[1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

]
×

[1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
×

[−1 −1 −1 −1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
−1 0 0 0 0

]
×

[−1 −1 −1 −1 1
0 1 −2 0 0
0 2 −5 0 0
−2 2 −2 5 0

1 0 −2 −2 0

]

×

 3 −5 −3 −3 −5 1
0 1 −2 −2 0 9
2 0 5 −2 −4 −11
0 −2 4 5 0 −21
−1 0 −2 0 2 7

0 −1 0 0 0 4
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to obtain the embedding

ZS5
- Z × Z × Z4×4 × Z4×4

Z5×5 × Z5×5

× Z6×6

(12) - −1 × 1 ×
[−1 0 0 −1

0 −1 0 1
0 0 −1 −1
0 0 0 1

]
×

[ 1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 −1

]
×

[ 3 4 2 4 −4
0 −1 −1 0 0
0 0 1 0 0
−1 −1 −1 −2 1

1 1 0 1 −2

]
×

[−3 −64 42 −12 −28
0 11 −5 0 0
0 24 −11 0 0
3 67 −41 10 21
−1 −11 8 −3 −6

]

×

−5 −1850 −294 −860 −600 −110
2 1025 161 476 328 64
−4 −1680 −265 −780 −540 −100
−5 −2627 −413 −1220 −841 −164

3 1419 224 659 456 86
0 134 21 62 42 9


(12345) - 1 × 1 ×

[ 0 0 0 1
−1 0 0 −1

0 −1 0 1
0 0 −1 −1

]
×

[ 0 0 0 1
−1 0 0 −1

0 −1 0 1
0 0 −1 −1

]
×

[ 3 4 6 6 −2
0 0 0 1 0
−1 −1 −1 −2 1

0 0 −1 −1 −1
1 1 2 2 −1

]
×

[ 3 60 −38 10 22
2 40 −28 9 20
5 99 −69 22 49
4 104 −73 23 55
1 9 −6 2 3

]

×

 −7 −3540 −560 −1644 −1138 −212
8 4408 698 2049 1422 270

−13 −6987 −1103 −3246 −2243 −426
−18 −9984 −1581 −4641 −3221 −612

7 3861 610 1794 1241 236
3 1668 263 775 535 103

 .

The ties are satisfied by these generators.

In order to prove that the abelian subgroup A described by the ties given above coin-
cides with the image of the embedding given above, we shrink A to the overall Morita
multiplicity 1, drop the quasiblocks 3 and 4 and call the resulting subgroup B (cf. 2.1.1).
Writing the factors ordered 1, 2, 5, 6, 7, we obtain a Peirce decomposition of B

e := 1 × 1 ×
(

1 0
0 0

)
×

(
1 0
0 0

)
×

(
1 0 0
0 0 0
0 0 1

)
f := 0 × 0 ×

(
0 0
0 1

)
×

(
0 0
0 1

)
×

(
0 0 0
0 1 0
0 0 0

)
,

into idempotents.
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Bases for the Peirce components are given by

eBe = Z〈e = 1 × 1 ×
(

1 0
0 0

)
×

(
1 0
0 0

)
×

(
1 0 0
0 0 0
0 0 1

)
,

a := 0 × 2 ×
(

0 0
0 0

)
×

(
2 0
0 0

)
×

(
2 0 2
0 0 0
0 0 0

)
,

b := 0 × 0 ×
(

2 0
0 0

)
×

(
2 0
0 0

)
×

(
2 0 0
0 0 0
−1 0 0

)
,

c := 0 × 0 ×
(

0 0
0 0

)
×

(
4 0
0 0

)
×

(
2 0 0
0 0 0
0 0 0

)
,

d := 0 × 0 ×
(

0 0
0 0

)
×

(
0 0
0 0

)
×

(
2 0 0
0 0 0
0 0 2

)
,

g := 0 × 0 ×
(

0 0
0 0

)
×

(
0 0
0 0

)
×

(
0 0 0
0 0 0
0 0 4

)
,

h := 0 × 0 ×
(

0 0
0 0

)
×

(
0 0
0 0

)
×

(
0 0 4
0 0 0
0 0 0

)
,

i := 0 × 0 ×
(

0 0
0 0

)
×

(
0 0
0 0

)
×

(
0 0 0
0 0 0
2 0 0

)
〉

eBf = Z〈j := 0 × 0 ×
(

0 2
0 0

)
×

(
0 2
0 0

)
×

(
0 2 0
0 0 0
0 −1 0

)
,

k := 0 × 0 ×
(

0 0
0 0

)
×

(
0 4
0 0

)
×

(
0 2 0
0 0 0
0 0 0

)
,

l := 0 × 0 ×
(

0 0
0 0

)
×

(
0 0
0 0

)
×

(
0 4 0
0 0 0
0 0 0

)
,

m := 0 × 0 ×
(

0 0
0 0

)
×

(
0 0
0 0

)
×

(
0 0 0
0 0 0
0 2 0

)
〉

fBe = Z〈n := 0 × 0 ×
(

0 0
1 0

)
×

(
0 0
1 0

)
×

(
0 0 0
1 0 0
0 0 0

)
,

p := 0 × 0 ×
(

0 0
0 0

)
×

(
0 0
2 0

)
×

(
0 0 0
0 0 2
0 0 0

)
,

q := 0 × 0 ×
(

0 0
0 0

)
×

(
0 0
0 0

)
×

(
0 0 0
2 0 0
0 0 0

)
,

r := 0 × 0 ×
(

0 0
0 0

)
×

(
0 0
0 0

)
×

(
0 0 0
0 0 4
0 0 0

)
〉

fBf = Z〈f = 0 × 0 ×
(

0 0
0 1

)
×

(
0 0
0 1

)
×

(
0 0 0
0 1 0
0 0 0

)
,

s := 0 × 0 ×
(

0 0
0 0

)
×

(
0 0
0 4

)
×

(
0 0 0
0 2 0
0 0 0

)
,

t := 0 × 0 ×
(

0 0
0 0

)
×

(
0 0
0 0

)
×

(
0 0 0
0 4 0
0 0 0

)
〉

For to see that e (resp. f) is primitive, we check that eBe/2 (resp. fBf/2) does not
contain nontrivial idempotents. Regard

(εe+ αa+ βb+ ζc+ δd+ γg + ϑh+ ιi)2 = ε2e+ ζ2g
(ϕf + σs+ τt)2 = ϕ2f + σ2t.

The indecomposable projectives Be and Bf lie in different genera because of different
annihilators (D.1.5, D.2.21). Thus A is homogenus. The index of A in Γ is calculated to
be

2(1·10+4·6+4·4+16·4)+16·1 = 2130.

Remark 2.2.1 (sketch) Since Krull-Schmidt holds in Z(2)S5-lat (C.2.15), each lattice has a vertex, i.e.
a Sn-conjugacy class of subgroups of D8 = 〈(12), (1324)〉 6 S5 minimal w.r.t. the lattice being projective
relative to it. By abuse of notation in the sequel we talk about subgroups representing conjugacy classes
as vertices.

One may define relative projectivity in the following manner. A Z(2)S5-lattice X is projective relative to

H 6 D8 iff there exists a Z(2)-linear endomorphism X -f X such that
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(i) |H| =
∑
g∈S5

gf

(ii) |H| |
∑
h∈H

hf ,

where gf(x) := gf(g−1x). This is the same as to require the multiplication map Z(2)S5 ⊗H X - X be
split.

The lattice X is called quasiprojective iff there exists an idempotent e ∈ QS5 such that X ' Z(2)S5e.

For a natural number a we call X a-projective iff there exists a Z(2)-linear endomorphism X -f X
such that ∑

g∈S5

gf = a,

i.e. if we can satisfy (i) for a instead of |H|. Thus an H-projective Z(2)S5-lattice is |H|-projective.

X is a-projective iff every pure epimorphism Y -f X of Z(2)S5-lattices with has a coretraction g up to
the scalar factor a, i.e. such that gf = a · 1X . A quasiprojective Z(2)Sn-lattice Z(2)S5e with rational
idempotent e therefore is a-projective iff ae ∈ Z(2)S5.

Now taking

e0 := 11 × 12 ×
(

1 0
0 0

)
5
×
(

1 0
0 0

)
6
∈ B

and e a corresponding idempotent in Z(2)S5, a direct computer calculation (5) has shown the vertex of
Z(2)S5e to be V4 = 〈(12)(34), (13)(24)〉, whereas 2e ∈ Z(2)S5, i.e. 2e0 ∈ B. I.e. not every a-projective
quasiprojective lattice is H-projective for some H 6 D8 with |H| = a.

Note that calculations are simplified by the following observation [D 70]. Let G be a finite group, let R
be a discrete valuation ring, let H be a subgroup of G. The RG-lattice X is projective relative to H iff

the module X/|G| is projective relative to H. This hinges on the fact that an epimorphism Y -f X is

split iff Y/|G| -
f

X/|G| is split. In fact, consider the corresponding short exact sequence as an element
of H1(G, R(X,Z)), where Z is the kernel of f . The exact sequence

H1(G, R(X,Z)) -|G| H1(G, R(X,Z)) - H1(G, R(X/|G|, Z/|G|))

contains a monomorphism on the right hand side.

I don’t know whether it is possible to formalize the impression that glueing lattices reduces the vertex
in some other way (cf. S 5.3). I do not know how the vertices of the three terms of a pure short exact
sequences of lattices are related, except for an estimate which follows from the long exact relative Ext-
sequence. Note that in the short exact sequence arising from the inclusion of the sublattice into Z(2)S5e
which is given by intersection with the product of the quasiblocks 5 and 6 all terms have vertex V4. I do
not know how the relative Ext-groups for varying subgroups relate.

2.2.5 F2S5 as path algebra modulo relations

Maintain the notation from (S 2.2.4). Consider the quiver

Ξ := rE -J

�
N

rF
���

A

We have a ring morphism

ZΞ - B

5for which J. Künzer wrote an essential part of the program
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by sending the capital to the small letter elements (1.3.3). Since

e = e
a = a
b = jn
c = ajn
d = jna− ajn+ jnajn+ ajna− jnajna
g = −jnajna+ 2jnajn+ 2ajna− 4ajn
h = ajna− 2ajn
i = −jnajn+ 2ajn
j = j
k = aj
l = −ajnaj + 4aj
m = −jnaj + 2aj
n = n
p = −najn− na+ najna
q = 2na+ najn− najna
r = najna− 2najn
f = f
s = naj
t = 4naj − najnaj,

this morphism is surjective. We claim that its kernel is generated as an ideal by

A2 − 2A
NJ − 2F

(AJN)2 − (JNA)2 − 2(AJN − JNA).

Regard the multiplication trees of Ξ (cf. S 2.1.2).

E F��
��

HH
HH

J A NHH
HH

�� @@
JN AJ A2 NJ NA

�� @@ @@
JNJ JNA AJN NAJ NA2

@@
XXXXX

JNAJ JNA2 AJNJ AJNA NAJN

�� @@ �� @@
JNAJN AJNAJ AJNA2 NAJNJ NAJNA

�� @@ �� @@
JNAJNA JNAJNJ AJNAJN NAJNAJ NAJNA2

�� @@
JNAJNAJ JNAJNA2 NAJNAJN

The kernel K of F2Ξ - B/2 now is generated an an ideal by

A2

NJ
(AJN)2 − (JNA)2,

thus giving a Morita equivalence between F2Ξ/K × F2[X]/X2 and F2S5. In K. Erdmann’s notation
[Er 90, Tables, p. 294] this algebra F2Ξ/K is called D(2A)k=1 [Er 90, Tables, p. 294].

Question 2.2.2 Is there a concept of graph orders analoguous to the concept of graph
algebras, sufficient, say, to describe blocks of dihedral defect of group rings over Z(2)? Cf.
[Ka 98, prop. 4.1].
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2.3 ZS6

2.3.1 Setup

The index of ZS6 in Γ :=
∏

λ Znλ×nλ is

√
720720

1111525525981981525525101001010016256
= 282835585210.

A complete set of rationally irreducible integral representations gives an embedding

ZS6
- Z × Z

× Z5×5 × Z5×5

× Z9×9 × Z9×9

× Z5×5 × Z5×5

× Z10×10 × Z10×10

× Z16×16

(12) - −1 × 1

×

[−1 0 0 0 1
0 −1 0 0 −1
0 0 −1 0 1
0 0 0 −1 −1
0 0 0 0 1

]
×

[ 1 0 0 0 −1
0 1 0 0 1
0 0 1 0 −1
0 0 0 1 1
0 0 0 0 −1

]

×


−1 0 0 −1 0 0 1 0 0

0 −1 0 1 0 0 0 0 1
0 0 −1 −1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 −1 0 1 0 −1
0 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 0 1

 ×


1 0 0 1 0 0 −1 0 0
0 1 0 −1 0 0 0 0 −1
0 0 1 1 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 −1 0 1
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 −1


×

[−1 0 1 0 −1
0 −1 −1 0 0
0 0 1 0 0
0 0 0 −1 −1
0 0 0 0 1

]
×

[ 1 0 −1 0 1
0 1 1 0 0
0 0 −1 0 0
0 0 0 1 1
0 0 0 0 −1

]

×


−1 0 0 −1 0 0 −1 0 0 0

0 −1 0 1 0 0 0 0 −1 0
0 0 −1 −1 0 0 0 0 0 −1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 0 1 0 1 0
0 0 0 0 0 −1 −1 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

 ×


1 0 0 1 0 0 1 0 0 0
0 1 0 −1 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 1
0 0 0 −1 0 0 0 0 0 0
0 0 0 0 1 0 −1 0 −1 0
0 0 0 0 0 1 1 0 0 −1
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 −1



×



−1 0 1 0 −1 0 0 0 0 −1 0 0 0 0 1 0
0 −1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 −1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 1 0 0 −1 0 −1 0
0 0 0 0 0 0 −1 −1 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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(123456) - −1 × 1

×

[ 0 0 0 0 1
1 0 0 0 −1
0 1 0 0 1
0 0 1 0 −1
0 0 0 1 1

]
×

[ 0 0 0 0 −1
−1 0 0 0 1

0 −1 0 0 −1
0 0 −1 0 1
0 0 0 −1 −1

]

×


0 0 0 −1 0 0 0 1 1
0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1 −1
−1 0 0 −1 0 0 1 1 1

0 −1 0 1 0 0 0 −1 0
0 0 −1 −1 0 0 0 1 1
0 0 0 0 −1 0 1 1 0
0 0 0 0 0 −1 −1 −1 −1

 ×


0 0 0 1 0 0 0 −1 −1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1 1
1 0 0 1 0 0 −1 −1 −1
0 1 0 −1 0 0 0 1 0
0 0 1 1 0 0 0 −1 −1
0 0 0 0 1 0 −1 −1 0
0 0 0 0 0 1 1 1 1


×

[ 1 −1 −1 −1 0
−1 0 1 0 0

0 −1 −1 0 0
1 0 −1 −1 0
0 1 1 1 1

]
×

[−1 1 1 1 0
1 0 −1 0 0
0 1 1 0 0
−1 0 1 1 0

0 −1 −1 −1 −1

]

×


0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
−1 0 0 −1 0 0 −1 0 0 0

0 −1 0 1 0 0 0 0 −1 0
0 0 −1 −1 0 0 0 0 0 −1
0 0 0 0 −1 0 1 0 1 0
0 0 0 0 0 −1 −1 0 0 1
0 0 0 0 0 0 0 −1 −1 −1

 ×


0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 −1
1 0 0 1 0 0 1 0 0 0
0 1 0 −1 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 1
0 0 0 0 1 0 −1 0 −1 0
0 0 0 0 0 1 1 0 0 −1
0 0 0 0 0 0 0 1 1 1



×



0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 −1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 −1 −1 −1 0 0 −1 0 0 1 −1 −1 0 0 1
0 0 0 1 0 0 0 0 0 −1 −1 0 0 −1 −1 −1
0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1
1 0 −1 −1 0 0 0 0 0 1 1 0 0 1 0 1
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 1 0 −1 0 −1 0 −1 0 −1 0 0
0 0 0 0 0 0 1 1 0 0 −1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1


,

as we check via the modified Coxeter relations (S 1.2) and via a comparison of characters.
The correspondence of the quasiblocks to the partitions of 5 parametrizing the irreducible
characters is given by

1 : (1, 1, 1, 1, 1, 1)
2 : (1, 1, 1, 1, 1, 1)′

3 : (2, 1, 1, 1, 1)
4 : (2, 1, 1, 1, 1)′

5 : (2, 2, 1, 1)
6 : (2, 2, 1, 1)′

7 : (2, 2, 2)
8 : (2, 2, 2)′

9 : (3, 1, 1, 1)
10 : (3, 1, 1, 1)′

11 : (3, 2, 1),

where we number the factors of Γ from left to right.

We shall make use of the possibility to give separate embeddings at the prime divisors of
n!, yielding a global embedding

ZS6
-∼ (ZS6)[2] ∩ (ZS6)[3] ∩ (ZS6)[5] ⊆ Γ,

in a constructive, but not explicitely given manner (cf. S 2.2.1).

Furthermore, we employ the language of Morita multiplicities (cf. S 2.2.1).

Moreover, in writing down bases for the Peirce components of the naive localizations resp.
for their appropriately reduced versions we drop the redundant information of the position
of the matrix entries, already being encoded in the idempotents.
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2.3.2 (ZS6)[5]

We claim that (ZS6)[5] is homogenus and takes the following form.

1

a

1

2

b

1

3

5

4

5

5

a 5

c

1 8

6

b 5

d

1 8

7

5

8

5

9

10

10

10

11

c 5

d

8 8

a x1 ≡5 x5

b x2 ≡5 x6

c x5 ≡5 x11

d x6 ≡5 x11
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We conjugate the embedding given in (S 2.3.1) from the left with the
∏

λ SLnλ(Z)-element

1 × 1

×

[ 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]
×

[ 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]

×


2 3 2 −2 2 −2 2 2 −2
0 0 5 0 −2 0 0 0 0
0 0 0 5 0 −2 0 0 0
0 5 0 0 0 0 3 0 0
0 0 5 0 0 0 0 3 0
0 0 0 5 0 0 0 0 3
−5 9 −5 5 −5 5 5 −5 5

0 0 4 0 5 0 0 10 0
0 0 0 4 0 5 0 0 10

 ×


38 −438 738 1012 −1182 1432 273 958 1482
0 −228 418 684 30 40 −145 −68 107
0 −38 76 152 −440 545 80 368 508

−25 289 −487 −668 780 −945 −180 −632 −978
0 150 −275 −450 −21 −25 96 46 −69
0 25 −50 −100 293 −363 −53 −244 −338

−15 175 −295 −405 473 −573 −109 −383 −593
0 90 −165 −270 −12 −16 58 28 −42
0 15 −30 −60 176 −218 −32 −147 −203


×

[ 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]
×

[ 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]

×


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

 ×


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



×



1 0 0 0 0 −2 0 0 0 0 2 −2 2 2 −2 −2
0 1 0 0 0 0 −2 0 0 0 −2 2 0 −6 0 0
0 0 1 0 0 0 0 −2 0 0 −3 0 2 0 −6 4
0 0 0 1 0 0 0 0 −2 0 2 −1 0 2 0 −2
0 0 0 0 1 0 0 0 0 −2 −2 0 −1 0 2 2
−1 0 0 −1 1 3 0 0 1 −1 −6 5 −5 −5 5 6

0 −1 0 1 0 0 3 0 −3 0 5 −5 0 10 0 −1
0 0 −1 0 1 0 0 3 0 −3 2 0 −5 0 10 −4
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



to obtain the embedding

ZS6
-

Z × Z
× Z5×5 × Z5×5

× Z9×9 × Z9×9

× Z5×5 × Z5×5

× Z10×10 × Z10×10

× Z16×16

(12) -
−1 × 1

×
[−1 0 0 0 1

0 −1 0 0 −1
0 0 −1 0 1
0 0 0 −1 −1
0 0 0 0 1

]
×

[ 1 0 0 0 −1
0 1 0 0 1
0 0 1 0 −1
0 0 0 1 1
0 0 0 0 −1

]

×


249 0 −50 −330 0 65 100 0 −20
−50 −1 125 66 0 −166 −20 0 50

50 0 −151 −66 0 200 20 0 −60
150 0 50 −199 0 −65 60 0 20

0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 1 0 0 0

−125 0 290 165 0 −377 −51 0 116
125 0 −315 −165 0 415 50 −1 −126
−125 0 380 165 0 −500 −50 0 151

 ×


−126299 223090 106270 −255030 550640 280970 105090 −352680 −198850
−26600 41689 10074 −55366 93020 39410 24890 −49520 −39970
−50275 86310 42931 −101120 214540 110620 41170 −138940 −75560

83375 −147265 −70145 168356 −363480 −185465 −69375 232800 131265
17425 −27275 −6545 36275 −60811 −25721 −16315 32320 26161
33500 −57500 −28625 67375 −142950 −73724 −27425 92600 50325
50590 −89355 −42555 102155 −220540 −112525 −42096 141244 79649
10600 −16590 −4045 22055 −37050 −15725 −9905 19761 15885
20100 −34500 −17175 40425 −85770 −44235 −16455 55560 30196


×

[−1 0 1 0 −1
0 −1 −1 0 0
0 0 1 0 0
0 0 0 −1 −1
0 0 0 0 1

]
×

[ 1 0 −1 0 1
0 1 1 0 0
0 0 −1 0 0
0 0 0 1 1
0 0 0 0 −1

]

×


−1 0 0 −1 0 0 −1 0 0 0

0 −1 0 1 0 0 0 0 −1 0
0 0 −1 −1 0 0 0 0 0 −1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 0 1 0 1 0
0 0 0 0 0 −1 −1 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

 ×


1 0 0 1 0 0 1 0 0 0
0 1 0 −1 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 1
0 0 0 −1 0 0 0 0 0 0
0 0 0 0 1 0 −1 0 −1 0
0 0 0 0 0 1 1 0 0 −1
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 −1



×



−1 0 1 0 −1 0 0 0 0 −5 5 0 5 0 5 −10
0 −1 −1 0 0 0 0 0 0 0 −10 0 0 0 0 15
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 −1 0 0 0 0 0 5 0 0 0 0 −5
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 −1 0 1 0 10 −10 0 −10 0 −5 20
0 0 0 0 0 0 −1 −1 0 0 20 0 0 0 0 −25
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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(123456) -
−1 × 1

×
[ 0 0 0 0 1

1 0 0 0 −1
0 1 0 0 1
0 0 1 0 −1
0 0 0 1 1

]
×
[ 0 0 0 0 −1
−1 0 0 0 1

0 −1 0 0 −1
0 0 −1 0 1
0 0 0 −1 −1

]

×


49 375 275 −65 −495 −365 20 150 110
−54 131 −136 72 −173 180 −22 52 −54
−30 −75 −95 40 99 125 −12 −30 −38
−125 −5 −5 165 6 6 −50 −2 −2

75 314 0 −99 −414 0 30 125 0
−75 −200 −86 99 264 114 −30 −80 −35
−535 −950 −700 707 1252 927 −215 −380 −280

385 715 340 −510 −942 −450 155 285 135
−175 −475 −45 230 627 62 −70 −190 −20

×

−540114 788575 205415 −1118145 1762115 748590 495365 −940900 −724240

13315 −36990 −15490 27605 −90004 −44415 −12279 56345 34705
−201455 296135 77785 −417065 662544 282339 184785 −354690 −272380

356405 −520345 −135540 737830 −1162735 −493955 −326876 620849 477894
−9352 25210 10432 −19385 61182 30070 8618 −38137 −23634
134061 −197131 −51776 277546 −441042 −187947 −122975 236110 181327
216096 −315479 −82173 447361 −704948 −299475 −198190 376406 289743
−5409 14796 6186 −11208 35983 17743 4978 −22507 −13869
80557 −118449 −31114 166776 −265010 −112935 −73894 141876 108951


×

[ 1 −1 −1 −1 0
−1 0 1 0 0

0 −1 −1 0 0
1 0 −1 −1 0
0 1 1 1 1

]
×
[−1 1 1 1 0

1 0 −1 0 0
0 1 1 0 0
−1 0 1 1 0

0 −1 −1 −1 −1

]

×


0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
−1 0 0 −1 0 0 −1 0 0 0

0 −1 0 1 0 0 0 0 −1 0
0 0 −1 −1 0 0 0 0 0 −1
0 0 0 0 −1 0 1 0 1 0
0 0 0 0 0 −1 −1 0 0 1
0 0 0 0 0 0 0 −1 −1 −1

 ×


0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 −1
1 0 0 1 0 0 1 0 0 0
0 1 0 −1 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 1
0 0 0 0 1 0 −1 0 −1 0
0 0 0 0 0 1 1 0 0 −1
0 0 0 0 0 0 0 1 1 1



×



−4 4 17 2 −5 −2 2 11 10 15 5 5 15 −10 0 −15
0 0 0 −6 0 −2 0 2 −10 15 0 10 0 15 −5 15
0 0 0 6 6 0 −2 −2 10 10 25 −10 −10 15 15 −5
−1 0 1 1 0 0 0 0 0 −5 0 −5 0 −10 0 −10

0 −1 −1 −1 −1 0 0 0 0 0 −5 5 5 0 0 10
10 −10 −33 −3 7 5 −5 −20 −20 −25 −15 −5 −20 25 −5 45
−5 0 5 8 0 0 0 0 15 −20 0 −15 0 −35 10 −30

0 −5 −5 −8 −8 0 0 0 −20 −20 −40 15 15 −20 −20 20
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1
3 0 −3 1 0 2 0 −2 0 −3 0 −3 0 3 −2 1
0 3 3 −1 −1 0 2 2 4 4 1 3 3 0 0 −3
1 0 −1 1 0 1 0 −1 1 −3 1 −3 0 0 1 −2
0 1 1 −1 −1 0 1 1 1 1 −3 3 3 −2 −2 1
0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1


.

A Peirce decomposition, bases of the Peirce components, the irreducibility of the chosen
idempotents and the homogenity of the ring described by the the ties given above is
deduced as in (S 2.2.2).

The index in Γ of the subring described by the ties given above is calculated to be, walking
along a, c, d, b,

51+8+64+64+64+8+1 = 5210.
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2.3.3 (ZS6)[3]

We claim that (ZS6)[3] is homogenus and takes the following form.

1
n

1

2
f g

1

3

a p

3

d n o

4 1

4

f

3

v

i r s

1 4

5

9

6

9

7

a

3

h

e f

4 1

8

n o u

3

q r s

1 4

9

a b

3

l

c j

4 6

10

j k t

3

m r

6 4

11

a b

3

h

3

l

3

p

9

e f g

3 3 3

v

c

3

j k

3 3

t

d

3 3

n

3

u

i m q r

4 1 6 1 4
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a x3 − x11 ≡9 x9 − x7 ≡3 0
b x9 ≡3 x11

c x9 + x11 ≡3 0
d x3 ≡9 3x11

e x7 ≡3 x11

f x7 − x11 ≡9 x2 − x4 ≡3 0
g x11 ≡3 x2

h x7 ≡9 x11

i x11 ≡3 x4

j x9 + x11 ≡9 2x10

k x10 ≡3 x11

l x9 ≡9 x11

m x10 ≡9 3x11

n x8 − x11 ≡9 x1 − x3 ≡3 0
o x3 ≡3 x8

p 3x3 ≡9 x11

q 3x11 ≡9 x8

r x10 − x4 ≡9 x8 − x11 ≡3 0
s x8 ≡3 x4

t 3x10 + x11 ≡9 0
u 3x8 ≡9 x11

v x11 ≡9 x4

We conjugate the embedding given in (S 2.3.1) from the left with the
∏

λ SLnλ(Z)-element

1 × 1

×
[ 0 −1 0 0 0

0 0 −1 0 0
0 0 0 0 1
0 0 0 −1 0
1 −1 −2 −1 −2

]
×

[1 2 1 −1 −5
0 −1 0 3 1
0 −183 61 635 246
0 −3 1 12 1
0 −81 27 281 109

]

×


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 ×


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



×
[ 13 −31 −8 9 30
−58 138 27 −40 −125
261 −621 −122 180 563

0 2 0 −2 −9
0 −9 0 9 40

]
×

[ 4 −5 −4 −4 14
−10 13 10 9 −35
−10 13 9 10 −35

11 −12 −13 −13 41
0 1 −1 −1 1

]

×


1 0 0 0 −1 −2 −1 0 0 0
0 1 0 0 −1 0 0 −2 −1 0
0 0 0 −1 0 0 1 0 2 1
0 0 1 0 0 −1 0 −2 0 −1
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

 ×


0 25 −1 −49 −22 −3 99 −11 95 29
2 −12 0 23 26 5 −50 5 −64 −18

−13 −3870 27 7726 2342 918 −15453 2010 −15694 −3006
0 1294 17 −2631 −779 −91 5289 −687 4944 1197
3 883 −6 −1763 −533 −210 3526 −459 3582 684
0 −288 −4 586 174 20 −1178 153 −1101 −267
1 0 0 −1 2 −2 0 0 2 −2
0 −1 1 0 −2 2 0 0 −2 2
0 −37 0 74 16 0 −149 20 −132 −32
−3 −627 1 1256 351 161 −2507 334 −2569 −447



×



1 −1 −2 0 3 2 4 5 0 6 −3 −1 1 −2 −4 1
8 −6 −9 −10 25 10 24 27 40 50 −21 13 −19 −7 −20 −36
0 0 1 0 −1 0 0 −1 0 −5 2 0 −2 0 −1 −8
0 −4 9 −5 0 −9 −5 −18 20 0 −7 17 −9 40 0 1
0 0 0 0 1 0 0 0 0 −1 −1 0 −2 0 −1 −1
0 0 0 0 0 1 0 0 0 0 0 1 −1 −2 −4 −3
0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 −1
0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1
1 −2 1 −2 3 −1 2 −1 8 6 −4 5 −3 10 −3 −2
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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to obtain the embedding

ZS6
-

Z × Z
× Z5×5 × Z5×5

× Z9×9 × Z9×9

× Z5×5 × Z5×5

× Z10×10 × Z10×10

× Z16×16

(12) -
−1 × 1

×
[−1 0 1 0 0

0 −1 −1 0 0
0 0 1 0 0
0 0 1 −1 0
0 0 −3 0 −1

]
×
[ 1 0 387 −36 −873

0 1 0 0 0
0 0 −4342 404 9797
0 0 258 −23 −582
0 0 −1935 180 4366

]

×


−1 0 0 −1 0 0 1 0 0

0 −1 0 1 0 0 0 0 1
0 0 −1 −1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 −1 0 1 0 −1
0 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 0 1

 ×


1 0 0 1 0 0 −1 0 0
0 1 0 −1 0 0 0 0 −1
0 0 1 1 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 −1 0 1
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 −1



×
[−1 −252 −56 −594 −132

0 1277 284 2646 588
0 −5742 −1277 −11907 −2646
0 18 4 161 36
0 −81 −18 −720 −161

]
×
[ 143 29 30 2 −33
−351 −71 −75 −6 84
−360 −75 −79 −10 95

414 81 78 −5 −69
9 0 −3 −6 13

]

×


−1 0 1 0 0 0 −3 0 −3 −3

0 −1 −1 0 0 0 0 0 0 3
0 0 1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 −3
0 0 0 0 −1 0 1 0 1 0
0 0 0 0 0 −1 −1 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

×


12905 −2934 41878 −9333 186670 −41985 5863 −12258 −3025 5197
−3852 836 −11980 3231 −53397 14455 −1635 3591 1188 −1472

−2256534 507078 −7291241 1523745 −32492268 6872733 −1014543 2137674 448791 −897015
764271 −174132 2487141 −535456 11085623 −2411983 348744 −728133 −166491 308172
515196 −115767 1664658 −347778 7418278 −1568646 231624 −488055 −102381 204789
−170154 38781 −553806 119340 −2468421 537553 −77670 162141 37155 −68631

657 −180 2349 −594 10485 −2664 370 −723 −222 309
−324 9 −648 −396 −2835 −1692 −12 152 −361 −25
−22311 5049 −72477 15093 −323010 68067 −10116 21144 4507 −8949
−372645 83628 −1203525 249300 −5363145 1124874 −167355 352959 72372 −147902



×



−1 0 −2 0 3 0 0 6 0 6 6 0 9 0 0 −9
0 −1 −4 0 48 0 0 36 0 90 −6 0 63 0 99 −72
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 22 −1 27 0 0 −18 0 108 −57 0 54 0 126 126
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 1 0 0 −3 0 −6 −3
0 0 0 0 0 0 −1 −1 0 0 1 0 0 0 0 −3
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 5 0 12 0 0 0 0 39 −12 −1 24 0 42 27
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



(123456) -
−1 × 1

×
[ 1 2 −1 1 −1

1 0 −1 0 0
0 0 1 −1 0
0 1 1 0 0
3 3 −3 3 −1

]
×
[ −2 −12 375 −30 −846

1 14 320 −30 −722
183 2881 47891 −4576 −108059

3 52 1487 −137 −3355
81 1275 21170 −2023 −47767

]

×


0 0 0 −1 0 0 0 1 1
0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1 −1
−1 0 0 −1 0 0 1 1 1

0 −1 0 1 0 0 0 −1 0
0 0 −1 −1 0 0 0 1 1
0 0 0 0 −1 0 1 1 0
0 0 0 0 0 −1 −1 −1 −1

 ×


0 0 0 1 0 0 0 −1 −1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1 1
1 0 0 1 0 0 −1 −1 −1
0 1 0 −1 0 0 0 1 0
0 0 1 1 0 0 0 −1 −1
0 0 0 0 1 0 −1 −1 0
0 0 0 0 0 1 1 1 1



×
[ −3554 61433 13829 3328 750

15073 −260682 −58681 −13902 −3132
−67872 1173813 264232 62612 14106

660 −11363 −2558 −810 −183
−2941 50636 11399 3603 814

]
×
[ 35 93 92 155 −384
−60 −232 −229 −396 976
−78 −230 −226 −385 952
186 277 278 436 −1096
45 9 11 2 −13

]

×


1 2 −1 1 3 3 3 6 6 3
1 0 −1 0 3 3 3 0 0 0
0 0 1 −1 0 −3 −3 −3 −3 −3
0 1 1 0 3 0 −3 3 0 0
−1 0 1 0 −1 −2 −3 0 −2 −1

0 −1 −1 0 −1 0 1 −2 0 1
0 0 1 −1 0 −1 −1 −2 −2 −3
0 0 0 0 −1 0 1 0 1 0
0 0 0 0 0 −1 −1 0 0 1
0 0 0 0 0 0 0 −1 −1 −1

 ×


35948 −10688 136443 −42852 610078 −190645 21924 −40557 −19869 19015
−13510 3915 −51083 15397 −228384 68542 −8013 14890 7029 −7094

−5368761 1665179 −20782828 7019050 −92971526 31173684 −3420408 6237274 3388927 −2943402
1966814 −596088 7522390 −2447901 33641731 −10881765 1223465 −2250181 −1156666 1055397
1224738 −379954 4741559 −1602000 21211317 −7114895 780461 −1423097 −773632 671590
−438093 132750 −1675413 545048 −7492789 2422943 −272466 501148 257500 −235046
−765 84 −2013 −321 −8907 −1323 −160 491 −417 −182

570 −27 1284 531 5649 2259 43 −277 512 82
−57735 17490 −220569 71739 −986409 318921 −35900 66068 33856 −30922
−864477 270036 −3357666 1147350 −15021672 5094372 −554799 1009316 557354 −476812



×



−323 −37 −40 −173 −6 75 75 75 −3 −129 −411 618 −36 −18 −54 −36
−4457 −510 −577 −2391 −162 1038 993 975 −216 −2151 −5652 8550 −639 −459 −1161 −711
−102 −12 −17 −55 −6 27 24 24 −12 −75 −129 198 −18 −36 −54 −54
−1527 −176 −155 −828 −12 354 288 249 −15 −558 −1944 2952 −135 18 −72 108
−268 −31 −37 −144 −8 66 63 63 −9 −132 −333 516 −30 −30 −57 −45
−341 −39 −43 −183 −9 77 73 72 −15 −152 −427 654 −45 −36 −81 −48

90 10 10 48 3 −19 −18 −17 7 36 112 −171 9 6 18 −3
−183 −21 −25 −98 −6 45 44 44 −8 −89 −228 351 −18 −21 −39 −27

78 9 9 42 0 −19 −18 −17 0 28 99 −150 3 3 3 0
−78 −9 −9 −42 0 18 17 17 0 −27 −98 150 −6 −3 −6 −3

0 0 0 0 0 0 0 0 −1 −1 −1 0 0 −3 −3 −3
−827 −95 −94 −446 −15 192 171 159 −18 −336 −1053 1592 −90 −30 −111 −27

121 14 17 65 4 −30 −29 −29 4 61 150 −233 14 14 27 22
−52 −6 −6 −28 0 13 12 11 0 −19 −66 100 −2 −1 −1 1

52 6 6 28 0 −12 −11 −11 0 18 65 −100 4 2 4 2
0 0 0 0 0 0 0 0 1 1 1 0 0 2 2 2


.
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The ties are satisfied by these generators.

In order to prove that the abelian subgroup A described by the ties given above coincides
with the image of this embedding, we shrink A to the overall Morita multiplicity 1, drop
the quasiblocks 5 and 6 and call the resulting subgroup B (cf. 2.1.1). Writing the factors
ordered 1, 2, 3, 4, 7, 8, 9, 10, 11, we obtain a Peirce decomposition of B via

e := 0 × 0 ×
(

1 0
0 0

)
×
(

0 0
0 0

)
×
(

1 0
0 0

)
×
(

0 0
0 0

)
×
(

1 0
0 0

)
×
(

0 0
0 0

)
×

(1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)

f := 0 × 1 ×
(

0 0
0 0

)
×
(

1 0
0 0

)
×
(

0 0
0 1

)
×
(

0 0
0 0

)
×
(

0 0
0 0

)
×
(

0 0
0 0

)
×

(0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)

g := 0 × 0 ×
(

0 0
0 0

)
×
(

0 0
0 0

)
×
(

0 0
0 0

)
×
(

0 0
0 0

)
×
(

0 0
0 1

)
×
(

1 0
0 0

)
×

(0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

)

h := 1 × 0 ×
(

0 0
0 1

)
×
(

0 0
0 0

)
×
(

0 0
0 0

)
×
(

1 0
0 0

)
×
(

0 0
0 0

)
×
(

0 0
0 0

)
×

(0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

)

i := 0 × 0 ×
(

0 0
0 0

)
×
(

0 0
0 1

)
×
(

0 0
0 0

)
×
(

0 0
0 1

)
×
(

0 0
0 0

)
×
(

0 0
0 1

)
×

(0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

)
.

In the sequel, by index we mean the index of A in Γ. The indices on the entries indicate the quasiblocks
they belong to. As announced, we only denote the relevant matrix entries, their position ensueing from
the idempotents.

eBe has the following Z-basis.

e = 13 × 17 × 19 × 111

j := 0 × 3 × 3 × 0
k := 0 × 0 × 3 × −3
l := 0 × 0 × 0 × 9

The Morita factor 16 taken under consideration, its contribution to the index is 316·4.

fBe has the following Z-basis.

a′ := 17 × 111

0 × 3

The Morita factor 4 taken under consideration, its contribution to the index is 34·1.

gBe has the following Z-basis.

b′ = −19 × 111

0 × 3

The Morita factor 24 taken under consideration, its contribution to the index is 324·1.

hBe has the following Z-basis.

c′ := 33 × 111

0 × 3

The Morita factor 4 taken under consideration, its contribution to the index is 34·2.

iBe has the following Z-basis.

111

It does not contribute to the index.

eBf has the following Z-basis.

a := 37 × 311

0 × 9

The Morita factor 4 taken under consideration, its contribution to the index is 34·3.
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fBf has the following Z-basis.
f = 12 × 14 × 17 × 111

0 × 3 × −3 × 0
0 × 0 × 3 × 3
0 × 0 × 0 × 9

The Morita factor 1 taken under consideration, its contribution to the index is 31·4.

gBf has the following Z-basis.
311

The Morita factor 6 taken under consideration, its contribution to the index is 36·1.

hBf has the following Z-basis.
311

The Morita factor 1 taken under consideration, its contribution to the index is 31·1.

iBf has the following Z-basis.
x := 14 × 111

0 × 3

The Morita factor 4 taken under consideration, its contribution to the index is 34·1.

eBg has the following Z-basis.
b := 39 × 311

0 × 9

The Morita factor 24 taken under consideration, its contribution to the index is 324·3.

fBg has the following Z-basis.
311

The Morita factor 6 taken under consideration, its contribution to the index is 36·1.

gBg has the following Z-basis.
g = 19 × 110 × 111

m := 0 × 3 × −3
n := 0 × 0 × 9

The Morita factor 36 taken under consideration, its contribution to the index is 336·3.

hBg has the following Z-basis.
311

The Morita factor 6 taken under consideration, its contribution to the index is 36·1.

iBg has the following Z-basis.
y := 310 × 111

0 × 3

The Morita factor 24 taken under consideration, its contribution to the index is 324·2.

eBh has the following Z-basis.
c := 13 × 311

0 × 9

The Morita factor 4 taken under consideration, its contribution to the index is 34·2.

fBh has the following Z-basis.
311

The Morita factor 1 taken under consideration, its contribution to the index is 31·1.

gBh has the following Z-basis.
311

The Morita factor 6 taken under consideration, its contribution to the index is 36·1.

hBh has the following Z-basis.
h = 11 × 13 × 18 × 111

0 × 3 × 0 × 3
0 × 0 × 3 × 3
0 × 0 × 0 × 9
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The Morita factor 1 taken under consideration, its contribution to the index is 31·4.

iBh has the following Z-basis.
z := 38 × 111

0 × 3

The Morita factor 4 taken under consideration, its contribution to the index is 34·2.

eBi has the following Z-basis.
911

The Morita factor 16 taken under consideration, its contribution to the index is 316·2.

fBi has the following Z-basis.
x′ := 34 × 311

0 × 9

The Morita factor 4 taken under consideration, its contribution to the index is 34·3.

gBi has the following Z-basis.
y′ := −110 × 311

0 × 9

The Morita factor 24 taken under consideration, its contribution to the index is 324·2.

hBi has the following Z-basis.
z′ := 18 × 311

0 × 9

The Morita factor 4 taken under consideration, its contribution to the index is 34·2.

iBi has the following Z-basis.
i = 14 × 18 × 110 × 111

0 × 3 × 0 × 3
0 × 0 × 3 × −3
0 × 0 × 0 × 9

The Morita factor 16 taken under consideration, its contribution to the index is 316·4.

Altogether, the index of A in Γ is
3558.

For to see that eBe/3 and thus eBe do not contain nontrivial idempotents, we regard, for
α, β, γ, δ ∈ Z/3,

αe+ βj + γk + δl = (αe+ βj + γk + δl)2

= α2e+ 2αβj + 2αγk + (2γ2 + 2αδ + 2βγ)l,

yielding α = 0, 1. In both cases we obtain β = 0 and γ = 0, whence, in both cases, δ = 0.

Now eBe, fBf , hBh and iBi are isomorphic to

{a× b× c× d | a− d ≡9 c− b, a ≡3 b ≡3 c ≡3 d} ⊆ Z× Z× Z× Z.

For to see that gBg/3 and thus gBg do not contain nontrivial idempotents, we regard,
for α, β, γ ∈ Z/3,

αg + βm+ γn = (αg + βm+ γn)2

= α2g + 2αβm+ (2αγ + 2β2)n,

yielding α = 0, 1. In both cases we obtain β = 0, whence, in both cases, γ = 0.

The indecomposable projectives Be, Bf , Bg, Bh, Bi lie in different genera because of
different annihilators (D.1.5, D.2.21). Thus A is homogenus.

For an equivalent description of the quasiblock 11, i.e. of Q
(3,2,1)
(3) , cf. [P 80/1, (III.9)].
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2.3.4 F3S6 as path algebra modulo relations

We maintain the notation of (2.3.3). Consider the quiver

Ξ := E

�
�
�
�
�
�
���

A

�
�

�
�

�
�

��	

A′

-B
�

B′@
@
@
@
@
@
@R

C′

@
@

@
@

@
@
@I

C

F

G

H

@
@
@
@
@
@
@R

X′

@
@

@
@
@

@
@I

X

� Y
-

Y ′ �
�

�
�

�
�
�	

Z

�
�
�
�
�
�
��

Z′

I

We have a ring morphism

ZΞ - B

by sending the capital to the small letter elements (1.3.3), which we shall list again. NB their matrix
positions are determined by the chosen idempotents.

e = 13 × 17 × 19 × 111

f = 12 × 14 × 17 × 111

g = 19 × 110 × 111

h = 11 × 13 × 18 × 111

i = 14 × 18 × 110 × 111

a = 37 × 311

a′ = 17 × 111

b = 39 × 311

b′ = −19 × 111

c = 13 × 311

c′ = 33 × 111

x = 14 × 111

x′ = 34 × 311

y = 310 × 111

y′ = −110 × 311

z = 38 × 111

z′ = 18 × 311

This morphism is surjective, as to be seen by direct verification.

We claim that its kernel is generated as an ideal by

A′B = X ′Y
A′C = X ′Z
B′A = Y ′X
B′C = Y ′Z
C ′A = Z ′X
C ′B = Z ′Y
XA′ = Y B′ = ZC ′

AX ′ = BY ′ = CZ ′



46 Guiding examples

AA′A = 3A
A′AA′ = 3A′

BB′B = −3B + 2BY ′Y
B′BB′ = −3B′ + 2Y ′Y B′

CC ′C = 3C
C ′CC ′ = 3C ′

XX ′X = 3X
X ′XX ′ = 3X ′

Y Y ′Y = −3Y + 2Y B′B
Y ′Y Y ′ = −3Y ′ + 2B′BY ′

ZZ ′Z = 3Z
Z ′ZZ ′ = 3Z ′

AA′ −BB′ + CC ′ = 3E
XX ′ − Y Y ′ + ZZ ′ = 3I
B′B + Y ′Y + 3G = B′BY ′Y.

In order to check that modulo the ideal generated by these elements the nonunderlined elements in the
trees below are in fact Z-linear combinations of the underlined ones, it is convenient to note that modulo
these elements we obtain

B′BB′C = B′BY ′Z
= B′AX ′Z
= B′AA′C
= Y ′XA′C
= Y ′Y B′C
= Y ′Y Y ′Z,

as well as

B′BB′C = −3B′C + 2Y ′Y B′C,

which implies

B′BB′C = 3B′C,

also to be read modulo these elements.

Regard the multiplication trees of Ξ (cf. S 2.1.2).

It suffices by the symmetries A -� X etc. and A -� C etc. - expressable a posteriori as automorphisms,
cf. the generators for the claimed kernel below - to draw trees for E, F and G. NB there are several
possible equivalent ways to end the underlined part of the tree.

E
������������

XXXXXXXXXXXX
A B C

�� @@ �� @@ �� @@
AA′ AX′ BB′ BY ′ CC′ CZ′

��� �� �� @@ @@
PPPPP

AA′A AA′B AA′C AX′X AX′Y AX′Z BB′A BB′B BB′C
����� �� �� @@

AX′XA′ AX′XX′AX′YB′ AX′Y Y ′AX′ZC′ AX′ZZ′

�� @@
PPPPP

AX′XA′A AX′XA′B AX′XA′C
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F
�������

XXXXXXX
A′ X′

���
HHH �� @@

A′A A′B A′C X′X X′Y X′Z

�� @@ @@ @@
A′AX′ A′AA′ A′BB′ A′BY ′ A′CC′ A′CZ′ X′XA′ X′XX′

�� @@
PPPPP @@

PPPPP
A′AX′X A′AX′Y A′AX′Z A′BB′A A′BB′B A′BB′C

�� @@
A′AX′XX′A′AX′XA′

G
�������

XXXXXXX
B′ Y ′

�
��

H
HH �� @@

B′A B′B B′C Y ′X Y ′Y Y ′Z

�� @@ @@ @@ @@
B′AA′ B′AX′ B′BB′ B′BY ′ B′CC′ B′CZ′ Y ′Y B′ Y ′Y Y ′

�� @@
PPPPP

B′AA′A B′AA′B B′AA′C B′AX′X B′AX′Y B′AX′Z

The kernel K of F3Ξ - B/3 now is generated by

A′B = X ′Y
A′C = X ′Z
B′A = Y ′X
B′C = Y ′Z
C ′A = Z ′X
C ′B = Z ′Y
XA′ = Y B′ = ZC ′

AX ′ = BY ′ = CZ ′

AA′A = 0
A′AA′ = 0

BB′B +BY ′Y = 0
B′BB′ + Y ′Y B′ = 0

CC ′C = 0
C ′CC ′ = 0
XX ′X = 0
X ′XX ′ = 0

Y Y ′Y + Y B′B = 0
Y ′Y Y ′ +B′BY ′ = 0

ZZ ′Z = 0
Z ′ZZ ′ = 0

AA′ −BB′ + CC ′ = 0
XX ′ − Y Y ′ + ZZ ′ = 0

B′B + Y ′Y = B′BY ′Y,

thus giving a Morita equivalence between F3Ξ/K × F3 × F3 and F3S6.

K. Erdmann and S. Martin also give a complete description, up to the determination of four parame-

ters, in terms of a quiver with relations [EM 94, Th. 7.1]. We couldn’t establish full accordance between

both presentations. (6).

6Cf. also G. Nebe, The principal block of ZpS2p, available under
http://www.mathematik.uni-ulm.de/ReineM/nebe/pl.html.
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2.3.5 (ZS6)[2]

Again, we change the notation slightly. We drop the - too many - letters parametrizing the
ties and endow our variables with extra lower indices instead, which indicate their position
in case it is not uniquely determined by the position of the Peirce component. These Peirce
components have to be read cum grano salis: actually, they furnish a decomposition of
the Morita reduced ring which we blow up again via the Morita multiplicities, placed on
top of the columns. The idempotents e, f, g, h then are the obvious ones on the main
diagonals, at this stage used only for grouping and placing the ties.

We claim that (ZS6)[2] is homogenus and takes the following form.

1

1

eAe
2

1

eAe

3

1 4

eAe eAf

fAe fAf
4

1 4

eAe eAf

fAe fAf

5

4 1 4

fAf fAe fAg

eAf eAe eAg

gAf gAe gAg
6

4 1 4

fAf fAe fAg

eAf eAe eAg

gAf gAe gAg

7

1 4

eAe eAg

gAe gAg
8

1 4

eAe eAg

gAe gAg

9

4 1 4 1

fAf fAe fAg fAe

eAf eAe eAg eAe

gAf gAe gAg gAe

eAf eAe eAg eAe
10

4 1 4 1

fAf fAe fAg fAe

eAf eAe eAg eAe

gAf gAe gAg gAe

eAf eAe eAg eAe

11

16

hAh
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eAe
x8 − x6 ≡4 x4 − x2 ≡2 0

x10
22 ≡2 x6

x9
24 ≡4 x10

24

x9
22 − x9

44 ≡4 x10
22 − x10

44 ≡2 0
x5 + x7 + x9

24 ≡8 x6 + x8 + x10
24

x9
22 + x10

22 ≡4 x10
24 + x4 + x2 ≡2 0

2x10
42 ≡4 x6 − x4

x7 ≡4 x6 − x10
24

x3 − 3x7 − x9
24 + 2x9

42 ≡8 x4 − 3x8 − x10
24 + 2x10

42

−3x1 + x3 − x5 − x7 + 2x9
22 − 2x9

24 − 2x9
42 + 2x9

44 + 2x10
42

≡16 −3x2 + x4 − x6 − x8 + 2x10
22 − 2x10

24 − 2x10
42 + 2x10

44 + 2x9
42 ≡8 0

eAf
x5 − x6 ≡4 x9

21 − x10
21 ≡2 0

x10
21 ≡2 x6

x9
41 ≡2 x10

41

x3 + 2x5 − 4x9
41 ≡16 x4 + 2x6 − 4x10

41 ≡8 0

eAg
x9

23 ≡4 x10
23 ≡2 0

x7 − x5 ≡8 x8 − x6 ≡4 0
2x9

43 − x5 ≡8 2x10
43 − x6 ≡4 0

x8 − x5 − 2x9
23 ≡16 −3x7 − x6 − 2x10

23 ≡8 0

fAe
x9

12 ≡4 x10
12 ≡2 0

x10
14 ≡4 x6

x6 ≡4 2x4

x5 − x6 ≡8 x9
14 − x10

14 ≡4 0
x5 − 2x3 + 2x9

12 ≡16 x6 − 2x4 + 2x10
12 ≡8 0

fAf
x3 ≡2 x4

x9 ≡2 x10

x3 + x5 − 2x9 ≡16 x4 + x6 − 2x10 ≡8 0
x3 − x5 ≡8 x4 − x6 ≡4 0

fAg
x5 ≡8 x6 ≡4 0

x5 − 2x9 ≡16 x6 − 2x10 ≡8 0

gAe
x9

34 ≡4 x10
34 ≡2 0

x9
32 ≡2 x5

x7 − x8 ≡4 x9
32 − x10

32 ≡2 0
x8 + x9

34 + x5 ≡8 −3x7 + x10
34 + x6 ≡4 0

gAf
x9 ≡2 x10

x5 − x9 ≡4 x6 − x10 ≡2 0

gAg
x5 ≡2 x9

x5 + x8 − 2x10 ≡16 x6 + x7 − 2x9 ≡8 0
x9 − x10 ≡4 x7 − x8 ≡2 0
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We conjugate the embedding given in (S 2.3.1) from the left with the
∏

λ SLnλ(Z)-element

1 × 1

×
[ 1 −1 −1 −1 −1

0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]
×
[ 1 −1 −1 −1 −1

0 −1 6 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]

×


3 0 0 0 −5 −7 −1 −4 −4
0 1 0 0 −1 0 0 −1 −3
0 0 1 0 0 −1 0 −3 0
0 0 0 1 0 0 −1 0 −3
−1 0 −1 0 2 3 0 4 1

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 ×


3 −2 0 0 −3 −7 −1 −2 2
0 1 0 0 −1 0 0 −1 −3
0 0 1 0 0 −1 0 −3 0
0 0 0 1 0 0 −1 0 −3

−617 0 −617 0 1234 1115 1852 2016 1933
−26 0 −26 0 52 47 78 88 74
6694 0 6694 0 −13388 −12088 −20115 −22180 −20314
6904 0 6904 0 −13808 −12468 −20744 −22887 −20918

−109608 0 −109608 0 219216 197936 329348 363266 332357



×
[ 85 −85 −69 −85 −85

0 1 0 0 0
16 −16 −13 −16 −16
0 0 0 −85 16
0 0 0 16 −3

]
×
[1354357 −2075437 131703 −124353 −4459921

−2 3 0 2 2
7195022 −11025760 699673 −660626 −23693330

12344 −18916 1200 −1133 −40650
344 −528 36 −38 −1119

]

×


1 −4 0 0 3 −1 1 −6 −6 6
0 1 0 0 −1 0 0 1 1 0
0 0 1 0 0 −1 0 −1 0 −1
0 0 0 1 0 0 −1 0 −1 −1
−1 2 −1 0 0 −1 −2 2 1 0

0 0 0 0 0 1 0 0 0 −1
0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 1 −1
0 −1 0 −1 0 1 1 −1 1 5

 ×


1 −2 0 0 1 −1 1 −4 −4 6
0 1 0 0 −1 0 0 1 1 0
0 0 1 0 0 −1 0 −1 0 −1
0 0 0 1 0 0 −1 0 −1 −1
−1 2 −1 0 0 −1 −2 2 1 0

2 −4 2 0 0 3 2 −4 −2 1
2 −4 2 0 0 0 9 −4 −2 −3
0 0 0 0 0 0 0 1 −2 1
0 0 0 0 0 0 0 −2 5 −3
4 −9 4 −1 0 9 −1 −7 −9 15



×



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



to obtain the embedding

ZS6
-

Z × Z
× Z5×5 × Z5×5

× Z9×9 × Z9×9

× Z5×5 × Z5×5

× Z10×10 × Z10×10

× Z16×16

(12) -
−1 × 1

×
[−1 0 0 0 0

0 −1 0 0 1
0 0 −1 0 1
0 0 0 −1 −1
0 0 0 0 1

]
×
[ 1 0 0 0 0

0 1 0 0 −7
0 0 1 0 −1
0 0 0 1 1
0 0 0 0 −1

]

×


−1 0 0 −3 0 0 0 0 −8

0 −1 0 1 0 0 0 0 0
0 0 −1 −1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 2 −1 0 0 0 2
0 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 0 1

 ×


1 0 0 5 0 2496 38752 38768 4808
0 1 0 −1 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 −1234 −44399 −38314656 −570592832 −571112068 −70811278
0 0 0 −52 −1870 −1608129 −23945203 −23967036 −2971632
0 0 0 13388 482240 415622912 6189244481 6194880688 768093160
0 0 0 13808 497320 428596912 6382432192 6388244503 792068013
0 0 0 −219216 −7895840 −6804918944 −101335267504 −101427549424 −12575836455



×
[ 511 0 −2720 −2720 −14450
−16 −1 85 0 0

96 0 −511 −512 −2720
0 0 0 1871 9945
0 0 0 −352 −1871

]
×
[15507928570849 −709146032 −2907736145384 −6643578612916 −109727370242

−22886142 1039 4291151 9804364 161928
82385884900032 −3767338944 −15447350966239 −35294017536064 −582926756064

141339060648 −6463152 −26501069664 −60549489665 −1000053837
3973676064 −181664 −745064144 −1702318048 −28115983

]

×


7 24 8 3 8 16 8 24 12 8
0 −1 0 1 0 0 0 0 0 0
−4 −12 −5 −5 −4 −8 −4 −12 −8 −4

0 0 0 1 0 0 0 0 0 0
6 18 6 10 5 12 8 18 14 6
−2 −6 −2 −2 −2 −5 −3 −6 −4 −2

0 0 0 0 0 0 1 0 0 0
−4 −12 −4 −4 −4 −8 −4 −13 −9 −4

0 0 0 0 0 0 0 0 1 0
8 24 8 5 8 16 6 24 17 7

×

−7 −8 −8 −5 −344 −96 −56 −160 −76 −8

0 1 0 −1 0 0 0 0 0 0
4 4 5 5 172 48 28 84 40 4
0 0 0 −1 0 0 0 0 0 0
−6 −6 −6 −10 −269 −76 −44 −130 −62 −6
14 14 14 22 656 187 107 302 144 14
8 8 8 16 296 80 49 176 84 8
4 4 4 4 172 48 28 95 45 4
−8 −8 −8 −8 −344 −96 −56 −192 −91 −8
32 32 32 51 1580 452 258 714 341 33



×



−1 0 1 0 −1 0 0 0 0 −1 0 0 0 0 1 0
0 −1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 −1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 1 0 0 −1 0 −1 0
0 0 0 0 0 0 −1 −1 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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(123456) -
−1 × 1

×
[−1 2 −2 −2 0
−1 1 −1 −1 0

0 −1 0 0 1
0 0 1 0 −1
0 0 0 1 1

]
×
[ 1 −2 14 2 0

1 5 −29 1 −6
0 1 −6 0 −1
0 0 −1 0 1
0 0 0 −1 −1

]

×


21 7 59 −4 58 36 12 40 36
3 0 8 1 8 8 4 4 8
4 1 12 −1 12 4 0 4 4
0 0 1 1 0 4 4 4 4

−11 −3 −31 2 −31 −16 −4 −16 −16
−1 −1 −3 1 −3 −1 0 −3 −1

0 0 −1 −1 0 −1 −1 −2 −2
−1 0 −3 0 −3 −1 0 0 −1

0 0 0 0 0 −1 −1 −1 −1

×


−15 −37 −43 6 −602 −692108 −10429284 −10437152 −1294188
−3 −6 −8 −1 −256 −259056 −3885396 −3888564 −482160
−4 −9 −12 1 −116 −142628 −2154408 −2155964 −267340

0 0 −1 −1 −144 −133596 −1996188 −1997916 −247724
5599 12313 17415 1354 380075 400210268 6011423128 6016209728 745983308
239 525 743 57 15835 16721019 251188548 251388189 31171043

−61044 −134176 −189859 −14721 −4109328 −4331198847 −65059934017 −65111705416 −8073564576
−62971 −138410 −195849 −15180 −4237319 −4466312209 −67089627504 −67143012380 −8325437793
999634 2197204 3109034 241020 67279022 70913243353 1065205133003 1066052756095 132185845337



×
[−511 −16 2720 0 0

3 −1 −16 −19 −101
−96 −3 511 0 0
511 −69 −2720 −1056 −5609
−96 13 511 199 1057

]
×
[ −52328776266333 2361986060 9811644192372 22417470831376 370239044628

16110061 −733 −3020636 −6901507 −113985
−277996627456520 12548051107 52124360436031 119092815308918 1966894949646
−476947504285 21528179 89427644680 204322698292 3374521647
−13163176494 594171 2468095251 5639060383 93132743

]

×


−21 −69 −19 −26 −18 −30 −26 −68 −54 −22

5 16 4 5 4 8 6 14 12 4
10 29 10 7 10 22 8 30 22 8
12 36 13 13 12 26 14 38 26 12
5 17 7 6 5 10 8 16 10 6
1 3 1 3 1 1 2 5 3 2
−4 −12 −5 −5 −4 −9 −5 −12 −8 −4
−1 −2 −1 0 −1 −3 0 −2 −1 0

2 6 2 2 2 3 1 7 5 2
−23 −70 −24 −23 −23 −48 −26 −74 −52 −23

×


11 15 11 16 402 98 70 288 138 14
−5 −6 −4 −5 −184 −52 −30 −102 −48 −4
−10 −9 −10 −7 −430 −126 −68 −210 −98 −8
−12 −12 −13 −13 −556 −158 −90 −266 −126 −12
−5 −7 −7 −6 −241 −66 −40 −112 −54 −6

1 5 3 −1 55 13 10 21 11 2
32 36 41 43 1528 425 251 714 342 36
5 4 5 4 175 49 28 110 51 4

−12 −10 −12 −10 −416 −115 −67 −269 −125 −10
13 20 12 −3 389 102 64 306 142 11



×



0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 −1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 −1 −1 −1 0 0 −1 0 0 1 −1 −1 0 0 1
0 0 0 1 0 0 0 0 0 −1 −1 0 0 −1 −1 −1
0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1
1 0 −1 −1 0 0 0 0 0 1 1 0 0 1 0 1
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 1 0 −1 0 −1 0 −1 0 −1 0 0
0 0 0 0 0 0 1 1 0 0 −1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1



The ties are satisfied by these generators.
In order to prove that the abelian subgroup A described by the ties given above coincides
with the image of this embedding, we shrink A to the overall Morita multiplicity 1, drop
the quasiblock 11 and call the resulting subgroup B (cf. 2.1.1). Writing the factors ordered
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, we obtain a Peirce decomposition of B via

e := 1 × 1 ×
(

1 0
0 0

)
×
(

1 0
0 0

)
×
(

0 0 0
0 1 0
0 0 0

)
×
(

0 0 0
0 1 0
0 0 0

)
×
(

1 0
0 0

)
×
(

1 0
0 0

)
×
(0 0 0 0

0 1 0 0
0 0 0 0
0 0 0 1

)
×
(0 0 0 0

0 1 0 0
0 0 0 0
0 0 0 1

)

f := 0 × 0 ×
(

0 0
0 1

)
×
(

0 0
0 1

)
×
(

1 0 0
0 0 0
0 0 0

)
×
(

1 0 0
0 0 0
0 0 0

)
×
(

0 0
0 0

)
×
(

0 0
0 0

)
×
(1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

)
×
(1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

)

g := 0 × 0 ×
(

0 0
0 0

)
×
(

0 0
0 0

)
×
(

0 0 0
0 0 0
0 0 1

)
×
(

0 0 0
0 0 0
0 0 1

)
×
(

0 0
0 1

)
×
(

0 0
0 1

)
×
(0 0 0 0

0 0 0 0
0 0 1 0
0 0 0 0

)
×
(0 0 0 0

0 0 0 0
0 0 1 0
0 0 0 0

)
.

In the sequel, by index we mean the index of A in Γ. The indices on the entries indicate the quasiblocks
they belong to. We only denote the relevant matrix entries, their position ensueing from the idempotents.

To give a basis for a Peirce component now becomes a problem of integral linear algebra by its sheer
size. In order to solve it, we write the ties as a matrix to be annihilated from the right modulo 16,
i.e. we display the ties as rows. Assume the first s − 1 basis elements of the Peirce component to be
found in a lower triangular manner. We drop the first s − 1 columns of this matrix and perform an
elementary divisor simplification on the remaining matrix R to obtain a main diagonal matrix D. In the
SL-element acting from the right on R we pick the k-th column with minimal value of v2(top entry) −
v2(k-th main diagonal entry of D). We multiply this k-th column with 16/(k-th main diagonal entry of D)
and then, regarding it in Z/16, with an element in (Z/16)∗ such that the top entry becomes a power of
2, which we also choose as inverse image in Z again. The resulting column annihilates R modulo 16 and,
furthermore, can be used to kill the top entry of an arbitrary column annihilating R modulo 16. Hence
iteration of this process furnishes a basis of our Peirce component in a lower triangular manner.

We have chosen a different order on the quasiblocks to display the factors, viz. 1, 2, 3, 4, 7, 8, 5, 6, 9, 10.



52 Guiding examples

eBe has the following Z-basis.

e := 11 × 12 × 13 × 14 × 17 × 18 × 15 × 16 ×
(

1 0
0 1

)
9
×
(

1 0
0 1

)
10

x := 0 × 2 × 2 × 0 × 0 × 2 × 2 × 0 ×
(

2 0
0 2

)
×
(

0 0
0 0

)
y := 0 × 0 × 2 × 2 × 0 × 0 × 2 × 2 ×

(
0 −6
0 2

)
×
(

0 2
0 2

)
xy = 0 × 0 × 4 × 0 × 0 × 0 × 4 × 0 ×

(
0 −12
0 4

)
×
(

0 0
0 0

)
z := 0 × 0 × 0 × 0 × 2 × 2 × 2 × 2 ×

(
4 8
−1 −2

)
×
(

0 0
−1 2

)
xz = 0 × 0 × 0 × 0 × 0 × 4 × 4 × 0 ×

(
8 16
−2 −4

)
×
(

0 0
0 0

)
yz = 0 × 0 × 0 × 0 × 0 × 0 × 4 × 4 ×

(
6 12
−2 −4

)
×
(−2 4
−2 4

)
xyz = 0 × 0 × 0 × 0 × 0 × 0 × 8 × 0 ×

(
12 24
−4 −8

)
×
(

0 0
0 0

)
0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×

(
2 0
0 2

)
×
(

2 0
0 2

)
0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×

(
0 4
0 0

)
×
(

0 4
0 0

)
0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×

(
0 0
2 0

)
×
(

0 0
2 0

)
0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×

(
0 0
0 4

)
×
(

0 0
0 4

)
0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×

(
0 0
0 0

)
×
(

4 0
0 4

)
0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×

(
0 0
0 0

)
×
(

0 8
0 0

)
0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×

(
0 0
0 0

)
×
(

0 0
4 0

)
0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×

(
0 0
0 0

)
×
(

0 0
0 8

)
The Morita factor 1 taken under consideration, its contribution to the index is 21·28.

eBf has the following Z-basis.

a := 23 × 24 × 15 × 16 ×
(−3

1

)
9
×
(

1
1

)
10

xa = 4 × 0 × 2 × 0 ×
(−6

2

)
×
(

0
0

)
za = 0 × 0 × 2 × 2 ×

(−4
1

)
×
(

0
1

)
xza = 0 × 0 × 4 × 0 ×

(−8
2

)
×
(

0
0

)
0 × 0 × 0 × 0 ×

(
2
0

)
×
(

2
0

)
0 × 0 × 0 × 0 ×

(
0
0

)
×
(

4
0

)
0 × 0 × 0 × 0 ×

(
0
2

)
×
(

0
2

)
0 × 0 × 0 × 0 ×

(
0
0

)
×
(

0
4

)
The Morita factor 4 taken under consideration, its contribution to the index is 24·12.

eBg has the following Z-basis.

b := 27 × 28 × 25 × 26 ×
(−4

1

)
9
×
(

0
1

)
10

xb = 0 × 4 × 4 × 0 ×
(−8

2

)
×
(

0
0

)
yb = 0 × 0 × 4 × 4 ×

(−6
2

)
×
(

2
2

)
xyb = 0 × 0 × 8 × 0 ×

(−12
4

)
×
(

0
0

)
0 × 0 × 0 × 0 ×

(
4
0

)
×
(

4
0

)
0 × 0 × 0 × 0 ×

(
0
0

)
×
(

8
0

)
0 × 0 × 0 × 0 ×

(
0
2

)
×
(

0
2

)
0 × 0 × 0 × 0 ×

(
0
0

)
×
(

0
4

)
The Morita factor 4 taken under consideration, its contribution to the index is 24·16.

fBe has the following Z-basis.

a′ := 13 × 14 × 25 × 26 × (0 2)9 × (0 2)10

a′x = 2 × 0 × 4 × 0 × (0 4) × (0 0)
a′z = 0 × 0 × 4 × 4 × (−2 −4) × (−2 −4)
a′xz = 0 × 0 × 8 × 0 × (−4 −8) × (0 0)

0 × 0 × 0 × 0 × (4 0) × (4 0)
0 × 0 × 0 × 0 × (0 0) × (8 0)
0 × 0 × 0 × 0 × (0 4) × (0 4)
0 × 0 × 0 × 0 × (0 0) × (0 8)

The Morita factor 4 taken under consideration, its contribution to the index is 24·16.
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fBf has the following Z-basis.

f := 13 × 14 × 15 × 16 × 19 × 110

u := 2 × 0 × 2 × 0 × 2 × 0
a′za = 0 × 0 × 4 × 4 × 2 × −6
a′xza = 0 × 0 × 8 × 0 × 4 × 0

0 × 0 × 0 × 0 × 4 × 4
0 × 0 × 0 × 0 × 0 × 8

The Morita factor 16 taken under consideration, its contribution to the index is 216·11.

fBg has the following Z-basis.
a′b = 45 × 46 × 29 × 210

a′xb = 8 × 0 × 4 × 0
0 × 0 × 4 × 4
0 × 0 × 0 × 8

The Morita factor 16 taken under consideration, its contribution to the index is 216·10.

gBe has the following Z-basis.

b′ := 17 × 18 × 15 × 16 × (−1 −2)9 × (−1 2)10

b′x = 0 × 2 × 2 × 0 × (−2 −4) × (0 0)
b′y = 0 × 0 × 2 × 2 × (0 2) × (0 2)
b′xy = 0 × 0 × 4 × 0 × (0 4) × (0 0)

0 × 0 × 0 × 0 × (2 0) × (2 0)
0 × 0 × 0 × 0 × (0 0) × (4 0)
0 × 0 × 0 × 0 × (0 4) × (0 4)
0 × 0 × 0 × 0 × (0 0) × (0 8)

The Morita factor 4 taken under consideration, its contribution to the index is 24·12.

gBf has the following Z-basis.

b′a := 15 × 16 × 19 × 110

b′xa = 2 × 0 × 2 × 0
0 × 0 × 2 × 2
0 × 0 × 0 × 4

The Morita factor 16 taken under consideration, its contribution to the index is 216·4.

gBg has the following Z-basis.

g := 17 × 18 × 15 × 16 × 19 × 110

v := 0 × 2 × 2 × 0 × 0 × 2
b′yb = 0 × 0 × 4 × 4 × 2 × 2
b′xyb = 0 × 0 × 8 × 0 × 4 × 0

c := 0 × 0 × 0 × 0 × 4 × 4
d := 0 × 0 × 0 × 0 × 0 × 8

The Morita factor 16 taken under consideration, its contribution to the index is 216·11.

In particular, gBg and fBf are isomorphic asR-orders via the quasiblock bijection 3, 4, 5, 6, 9, 10 - 7, 8, 6, 5, 9, 10.

Since the obvious symmetric form one would like to obtain for the generators is hurt at
several places, I am not quite content with the description just given. I suspect that there
is a conjugation by

(
1 4
0 1

)
from the left missing on the eBe-part of quasiblock 9. It shouldn’t

be too difficult to insert it still.

Altogether, the index of A in Γ is

21·28+4·12+4·16+4·16+16·11+16·10+4·12+16·4+16·11 = 2828.

For to see that e is primitive, we anticipate a description of eBe/2 which ensues from
(2.3.6), viz.

eBe ' F2〈X, Y, Z〉/(X2, XY − Y X,XZ − ZX,X2, Y 2, Z2, (Y Z)2 − (ZY )2).
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Lemma 2.3.1 Let k be a field. Let L =
⊕

i>0 Li be a graded finite dimensional k-algebra
such that k -∼ L0 as rings. Its radical is obtained as

rL =
⊕
i>1

Li,

in particular, L is local.⊕
i>1 Li is the maximal nilpotent ideal in L (E.1.8).

For to see that g is primitive we note that we have for α, β, γ, δ, ε, ζ ∈ F2

(αg + βv + γb′yb+ δb′xyb+ εc+ ζd)2 = α2g + γ2c.

Now fBf ' gBg shows that also f is primitive.

The indecomposable projectives Be, Bf and Bg lie in different genera because of different
annihilators (D.1.5, D.2.21). Thus A is homogenus.

2.3.6 F2S6 as path algebra modulo relations

We maintain the notation of (2.3.5). Consider the quiver

Ξ := E

���?X ��6X̃

�
�
�
���

A
�

�
�
��	

A′

F

��� U

@
@
@
@@R

B
@

@
@
@@I

B′

G ��6 V ,

whose arrow B is not to be confused with the ring of the same name.

We have a ring morphism
ZΞ - B

by sending the capital to the small letter elements (1.3.3), which we shall list again resp. define now.

e = 11 × 12 × 13 × 14 × 17 × 18 × 15 × 16 ×
(

1 0
0 1

)
9
×
(

1 0
0 1

)
10

x = 01 × 22 × 23 × 04 × 07 × 28 × 25 × 06 ×
(

2 0
0 2

)
9
×
(

0 0
0 0

)
10

x̃ := 01 × 22 × 23 × 04 × 07 × 28 × 25 × 06 ×
(

0 0
0 0

)
9
×
(

2 0
0 2

)
10

f = 13 × 14 × 15 × 16 × 19 × 110

g = 17 × 18 × 15 × 16 × 19 × 110

a = 23 × 24 × 15 × 16 ×
(−3

1

)
9
×
(

1
1

)
10

a′ = 13 × 14 × 25 × 26 × (0 2)9 × (0 2)10

b = 27 × 28 × 25 × 26 ×
(−4

1

)
9
×
(

0
1

)
10

b′ = 17 × 18 × 15 × 16 × (−1 −2)9 × (−1 2)10

u = 23 × 04 × × 25 × 06 × 29 × 010

v = 07 × 28 × 25 × 06 × 09 × 210

We abbreviate
Y := AA′

Z := BB′

P := Y ZY + ZY Z − Y ZY Z − ZY + Y Z
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and note that Y maps to y and Z maps to z.

For to see that this morphism is surjective we consider in particular the following elements in its image.
Non mentioned entries are to be read as zero.

Elements in eBe. Let the twiddle denote right conjugation by
(

1 4
0 1

)
.

yz − zy =
(−2 4
−2 2

)
9
˜ ×

(−2 4
−2 2

)
10

yzy − zyz =
(

0 4
2 0

)
9
˜ ×

(
0 4
2 0

)
10

zyz − 2zy =
(

0 0
−2 0

)
9
˜ ×

(
0 0
−2 0

)
10

zyzy − 4zy =
(

0 0
0 −4

)
9
˜ ×

(
0 0
0 −4

)
10

Elements in eBf . Let the twiddle denote left multiplication by
(

1 4
0 1

)−1
.

(yz − zy)a =
(

2
0

)
9
˜ ×

(
2
0

)
10

(yzy − zyz)a =
(

4
2

)
9
˜ ×

(
4
2

)
10

Elements in eBg. Let the twiddle denote left multiplication by
(

1 4
0 1

)−1
.

(yz − zy)b =
(

4
2

)
9
˜ ×

(
4
2

)
10

(yzy − zyz)b =
(

4
0

)
9
˜ ×

(
4
0

)
10

Elements in fBe. Let the twiddle denote right multiplication by
(

1 4
0 1

)
.

a′(yz − zy) = (−4 4)9˜ × (−4 4)10

a′(yzy − zyz) = (4 0)9˜ × (4 0)10

Elements in gBe. Let the twiddle denote right multiplication by
(

1 4
0 1

)
.

b′(yz − zy) = (−2 0)9˜ × (−2 0)10

b′(yzy − zyz) = (4 −4)9˜ × (4 −4)10

An element in fBf .
a′(yzy − zyz)a = 49 × 410

An element in fBg.
a′(yz − zy)b = 49 × 410

An element in gBf .
b′(yz − zy)a = −29 × −210

An element in gBg.
b′(yzy − zyz)b = −49 × −410

We claim that its kernel is generated as an ideal by

A′A = 2F
B′B = 2G

(Y Z)2 − (ZY )2 = 2(Y Z − ZY )

X2 = 2X
XY = Y X
XZ = ZX

X̃2 = 2X̃

X̃Y = Y X̃

X̃Z = ZX̃

X̃ −X = P −XP

U2 = 2U
UA′ = A′X
AU = XA

V 2 = 2V

V B′ = B′X̃

BV = X̃B
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We note that P 2 = 2P modulo these relations except for the X̃ − X-relation, as we check by a direct
calculation.

We claim that these relations are symmetric in the sense that

F - G
U - V
A - B
A′ - B′

X - X̃

induces an automorphism of ZΞ modulo these relations. First we remark that

Y ZY + ZY Z − Y ZY Z − ZY + Y Z = Y ZY + ZY Z − ZY ZY − 2Y Z + 2ZY − ZY + Y Z
= ZY Z + Y ZY − ZY ZY − Y Z + ZY.

modulo these relations except for the X̃ −X-relation, which means that P is invariant under the auto-
morphism induced on ZΞ modulo this smaller ideal. Now

X̃ −X = −P +XP
= P +XP − P 2

= P − (XP + P 2 −XP 2)

= P − X̃P
modulo the whole ideal, so that the automorphism exists modulo this whole ideal, too.

Note moreover that we have

(Y Z − ZY )2 = Y ZY Z − Y ZZY − ZY Y Z + ZY ZY
= Y ZY Z − 2Y ZY − 2ZY Z + Y ZY Z − 2Y Z + 2ZY
= −2P,

being a more natural expression, but unfortunately only for 2P .

Regard the multiplication trees of Ξ. We drop the branches which end non underlined because of X2,
U2, V 2, A′A or B′B in it, possibly after commuting factors according to the relations. Also we drop the
branches with X̃X in it, which we can do, since we may rewrite WXX̃, W being a word - commute X
to the right - by the (X̃ −X)-relation above as a linear combination

WXX̃ = −WXP + 2WX

all summands of which however in fact can be written as linear combination of underlined elements by
the part of the tree which we do not drop. By symmetry we may disregard the multiplication tree for G.

E
�������

XXXXXXX
X̃ X A B

�������
XA XB Y Z

�� @@
PPPPP

XY XZ YX Y B ZX ZA

XYB XZA Y Z ZY
�����

�����
XY Z XZY Y ZX Y ZA ZYX ZY B

XY ZA XZY B Y ZY ZY Z
�����

�����
XY ZY XZY Z Y ZYX Y ZY B ZY ZX ZY ZA

XY ZY B XZY ZA Y ZY Z ZY ZY
�����

XY ZY Z XZY ZY ZY ZYX ZY ZY B

XZY ZY B
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F

U A′
�������

XXXXXXX
UA′ A′X A′B

A′XB A′Z
�����

A′XZ A′ZX A′ZA

A′XZA A′ZY
�����

A′XZY A′ZYX A′ZY B

A′XZY B A′ZY Z
�����

A′XZY Z A′ZY ZX A′ZY ZA

A′XZY ZA A′ZY ZY

A′XZY ZY

The kernel K of F2Ξ - B/2 now is generated by

A′A = 0
B′B = 0

(Y Z)2 = (ZY )2

X2 = 0
XY = Y X
XZ = ZX

X̃2 = 0

X̃Y = Y X̃

X̃Z = ZX̃

X̃ −X = P −XP

U2 = 0
UA′ = A′X
AU = XA

V 2 = 0

V B′ = B′X̃

BV = X̃B,

thus giving a Morita equivalence between F2Ξ/K × F2 and F2S6.
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Chapter 3

Ties arising from modular
morphisms

Our approach to a description of ZSn is based on the philosophy that ties are given by

modular morphisms, and, possibly, by inclusions of simple lattices (in case the simple lattices

we end up with are not the ones used for the embedding). Since the technicalities arising

from that philosophy which are necessary to establish (5.3.15) are contained in (5.3.13), this

chapter may be regarded as a digression, intended to motivate (C 4, C 5). The presentation

here deviates slightly from that in (5.3.13).

Conventions for (S 3.1,S 3.2).

Let R be a Dedekind domain (to which we refer as ‘integral’) with field of fractions K (to
which we refer as ‘rational’). Let Λ be a full (i.e. rationally equal) R-suborder of a direct
product of matrix rings over R, Λ ⊆ Γ :=

∏
i∈[1,s]R

mi×mi . Let a ⊆ R be the annihilator of Γ/Λ.

By a module we understand a left module, except if stated otherwise. A Λ-lattice is a

Λ-module which is finitely generated projective over R. We abbreviate K ⊗R − by K(−). A

simple lattice is a lattice X such that KX is a simple KΛ-module. A pure monomorphism

of Λ-lattices has a torsionfree quotient, a full monomorphism has a torsion quotient, a pure

epimorphism is surjective.

3.1 One-step filtrations

Suppose given an extension of Λ-lattices X and Y . Since it is split as an extension of R-lattices, we
may write it in the following form, where X Y stands for the direct sum of R-lattices, equipped with a
certain Λ-operation.

0 - X -(1 0)
X Y -

(
0
1

)
Y - 0.

Let ξλ be the operation of λ ∈ Λ on X, written as R-linear endomorphism of X. Let ηλ be the operation

of λ on Y . The operation of λ on X Y therefore is given by a matrix of the form
(
ξλ 0
∂λ ηλ

)
such that

∂µλ = ∂λξµ + ηλ∂µ.

I.e.

Λ -∂
R(Y,X)

59
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is a Hochschild 1-cocycle over R with values in the Λ⊗R Λo-module R(Y,X), written

∂ ∈ Z1
R(Λ, R(Y,X)).

Two such extensions are equivalent iff there exists a diagram of Λ-lattices

0 - X -(1 0)
X Y -

(
0
1

)
Y - 0

?

(
1 0
f 1

)
0 - X -(1 0)

X
′
Y -

(
0
1

)
Y - 0,

i.e. iff there exist f ∈ R(Y,X) such that

∂λ − ∂′λ = fξλ − ηλf

for all λ ∈ Λ, i.e. iff

∂ − ∂′ ∈ B1
R(Λ, R(Y,X))

is a coboundary.

Thus we have identified, as sets,

Ext1
Λ(Y,X) = H1

R(Λ, R(Y,X)),

an identification which is also seen to be R-linear.

Since a annihilates Ext1
Λ(Y,X) (B.2.3), the pullback

0 - X -(1 0)
X⊕Y -

(
0
1

)
Y - 0

?

(
1 0
g a

)
?

a

0 - X -(1 0)
X Y -

(
0
1

)
Y - 0,

splits our extension for any a ∈ a\0. Therefore(
ξλ 0
0 ηλ

) (
1 0
g a

)
=
(

1 0
g a

) (
ξλ 0
∂λ ηλ

)
,

whence

∂λ = a−1(ηλg − gξλ)

for all λ ∈ Λ. This, however, is just a restatement of the annihilator property just used in view of the
identification H1 = Ext1 above.

In other words, we have explicitely constructed an inverse image of our extension under the connector of
the long exact sequence

H0(Λ, R(Y,X/a)) -δ H1(Λ, R(Y,X)) -a H1(Λ, R(Y,X))
g - (λ - a−1(ηλg − gξλ))

induced by the short exact sequence

0 - X -a X - X/a - 0.

This can also be expressed by the diagram
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0 - X -(1 0)
X Y -

(
0
1

)
Y - 0

?

(
a
−g
)

?

−g

0 - X -a
X - X/a - 0.

Note that
(
a
−g
)

is Λ-linear because of the annihilating pushout

0 - X -(1 0)
X⊕Y -

(
0
1

)
Y - 0

6

a

6(
a 0
−g 1

)
0 - X -(1 0)

X Y -

(
0
1

)
Y - 0,

(
a 0
−g 1

)
being Λ-linear since (

a 0
−g 1

) (
1 0
g a

)
=
(
a 0
0 a

)
.

Suppose given γ ∈ Γ. We say γ acts on a Λ-lattice X if its operation ξγ on KX restricts to X.

Lemma 3.1.1 Suppose γ ∈ Γ acts on X and Y . γ acts on X Y iff γ respects Y -g X modulo a, this
is, iff

ηγg ≡a gξγ .

Thus the existence of the extension X Y imposes a necessary condition on an element γ ∈ Γ for to be
in Λ.

γ acts on X ⊕ Y . γ acts on X Y iff(
a 0
−g 1

) (
ξγ 0
0 ηγ

)
=
(
ξγ 0
∂γ ηγ

) (
a 0
−g 1

)
yields an integral map

∂γ = a−1(ηγg − gξγ).

Remark 3.1.2 Note that
(
a
−g
)

is a Λ-linear retraction to the inclusion X -(1 0)
X Y of the extension

up to the scalar a.

3.2 Filtrations

Suppose given a finite binary tree of Λ-lattices

T∅

T0 T1�
���

H
HHH

�
���

H
HHH

T00 T01 T10 T11

�� @@ �� @@ �� @@ �� @@
T000 T001 T010 T011 T100 T101 T110 T111

�
��

A
AA

�
��

A
AA

�
��

A
AA

�
��

A
AA

�
��

A
AA

�
��

A
AA

�
��

A
AA

�
��

A
AA

. . .
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ending at possibly different stages, such that the ends carry Γ-lattices, and such that there exists a short
exact sequence

0 - Te0 -e0∗ Te -e1
∗

Te1 - 0,

for each non-end [1, h] -
e
{0, 1}, h > 0, where e0 resp. e1 denote concatenation with 0 resp. 1.

Let

Te1 -ge Te0

be an R-linear map giving a Λ-linear map

Te1 -ge Te0/ae

as in (3.1). Let τe,γ denote the operation of γ ∈ Γ on KTe. Note that, for e not being an end,

τe,γ =
(

τe0,γ 0
a−1
e (τe1,γge−geτe0,γ) τe1,γ

)
.

Lemma 3.2.1 γ acts on T∅ iff
τe1,γge ≡ae geτe0,γ

for all non-ends e.

This follows from (3.1.1).

Remark 3.2.2 Pulling back along the pure epimorphisms of that tree, one obtains a filtration of T∅ by
Γ-lattices. Conversely, it is always possible to filter T∅ by simple Λ-lattices, which, however, need not be
Γ-lattices. In that case, one obtains the same assertion as in (3.2.1), except that one has to add that γ
should act on those simple lattices as well.

Remark 3.2.3 γ ∈ Γ acts on Λ iff it is contained in Λ.

Consider 1 ∈ Λ.

Remark 3.2.4 Let X and Y be isomorphic Λ-lattices. γ acts on X iff it acts on Y .

Thus we may summarize to the

Observation 3.2.5 In case T∅ is isomorphic to Λ as Λ-lattices, γ ∈ Γ is contained in Λ iff

τe1,γge ≡ae geτe0,γ
for all non-ends e. For short, ties are given by modular morphisms.

This follows from (3.2.1, 3.2.3, 3.2.4).

Remark 3.2.6 Let X and Y be Λ-lattices. γ ∈ Γ acts on X and on Y iff it acts on X ⊕ Y .

Remark 3.2.7 Let
Λ =

⊕
i∈I

Pi

be a decomposition into projective Λ-lattices, I being some indexing set. Let J ⊆ I be a subset such that
for each i ∈ I there is a j ∈ J with Pi ' Pj. γ ∈ Γ is in Λ iff it acts on Pj for each j.

This ensues from (3.2.3, 3.2.6, 3.2.4). Therefore we could as well use T∅’s isomorphic to the Pj ’s, j ∈ J .

However, since we do not know of a nontrivial decomposition of Z(p)Sn into projectives given in combi-
natorial terms, we won’t make use of such a reduction.

Question 3.2.8 (speculative) Is it possible to use a chain of full inclusions of R-orders

Λ = Λ0 ⊆ · · · ⊆ Λi ⊆ Λi+1 ⊆ · · · ⊆ Λm = Γ

for which the indecomposable projective Λi-lattices are either projective over Λi+1 or exten-
sions of two indecomposable projective Λi+1-lattices to ‘iterate the theory of cyclic defect’?
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3.3 Cocycles

We shall have a look at the matrices giving the operation on a filtered Λ-lattice in terms
of the operation on the graduation plus some extra information and encode this extra
information in a ‘generalized Ext-set’, which is neither (known to be) a group nor a functor,
except in case of a one-step-filtration. We proceed using cocycles, for lack of a proper
formalism.

The aim should be to encode all ties as something like ‘modular morphisms between several
simple lattices’. Whereas the analogue of Ext1 for two lattices is easy to see, we don’t have
an idea what the analogue of the connector from the modular Hom-group to it should be
(cf. S 3.1).

Let R be an integral domain of characteristic 0 with field of fractions K, let G be a finite
group. Let X = (X1, . . . , Xm) be a tuple of right RG-lattices, let ξi,g denote the operation of
g ∈ G on Xi.

Definition 3.3.1 A cocycle ∂ of G over R with coefficients in X is a tuple ∂ of R-linear maps

(G -∂ij
R(Xi, Xj))i,j∈[1,m], i<j

such that for g, h ∈ G, we have

∂ij(gh) = ξi,g∂ij(h) + ∂ij(g)ξj,h +
∑

k∈[i+1,j−1]

∂ik(g)∂kj(h)

for all i < j. The set of cocycles is denoted by Z(G,X).

Example 3.3.2 Let

(KXi
-fij KXj)i,j∈[1,m], i<j

be a tuple of K-linear maps. For i < j, let Xi
-∂ij(g)Xj be defined by


1
fm−1,m 1
fm−2,m fm−2,m−1 1
...

...
. . .

f1,m f1,m−1 · · · f12 1




ξm,g

ξm−1,g

ξm−2,g

. . .

ξ1,g



=


ξm,g
∂m−1,m(g) ξm−1,g

∂m−2,m(g) ∂m−2,m−1(g) ξm−2,g

...
...

. . .

∂1,m(g) ∂1,m−1(g) · · · ∂12(g) ξ1,g




1
fm−1,m 1
fm−2,m fm−2,m−1 1
...

...
. . .

f1,m f1,m−1 · · · f12 1


Assume that each ∂ij factors over

G -∂ij
R(Xi, Xj) -
�� K(KXi,KXj),

by slight abuse of notation. Then ∂ is a cocycle of G over R with coefficients in X.
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From
ξm,g
∂m−1,m(g) ξm−1,g

∂m−2,m(g) ∂m−2,m−1(g) ξm−2,g

...
...

. . .

∂1,m(g) ∂1,m−1(g) · · · ∂12(g) ξ1,g




ξm,h
∂m−1,m(h) ξm−1,h

∂m−2,m(h) ∂m−2,m−1(h) ξm−2,h

...
...

. . .

∂1,m(h) ∂1,m−1(h) · · · ∂12(h) ξ1,h



=


ξm,gh
∂m−1,m(gh) ξm−1,gh

∂m−2,m(gh) ∂m−2,m−1(gh) ξm−2,gh

...
...

. . .

∂1,m(gh) ∂1,m−1(gh) · · · ∂12(gh) ξ1,gh


we take the required functional equation (3.3.1).

Definition 3.3.3 The set of cocycles arising from an integral tuple (fij)i,j∈[1,m], i<j in the way de-
scribed in (3.3.2) is denoted by B(G,X). An element of B(G,X) is called a coboundary. Via matrix
multiplication of the corresponding unipotent lower triangular matrices

1
fm−1,m 1
fm−2,m fm−2,m−1 1
...

...
. . .

f1,m f1,m−1 · · · f12 1


B(G,X) becomes a group which acts via conjugation on Z(G,X), a cocycle written as an operating matrix
as above. The quotient set is denoted by H(G,X) := Z(G,X)/B(G,X).

In case m = 2 we recover H(G,X) to be the first Hochschild cohomology group H1(G, R(X1, X2)) with
coefficients in the bimodule R(X1, X2).

Remark 3.3.4 There is an operation of R on the set Z(G,X) given by

(r∂)ij(g) := rj−i∂ij(g)

for r ∈ R, ∂ ∈ Z(G,X). We have
|G|Z(G,X) ⊆ B(G,X).

Let
|G|fij :=

∑
g∈G

∂ij(g).

We obtain∑
h∈G ∂ij(gh)ξj,h−1

1.
=
∑
h∈G ∂ij(gh)ξj,(gh)−1ξj,g

= |G|fijξj,g
2.
=
∑
h∈G

ξi,g∂ij(h) + ∂ij(g)ξj,h +
∑

k∈[i+1,j−1]

∂ik(g)∂kj(h)

 ξj,h−1

= ξi,g|G|fij + |G|∂ij(g) +
∑

k∈[i+1,j−1]

∂ik(g)|G|fkj ,

whence
∂ij(g) = fijξj,g − ξi,gfij −

∑
k∈[i+1,j−1]

∂ik(g)fkj ,

which, one the one hand, shows by induction on j− i that f determines ∂ and which, on the other hand,
holds in the first matrix equation of (3.3.2). Thus ∂ arises from f in the way described in (3.3.2).

Hence |G|∂ corresponds to (|G|j−ifij)i,j∈[1,m], i<j , which is integral by construction.
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Example 3.3.5 Since also the rational (fij)’s carry a group structure given by matrix
multiplication of the corresponding unipotent matrices, one might be tempted to believe
that it carries over to the cocycles via the correspondence described in (3.3.2, 3.3.4). In
particular, this works in case m = 2. However, let G := S4, R := Z and consider the
operations

ξ1,(12) =
[−5 24
−1 5

]
ξ1,(1234) =

[
4 −15
1 −4

]
ξ2,(12) =

[
1 0 0
1 −1 2
0 0 1

]
ξ2,(1234) =

[−2 1 0
−3 0 2
−2 0 1

]
ξ3,(12) =

[−11 −24 8
5 11 −4
0 0 −1

]
ξ3,(1234) =

[
26 57 8
−11 −24 −4
−1 −2 −1

]
.

The ‘unipotent f -matrix’ 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
−1/4 0 0 1 0 0 0 0
0 −1/4 0 0 1 0 0 0
0 0 −1/2 0 0 1 0 0
1/8 0 0 1/2 0 0 1 0
0 1/8 0 0 1/2 0 0 1


conjugates the direct sum operation to the operation displayed as the ‘operating ∂-matrices’

η(12) =


−11 −24 8 0 0 0 0 0
5 11 −4 0 0 0 0 0
0 0 −1 0 0 0 0 0
3 6 −2 1 0 0 0 0
−1 −3 2 1 −1 2 0 0
0 0 1 0 0 1 0 0
0 −9 1 3 −12 0 −5 24
1 0 0 1 −3 1 −1 5

 , η(1234) =


26 57 8 0 0 0 0 0
−11 −24 −4 0 0 0 0 0
−1 −2 −1 0 0 0 0 0
−7 −14 −2 −2 1 0 0 0
2 6 2 −3 0 2 0 0
0 1 1 −2 0 1 0 0
2 11 1 −3 8 0 4 −15
−2 −2 0 −2 2 1 1 −4

 ,
wheras the square of that lower triangular f -matrix conjugates the direct sum operation
to

ζ(12) =


−11 −24 8 0 0 0 0 0
5 11 −4 0 0 0 0 0
0 0 −1 0 0 0 0 0
6 12 −4 1 0 0 0 0
−2 −6 4 1 −1 2 0 0
0 0 2 0 0 1 0 0
9/4 −18 1 6 −24 0 −5 24
7/4 −9/4 3/2 2 −6 2 −1 5

 , ζ(1234) =


26 57 8 0 0 0 0 0
−11 −24 −4 0 0 0 0 0
−1 −2 −1 0 0 0 0 0
−14 −28 −4 −2 1 0 0 0
4 12 4 −3 0 2 0 0
0 2 2 −2 0 1 0 0
−1/4 17 1 −6 16 0 4 −15
−7/2 −1/2 3/2 −4 4 2 1 −4

 .

Definition 3.3.6 Let ExtRG(X) be the set of diagrams of RG-lattices of the following shape (e.g. m = 4)

0 - X1

6 6

0 - X2
-

6 6 6

0 - X3
- -

6 6 6 6

X4
- - -

with horizontal pure monomorphisms, vertical pure epimorphisms and all squares exact, modulo isomor-
phisms of diagrams carrying the identity at Xi, i ∈ [1,m].

For X = (X1, X2) we recover ExtRG(X) = Ext1
RG(X1, X2).
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Lemma 3.3.7 In case G = 1, ExtRG(X) consists of one element.

Given a diagram (Xj/i)i,j∈[0,m], i<j with Xj/j−1 = Xm+1−j for j ∈ [1,m], we exhibit a diagram morphism
constant on the X ′is onto it, starting from the split diagram (

⊕
k∈[i,j]Xk/k−1)i,j∈[0,m], i<j , equipped with

the canonical inclusions and projections.

Choose coretractions
(Xj/j−1

- Xj/0
- Xj/j−1) = 1

for j ∈ [1,m]. Let ⊕
k∈[i,j]

Xk/k−1
- Xj/i

have the composition
Xk/k−1

- Xk/0
- Xj/i

as its component at k.

Let i′ < j′ be given with i 6 i′, j 6 j′. Let k ∈ [i, j]. First going through the morphism, then through
the diagram yields

Xk/k−1
- Xk/0

- Xj/i
- Xj′/i′

as its component at k. First going through the diagram, then through the morphism yields{
Xk/k−1 Xk/k−1

- Xk/0
- Xj′/i′ for k > i′

0 for k < i′

as its component at k.

Lemma 3.3.8 There is a bijection

H(G,X) -∼ ExtRG(X).

We give a surjection
Z(G,X) - ExtRG(X)

with fibers being the orbits under the operation of B(G,X). A cocycle ∂ corresponds to an operation of
G on the R-linear direct sum

⊕
i∈[1,m]Xi, given by

ξm,g
∂m−1,m(g) ξm−1,g

∂m−2,m(g) ∂m−2,m−1(g) ξm−2,g

...
...

. . .

∂1,m(g) ∂1,m−1(g) · · · ∂12(g) ξ1,g


Since the subcocycle (∂ij)i,j∈[k,l], i<j for k, l ∈ [1,m], k < l, is a cocycle of G over R with coefficients
in (Xk, . . . , Xl), it corresponds to an operation on

⊕
i∈[k,l]Xi. These RG-lattices, together with their

canonical inclusions and projections form a diagram as in (3.3.6), to which we map ∂.

We claim this map to be surjective. Given a diagram of RG-lattices as in (3.3.6), we may replace it by
an isomorphism of diagrams constant on each Xi by a diagram which consists of R-linear direct sums of
type

⊕
i∈[k,l]Xi, equipped with the canonical inclusions and projections (3.3.7). This yields an operation

matrix on the lower right object which is of lower triangular shape and which contains the desired cocycle.

If two diagrams consisting of R-linear direct sums are isomorphic, constant on each Xi, then the operation
matrices on the lower right objects are conjugate by an integral matrix of the form

1
fm−1,m 1
fm−2,m fm−2,m−1 1
...

...
. . .

f1,m f1,m−1 · · · f12 1

 ,

containing the components of that isomorphism. And conversely.
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Remark 3.3.9 Consider the case m = 3, X = (X1, X2, X3). ExtRG(X1, X2, X3) surjects
onto

{α× β ∈ ExtRG(X1, X2)× ExtRG(X2, X3) | α · β = 0 (Yoneda)}

via projection onto the respective parts of the diagram (3.3.6).

Each fiber is in bijection with the cokernel of the map RG(X2, X3) - ExtRG(X1, X3) in-
duced by the respective α ∈ ExtRG(X1, X2).

Suppose given elements α ∈ Db(RG)(X1, X2[1]) and β ∈ Db(RG)(X2, X3[1]) such that
αβ[1] = 0. Consider the cones on α and β

X1
-α

X2
-β

X3

A
A
A
AK

α′

Cα

�
�
�
��

α′′

A
A
A
AK

β′

Cβ

�
�
�
��

β′′

where the thick arrows display graded morphisms. Since αβ[1] = 0, there is a Cα -γ X3[1]
such that α′γ = β, the cone of which is also in the canonical heart, forming a short exact
sequence

0 - X3
-γ
′

Cγ -γ
′′

Cα - 0

there. The octahedron

X1
� α′′

Cα

S
S
S
SSw

α′

X2

�
�
�
��7

α

� γ′′

Cγ

S
S
S
SSw

γ′

X3

�
�
�
��7

γ

-β
S
S
S
SSo

β′

Cβ
�
�
�
��/

β′′

��1

?

HHY

furnishes the required diagram when dropping all graded morphisms.

Conversely, given a diagram representing an element of ExtRG(X1, X2, X3), we obtain such
an octahedron, forcing αβ[1] = 0.

Suppose given α and β with αβ[1] = 0. The corresponding fiber is in bijection with the set

of morphisms Cα -γ X3[1] such that α′γ = β, which is, since nonempty, in bijection with

the set of morphisms Cα -γ X3[1] such that α′γ = 0. Consider the exact sequence

(X2, X3[1])�
α′(−)

(Cα, X3[1])�
α′′(−)

(X1, X3[1])�
α(−)

(X2[1], X3[1]).
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Chapter 4

Generic modular morphisms

We shall search for modular morphisms between Specht lattices, i.e. for ZSn-linear maps
Sλ - Sµ/m for some m > 2. Some easy and some exceptional cases are given in (S 4.2).
In (S 4.3) a formula for a one-box-shift morphism is derived. As an example, we treat the
consequences for ZS6 at 3 in (S 4.4).

The morphisms we found are generic in the sense that their formulas depend (at most)
polynomially on combinatorial data (cf. S 4.5).

A Specht lattice has a presentation as a regular lattice on a Z-linear tableaux basis mod-
ulo the Garnir relations, roughly speaking. The structure and the sheer amount of these
relations cause lenghty case-by-case analyses (cf. 4.3.9, 5.2.7).

A Specht lattice also has a Z-linear basis given by standard polytabloids. However, since
standard polytabloids are not stable under the occurring combinatorial operations, it is
hardly possible to work with this basis (thus avoiding Garnir relations), except for the case
of hooks. In particular, we are not able to write down matrices for the resulting morphisms
in a combinatorial way. Even the question whether the morphism (4.3.31) is nonzero is not
clear a priori, and has to be dealt with by standard polytabloid methods. A formula for
the rank of that modular morphism remains to be found, its behaviour under composition
is unknown in general (cf. 4.2.4), and, moreover, we were not able to dualize it (cf. 6.2.6).

A more conceptual way to derive (4.3.31, 5.2.25) would be desirable, since our ad hoc
method does not explain the structure of the resulting formulas.

Let n be a natural number, let λ ∈ Λn be a partition of n, i.e. [1, n] -
λ

[1, n],∑
λi = n, λi > λi+1 for i ∈ [1, n − 1]. Let λ′ denote the transpose of λ, i.e.

j 6 λi ⇐⇒ i 6 λ′j for i, j ∈ [1, n]. In this chapter, lattices are right lattices, since
we write the composition in the Sn on the right. εσ denotes the signature of a
permutation σ ∈ Sn.

We think of a partition as being a diagram of type

(5, 2, 1, 1) =

× × × × ×
× ×
×
×.

In particular, we talk of rows and columns. We also denote (5, 2, 1, 1) =: (5, 2, 12)
etc.
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4.1 Garnir relations

We recall a part of the basic machinery from [J 78].

Definition 4.1.1 A λ-tableau is a tuple

[a] = (aij)i∈[1,n],j∈[1,λi] = (aij)j∈[1,n],i∈[1,λ′j ]

such that

{(i, j) ∈ [1, n]× [1, n] | j 6 λi} -a [1, n]
(i, j) - aij

is a bijection. i being the row index, j being the column index, we think of a tableau [a] as of a distribution
of the set [1, n] onto the diagram associated to the partition λ. The brackets [] are used only to distinguish
a tableau from a tabloid resp. from a polytabloid and may be dropped.

The Sn operates from the right on the set of λ-tableaux via composition of bijections. The ZSn-module
having as Z-basis the λ-tableaux is denoted by Fλ. It is isomorphic to ZSn as a right lattice.

Let a∗j denote the j-th column of [a], let ai∗ denote the i-th row of [a].

Denote by Ra the Young subgroup of Sn stabilizing the rows of a, i.e.

Ra := {σ ∈ Sn | aijσ ∈ ai∗ for all i, j}.

Denote by Ca the Young subgroup of Sn stabilizing the columns of a, i.e.

Ca := {σ ∈ Sn | aijσ ∈ a∗j for all i, j}.

Note that Raτ = (Ra)τ , Caτ = (Ca)τ .

On the set of λ-tableaux we define an equivalence relation by

[a] ∼ [b] :⇐⇒ there is a σ ∈ Ra such that [a]σ = [b].

Note that [a] ∼ [b] implies Ra = Rb, so that this in fact is an equivalence relation. The equivalence class
represented by the λ-tableau [a] is called a λ-tabloid and is denoted by {a}. Informally, it is a ‘tableau
with unordered rows’.

This equivalence relation is compatible with the action of Sn, for, given a λ-tableau [a] and elements
σ ∈ Ra and ρ ∈ Sn, we have [a]σρ = [aρ]σρ ∼ [aρ]. This operation turns the free Z-module on the set of
λ-tabloids into a ZSn-lattice, denoted by Mλ.

Let the polytabloid 〈a〉 attached to the λ-tableau [a] (NB not to the λ-tabloid {a}) be defined as

〈a〉 :=
∑
σ∈Ca

εσ{a}σ ∈Mλ

Note that for ρ ∈ Sn we obtain
〈a〉ρ =

∑
σ∈Ca εσ{a}σρ

=
∑
σ′∈Caρ εσ′{aρ}σ

′

= 〈aρ〉

so that the abelian subgroup of Mλ generated by the λ-polytabloids is a ZSn-sublattice of Mλ, called
the Specht lattice Sλ. In particular, we have a ZSn-morphism

Fλ - Sλ

[a] - 〈a〉.

We denote nλ := rk Sλ.

The rational Specht modules QSλ, obtained by tensoring the Specht lattices with Q over Z, form a
complete set of absolutely simple QSn-modules, where λ runs over the set of partitions of n [J 78, 4.12].
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A λ-tableau [a] is called standard if aij 6 ai′j′ provided i 6 i′ and j 6 j′. A λ-polytabloid 〈a〉 is called
standard if there exists a standard λ-tableau [a′] such that 〈a〉 = 〈a′〉.

The standard polytabloids form a basis of Sλ [J 78, 8.4] (cf. 4.3.2).

Let λ be a partition of n. Let the hook length at the position (i, j) of λ, i 6 λ′j , be given by

hij := (λi − j) + (λ′j − i) + 1.

The rank of Sλ is given by the hook formula [J 78, 20.1]

nλ =
n!∏

i6λ′j
hij

.

Lemma 4.1.2 Let [a] be a λ-tableau, let ρ ∈ Ca. Then

〈a〉ρ =
∑
σ∈Ca εσ{a}σρ

=
∑
σ′∈Ca εσ′ερ{a}σ

′

= ερ〈a〉.

Definition 4.1.3 Let Fλ0 be the quotient of Fλ modulo signed column permutations. I.e. use the ZSn-
sublattice

Fλ1 := Z〈[a] + [a](st) | [a] a tableau, s, t in the same column of [a]〉
to define

Fλ0 := Fλ/Fλ1 ,

which is a lattice since it has the set of tableaux with ordered columns as a basis over Z.

Note that by (4.1.2) the canonical map Fλ - Sλ factors as

Fλ - Fλ0
- Sλ

[a] - [a] - 〈a〉.

Proposition 4.1.4 (Garnir relations, [G 50, p. 56], cf. [J 78, 7.2]) Let [a] be a λ-tableau. Let a∗j
denote the j-th column of [a], viewed as a tuple. Let j < k. Let ξ ⊆ a∗j and η ⊆ a∗k such that

#η + #ξ > λ′j + 1.

For a subset ζ ⊆ [1, n], let Sζ denote the subgroup of Sn which moves only ζ, i.e. Sζ := CSn([1, n]\ζ).

The element
1

#ξ!#η!

∑
ρ∈Sξ∪η

ερ[a]ρ ∈ Fλ0

is well defined and goes to zero under
Fλ0

- Sλ

[a] - 〈a〉.

Welldefinedness follows from (4.1.2) and from taking right cosets with respect to Sξ × Sη 6 Sξ∪η. To
prove vanishing under Fλ0

- Sλ we may drop the scalar factor.∑
ρ∈Sξ∪η ερ〈a〉ρ =

∑
ρ∈Sξ∪η

∑
σ∈Ca ερεσ{a}σρ

=
∑
σ∈Ca εσ

∑
ρ∈Sξ∪η ερ{a}σρ.

Assume that the m-th row of the tableau a intersects ξσ−1 and ησ−1 nontrivially, i.e. assume that
ι := (aσ)mj = amjσ ∈ ξ and κ := (aσ)mk = amkσ ∈ η. Such an m exists by the assumption on the sum
of the sizes of ξ and η. Note that the transposition (ι κ) is in Sξ∪η. We continue to treat the inner sum.∑

ρ∈Sξ∪η ερ{a}σρ =
∑
ρ∈Sξ∪η, ιρ<κρ

(
ερ{aσ}ρ+ ε(ι κ)ρ{aσ}(ι κ)ρ

)
=
∑
ρ∈Sξ∪η, ιρ<κρ

(
ερ{aσ}ρ+ ε(ι κ)ρ{aσ}ρ

)
= 0.
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4.2 Hooks

The case of hook partitions, corresponding to the easiest nontrivial Specht lattices, plays

the role of a test case, in which, however, it is still possible to work by direct standard-

polytabloid-methods.

Let λk := (n− k + 1, 1k−1) be a hook, k ∈ [1, n].

Note that a λk-polytabloid is determined by its first column (4.1.4). Since the standard
λk-polytabloids, which form a Z-basis of Sλ, have an entry a11 = 1 in the (upper left)
corner, we restrict to the consideration of polytabloids with a11 = 1, arbitrary otherwise,
being standard polytabloids up to sign.

By abuse of notation, we denote for a tuple b = (b2, . . . , bλi) with pairwise
different entries out of [2, n] by 〈b〉 the λk-polytabloid determined by a11 = 1
and by ai1 = bi for i ∈ [2, k]. I.e. the tuple b is the first column except for the
corner. Writing down a λk-polytabloid 〈b〉 in this section implies that b is a
tuple of the form just mentioned.

For a tuple c, x ∈ c, y 6∈ c, we let cx,y denote the tuple arising from c by
substitution of x by y. We denote the tuple concatenated from c and the
single element y by (c, y). We abbreviate 〈(b, y)〉 =: 〈b, y〉.

4.2.1 A long exact sequence

Lemma 4.2.1 Let k ∈ [1, n− 1]. The rank of Sλ
k

is given by

nλk =
(
n−1
k−1

)
.

Lemma 4.2.2 Let k ∈ [1, n− 1]. Let 〈b〉 be a λk-polytabloid, let u ∈ [2, n]\b. We have

〈b〉(1 u) = 〈b〉 −
∑
t∈b

〈bt,u〉.

The Garnir relation (4.1.4) reads

0 =
1

k!

∑
ρ∈Sb∪u ερ〈b〉ρ

= 〈b〉 − 〈b〉(1 u)−
∑

t∈b〈bt,u〉.

This allows to permute the 1 back to the corner at the cost of some other summands with
the 1 in the corner.

The following proposition is a special case of (4.3.31).

Proposition 4.2.3 (the box shift morphism for hooks) Let

Sλ
k -fk Sλ

k+1

〈b〉 -
∑

s∈[2,n]\b〈b, s〉.
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This is a well defined Z-linear map, which induces a ZSn-linear map

Sλ
k

/n -f̄k Sλ
k+1

/n.

Welldefinedness merely means that for an arbitrary polytabloid 〈b〉, its image as given
above and its image as derived from its presentation as a linear combination of standard
polytabloids coincide. But the necessary permutation of the entries of b yields the same
sign on both sides.

We claim that for u ∈ [2, n] we have

(〈b〉(1 u))fk − (〈b〉fk)(1 u) ∈ nSλk+1

.

Case u ∈ b.

(〈b〉(1 u))fk − (〈b〉fk)(1 u) = −〈b〉fk −
∑

s∈[2,n]\b〈b, s〉(1 u)

= −
∑

s∈[2,n]\b〈b, s〉+
∑

s∈[2,n]\b〈b, s〉
= 0.

Case u ∈ [2, n]\b.

(〈b〉(1 u))fk − (〈b〉fk)(1 u)
(4.2.2)

= (〈b〉 −
∑

t∈b〈bt,u〉)fk − (
∑

s∈[2,n]\b〈b, s〉)(1 u)
(4.2.2)

= (
∑

s∈[2,n]\b〈b, s〉)− (
∑

t∈b
∑

s∈[2,n]\bt,u〈bt,u, s〉)
−(
∑

s∈[2,n]\(b∪u)(〈b, s〉 −
∑

t∈b〈bt,u, s〉 − 〈b, u〉)) + 〈b, u〉
= (

∑
s∈[2,n]\b〈b, s〉)− (

∑
t∈b
∑

s∈[2,n]\(b∪u)〈bt,u, s〉)− (
∑

t∈b〈bt,u, t〉)
−(
∑

s∈[2,n]\(b∪u)(〈b, s〉 −
∑

t∈b〈bt,u, s〉 − 〈b, u〉)) + 〈b, u〉
= (

∑
s∈[2,n]\b〈b, s〉) + (

∑
t∈b〈b, u〉)

−(
∑

s∈[2,n]\(b∪u)(〈b, s〉 − 〈b, u〉)) + 〈b, u〉
= (

∑
s∈[2,n]\b〈b, s〉)

−(
∑

s∈[2,n]\(b∪u)〈b, s〉) + (1 + (k − 1) + ((n− 1)− k))〈b, u〉
= (1 + 1 + (k − 1) + ((n− 1)− k))〈b, u〉
= n〈b, u〉.

Proposition 4.2.4 (long exact hook sequence, cf. [P 71, Lemma 2])
The sequence of maps

0 - Sλ
1 -f1

Sλ
2 -f2 · · · -fn−1

Sλ
n - 0

is exact.

We claim that fkfk+1 = 0 for k ∈ [1, n− 2]. Let 〈b〉 ∈ Sλk .

〈b〉fkfk+1 = (
∑

s∈[2,n]\b〈b, s〉)fk+1

=
∑

s∈[2,n]\b
∑

t∈[2,n]\(b∪s)〈b, s, t〉
=
∑

s,t∈[2,n]\b, s 6=t〈b, s, t〉
=
∑

s,t∈[2,n]\b, s>t(〈b, s, t〉+ 〈b, t, s〉)
= 0.

We claim that the image of fk is a pure submodule of Sλ
k+1

of rank
(
n−2
k−1

)
. More precisely,

we claim that the set of polytabloids 〈b〉 with b being a strictly increasing tuple with
entries only in [2, n− 1] is sent to a basis of the image.
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For to see that the image of this set generates the image we consider a tuple c =
(c2, . . . , ck−1) with entries taken from [2, n − 1] and use the equation already shown in
the last step, viz. ∑

s∈[2,n]\c

(〈c, s〉fk) = 0.

For to see that the image of this set is linearly independent and spans a pure sublattice
we write the image of such a polytabloid 〈b〉 as

〈b〉fk = 〈b, n〉+
∑

s∈[2,n]\(b∪n)

〈b, s〉.

Now the rank of the image of fk,
(
n−2
k−1

)
, equals the rank of the kernel of fk+1,

(
n−1
k

)
−
(
n−2
k

)
(4.2.1).

In particular, the rank of the image of f1,
(
n−2

0

)
, equals the rank of Sλ

1
and the rank of

the image of fn−1,
(
n−2
n−2

)
, equals the rank of Sλ

n
.

Remark 4.2.5 I do not know whether there is there a ‘homological reason’ for the occur-
rence of the long exact sequence in (4.2.4). Cf. also [J 78, 24.1].

Corollary 4.2.6 The subring

Λ := {ρ | ρλkfk ≡n fkρλ
k+1

for k ∈ [1, n− 1]} ⊆
∏
λ

Znλ×nλ =: Γ

described by the generic modular morphism exhibited in (4.2.3) has index

|Γ/Λ| = n
1/2

∑
k∈[1,n]

(
n−1
k−1

)2

as abelian groups and contains the image of the embedding of ZSn into Γ via the operations
on the Specht lattices.

Writing down a Z-linear basis for Λ respecting the kernels of the long exact hook sequence
(4.2.4) shows that the index of the quasiblock of Λ which is contained in Zn

λk
×n

λk is

n

(
n−2
k−2

)(
n−2
k−1

)
.

Moreover, the contribution to the index caused by ties between the quasiblock of Λ in
Zn

λk
×n

λk and the quasiblock of Λ in Zn
λk+1×nλk+1 is

n

(
n−2
k−1

)2

.

We calculate the exponent of n for the index of Λ in Γ to be∑
k∈[1,n]

(
n−2
k−2

) (
n−2
k−1

)
+
∑

k∈[1,n−1]

(
n−2
k−1

)2
=

∑
k∈[1,n]

(
n−2
k−2

) (
n−2
k−1

)
+
∑

k∈[1,n]

(
n−2
k−1

)2

= 1/2
∑

k∈[1,n]

(
n−2
k−2

) (
n−2
k−1

)
+ 1/2

∑
k∈[1,n]

(
n−2
k−1

)2

+ 1/2
∑

k∈[1,n]

(
n−2
k−2

) (
n−2
k−1

)
+ 1/2

∑
k∈[1,n]

(
n−2
k−2

)2

= 1/2
∑

k∈[1,n](
(
n−2
k−2

)
+
(
n−2
k−1

)
)
(
n−2
k−1

)
+ 1/2

∑
k∈[1,n]

(
n−2
k−2

)
(
(
n−2
k−1

)
+
(
n−2
k−2

)
)

= 1/2
∑

k∈[1,n]

(
n−1
k−1

) (
n−2
k−1

)
+ 1/2

∑
k∈[1,n]

(
n−2
k−2

) (
n−1
k−1

)
= 1/2

∑
k∈[1,n]

(
n−1
k−1

)2
.

Cf. (S 2.2.2).
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Lemma 4.2.7 For n =: p prime, we obtain

(nλ)p =

{
1 if λ is a hook
p else.

This follows by the hook formula (4.1.1).

Corollary 4.2.8 (an easy case) Keep the notation of (4.2.6). Let p be a prime. Then

(ZSp)[p] = Λ.

Since Λ is a (p)-order (D.2.8), it suffices to show that the indices coincide. The index of
(ZSp)[p] in Γ is (√

p!p!∏
λ n

n2
λ
λ

)
p

=

√
pp!∏

λ nonhook
pn

2
λ

= p1/2
∑
k∈[1,n] n

2
λk

= p
1/2

∑
k∈[1,n]

(
n−1
k−1

)2

.

(1.1.4, 4.2.1, 4.2.7), cf. (4.2.6).

Remark 4.2.9 (4.2.8) implies in particular the well known fact that the principal block of
FpSp is a Brauer tree algebra whose Brauer tree is a line.

Example 4.2.10 Consider (ZS4)[2]. Keep the notation of (S 2.1.1, 4.2.6). Note that we
worked with right lattices, i.e. with rows in Γ. Choosing bases such that the long exact
sequence of fk’s reads, shrunk blockwise, as

0 - S(4) -(0 0 1)
S(3,1) -

(
1 0 0
0 1 0
0 0 0

)
S(2,1,1) -

(
0
0
1

)
S(1,1,1,1) - 0,

we obtain the following description of Λ.

1

f

1

2

e

1

3

4a

f

2 1

4

4

a

e

2 1
5

2

e x2 ≡4 x4

a x4 ≡4 x3

f x3 ≡4 x1

This is not quite in accordance with (S 2.1.1) since we used rationally isomorphic lattices
instead of the Specht modules there. To remedy, one could conjugate the quasiblock 3 here
with, shrunk blockwise,

(
1

4

)
from the right. For full accordance one should check that the

morphisms implicitely appearing there conincide with the morphisms used here, which we
omit, since this would require an examination of the representing matrices in our guiding
examples.
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4.2.2 At the prime 2

The propositions in this subsection are not special cases of (4.3.31). The technical reason
why they work only at the prime 2 is the Garnir relation (4.2.2), used to evaluate 〈b〉(1 u) =
+〈b〉 −

∑
v∈b〈bv,u〉 in case u 6∈ b in contrast to 〈b〉(1 u) = −〈b〉 in case u ∈ b, cases which

may be collected together again modulo 2.

The recipe to find these somehow exceptional morphisms is to ‘genericalize’ examples. I
doubt that there is a uniform method, let alone a single generic morphism covering all the
series exhibited at the prime 2 so far.

‘Exceptional’ refers to the fact that for p > 3 prime, a nonzero morphism from Sλ/p to

Sµ/p implies that λ dominates µ, i.e.
∑
i∈[1,j] λi >

∑
i∈[1,j] µi for all j ∈ [1, n] [J 78, 13.17].

This does not hold for ‘one half’ of the specializations of the following generic morphisms.

Proposition 4.2.11 (the constant sum morphism (7)) Let k, l ∈ [1, n] such that
n − l and k − 1 are even. Let the following Z-linear map of rank 1 be defined on the
standard polytabloids 〈b〉.

Sλ
k -s Sλ

l

〈b〉 -
∑
〈c〉 standard 〈c〉.

This map factors over a ZSn-linear morphism

Sλ
k

/2 -s̄ Sλ
l

/2.

Note that modulo 2 the formula for the image 〈b〉s holds for all admissible tuples b.

We claim that for u ∈ [2, n] and for 〈b〉 standard we have

(〈b〉(1 u))s− (〈b〉s)(1 u) ∈ 2Sλ
l

.

Case u ∈ b.

(〈b〉(1 u))s− (〈b〉s)(1 u) = −
∑
〈c〉 st. 〈c〉 − (

∑
〈c〉 st. 〈c〉)(1 u)

= −
∑
〈c〉 st. 〈c〉+

∑
〈c〉 st., u∈c〈c〉 −

∑
〈c〉 st., u∈[2,n]\c(〈c〉 −

∑
t∈c〈ct,u〉)

≡2

∑
〈c〉 st., u∈[2,n]\c

∑
t∈c〈ct,u〉.

The number of times a standard polytabloid with an entry u in the first column appears
in this sum (coefficient ±1) equals the number of possible replaced entries, which is given
by the even number n− l.

Case u ∈ [2, n]\b.

(〈b〉(1 u))s− (〈b〉s)(1 u) = (〈b〉 −
∑

t∈b〈bt,u〉)s−
∑
〈c〉 st. 〈c〉(1 u)

≡2 (1− (k − 1))
∑
〈c〉 st. 〈c〉+

∑
〈c〉 st., u∈c〈c〉

−
∑
〈c〉 st., u∈[2,n]\c(〈c〉 −

∑
t∈c〈ct,u〉)

≡2 (k − 1)
∑
〈c〉 st. 〈c〉 −

∑
〈c〉 st., u∈[2,n]\c

∑
t∈c〈ct,u〉,

which vanishes modulo 2 since k − 1 as well as n− l are even (cf. the case u ∈ b).
7Cf. [J 78, Th. 24.4].
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Example 4.2.12 For n = 5 we may let k = 3 and l = 3 in (4.2.11). This leads to x7
11 ≡2 x

7
33

implied by tie t in (S 2.2.4) as well as to the single quasiblock ties modulo 2 in quasiblock

7, since, shrunken blockwise, we may write the constant sum morphism as
(

0 0 0
0 0 0
1 0 0

)
. Cf. also

(S 0.6). This example, calculated directly by computer first, convinced me of the relevance
of modular morphisms.

Proposition 4.2.13 (the transposition morphism) Let k ∈ [1, n] be even. Let the
following Z-linear map of rank 1 be defined on the standard polytabloids 〈b〉, where we
denote c to be the increasingly ordered tuple in the first row of 〈b〉, corner excepted, i.e.
c = [2, n]\b as sets.

Sλ
k -z S(λk)′

〈b〉 -
∑

s∈c
∑

t∈b〈cs,t〉.
This map factors over a ZSn-linear morphism

Sλ
k

/2 -z̄ S(λk)′/2.

Note that modulo 2 the formula for the image 〈b〉z holds for all polytabloids consisting of
a 1 in the corner, remaining first column b and remaining first row c, regardless whether
b or c is ordered increasingly.

We claim that for u ∈ [2, n] and for 〈b〉 standard we have

(〈b〉(1 u))z − (〈b〉z)(1 u) ∈ 2Sλ
l

.

Case u ∈ b.
(〈b〉(1 u))z − (〈b〉z)(1 u) = −(

∑
s∈c
∑

t∈b〈cs,t〉)− (
∑

s∈c
∑

t∈b〈cs,t〉(1 u))
= −

∑
s∈c
∑

t∈b〈cs,t〉
−
∑

s∈c
∑

t∈b\u

(
〈cs,t〉 − (

∑
v∈c\s〈(cs,t)v,u〉)− 〈(cs,t)t,u〉

)
+
∑

s∈c〈cs,u〉
≡2

∑
s∈c
∑

t∈b\u

(
(
∑

v∈c\s〈(cs,t)v,u〉) + 〈(cs,t)t,u〉
)

= (
∑

s,v∈c, s 6=v
∑

t∈b\u〈(cs,t)v,u〉) + (k − 2)(
∑

s∈c〈cs,u〉)
= (

∑
s,v∈c, s>v

∑
t∈b\u(〈(cs,t)v,u〉+ 〈(cv,t)s,u〉)) + (k − 2)(

∑
s∈c〈cs,u〉)

= (k − 2)(
∑

s∈c〈cs,u〉).

Case u ∈ c.
(〈b〉(1 u))z − (〈b〉z)(1 u) = (〈b〉 −

∑
v∈b〈bv,u〉)z − (

∑
s∈c
∑

t∈b〈cs,t〉(1 u))
≡2

∑
s∈c
∑

t∈b〈cs,t〉
−
∑

v∈b
∑

s∈cu,v
∑

t∈bv,u〈(cu,v)s,t〉
+
∑

s∈c\u
∑

t∈b〈cs,t〉
−
∑

t∈b

(
〈cu,t〉 − (

∑
v∈c\u〈(cu,t)v,u〉)− 〈(cu,t)t,u〉

)
≡2

∑
v∈b
∑

s∈cu,v
∑

t∈bv,u〈(cu,v)s,t〉
+
∑

t∈b((
∑

v∈c\u〈cv,t〉) + 〈c〉)
=
∑

v∈b
∑

s∈c\u
∑

t∈b\v〈(cu,v)s,t〉
+
∑

v∈b
∑

t∈b\v〈(cu,v)v,t〉
+
∑

v∈b
∑

s∈c\u〈(cu,v)s,u〉
+
∑

v∈b〈(cu,v)v,u〉
+
∑

t∈b
∑

v∈c\u〈cv,t〉
+(k − 1)〈c〉
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=
∑

v,t∈b, v 6=t
∑

s∈c\u〈(cu,v)s,t〉
+
∑

v,t∈b, v 6=t〈cu,t〉
−
∑

v∈b
∑

s∈c\u〈cs,v〉
+(k − 1)〈c〉
+
∑

t∈b
∑

v∈c\u〈cv,t〉
+(k − 1)〈c〉

≡2

∑
v,t∈b, v>t

∑
s∈c\u(〈(cu,v)s,t〉+ 〈(cu,t)s,v〉)

+(k − 2)
∑

t∈b〈cu,t〉
= (k − 2)

∑
t∈b〈cu,t〉.

Proposition 4.2.14 (the two box shift morphism) Let k ∈ [1, n − 2]. Assume n to
be odd. Let the following Z-linear map be defined on the standard polytabloids 〈b〉.

Sλ
k -g Sλ

k+2

〈b〉 -
∑

s,t∈[2,n]\b, s<t〈b, s, t〉.

This map induces a morphism

Sλ
k

/2 -ḡ Sλ
k+2

/2.

Note that the formula for the image 〈b〉g holds for all for all admissible tuples b.

We claim that for u ∈ [2, n] and for 〈b〉 standard we have

(〈b〉(1 u))g − (〈b〉g)(1 u) ∈ 2Sλ
k+2

.

Case u ∈ b.

(〈b〉(1 u))g − (〈b〉g)(1 u) = −
∑

s,t∈[2,n]\b, s<t〈b, s, t〉+
∑

s,t∈[2,n]\b, s<t〈b, s, t〉
= 0.
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Case u 6∈ b.

(〈b〉(1 u))g − (〈b〉g)(1 u) =
∑

s,t∈[2,n]\b, s<t〈b, s, t〉
−
∑

w∈b
∑

s,t∈[2,n]\bw,u, s<t〈bw,u, s, t〉
−
∑

s,t∈[2,n]\(b∪u), s<t(〈b, s, t〉 − (
∑

v∈b〈bv,u, s, t〉)− 〈b, u, t〉 − 〈b, s, u〉)
+
∑

t∈[u+1,n]\b〈b, u, t〉
+
∑

s∈[2,u−1]\b〈b, s, u〉
≡2

∑
w∈b
∑

s,t∈[2,n]\bw,u, s<t〈bw,u, s, t〉
+
∑

s,t∈[2,n]\(b∪u), s<t((
∑

v∈b〈bv,u, s, t〉) + 〈b, u, t〉+ 〈b, s, u〉)
=
∑

w∈b
∑

s,t∈[2,n]\(b∪u), s<t〈bw,u, s, t〉
+
∑

w∈b
∑

t∈[w+1,n]\(b∪u)〈bw,u, w, t〉
+
∑

w∈b
∑

s∈[2,w−1]\(b∪u)〈bw,u, s, w〉
+
∑

s,t∈[2,n]\(b∪u), s<t

∑
v∈b〈bv,u, s, t〉

+
∑

t∈[2,n]\(b∪u) #([2, t− 1]\(b ∪ u))〈b, u, t〉
+
∑

s∈[2,n]\(b∪u) #([s+ 1, n]\(b ∪ u))〈b, s, u〉
≡2

∑
w∈b
∑

s,t∈[2,n]\(b∪u), s<t〈bw,u, s, t〉
+
∑

w∈b
∑

t∈[w+1,n]\(b∪u)〈b, u, t〉
+
∑

w∈b
∑

s∈[2,w−1]\(b∪u)〈b, s, u〉
+
∑

v∈b
∑

s,t∈[2,n]\(b∪u), s<t〈bv,u, s, t〉
+
∑

t∈[2,n]\(b∪u) (#([2, t− 1]\(b ∪ u)) + #([t+ 1, n]\(b ∪ u)))〈b, u, t〉
≡2 (k − 1)

∑
t∈[2,n]\(b∪u)〈b, u, t〉

+
∑

t∈[2,n]\(b∪u)(n− 2− k)〈b, u, t〉
= (n− 3)

∑
t∈[2,n]\(b∪u)〈b, u, t〉.

Proposition 4.2.15 (the two box cancellation morphism) Let k ∈ [3, n]. Let the
following Z-linear map be defined on the standard polytabloids 〈b〉.

Sλ
k -h Sλ

k−2

〈b〉 -
∑

s,t∈b, s<t〈b\{s, t}〉,

where the latter expression is to be read as e.g. (2, 3, 4, 5)\{2, 4} = (3, 5).

This map induces a morphism

Sλ
k

/2 -h̄ Sλ
k−2

/2.

Note that the formula for the image 〈b〉g holds modulo 2 for all admissible tuples b.

We claim that for u ∈ [2, n] and for 〈b〉 standard we have

(〈b〉(1 u))h− (〈b〉h)(1 u) ∈ 2Sλ
k−2

.
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Case u ∈ b.

(〈b〉(1 u))h− (〈b〉h)(1 u) = −
∑

s,t∈b, s<t〈b\{s, t}〉
+
∑

s,t∈b\u, s<t〈b\{s, t}〉
+
∑

s∈[2,u−1]∩b

(
〈b\{s, u}〉 −

∑
v∈b\{s,u}〈(b\{s, u})v,u〉

)
+
∑

t∈[u+1,n]∩b

(
〈b\{u, t}〉 −

∑
v∈b\{u,t}〈(b\{u, t})v,u〉

)
≡2

∑
s∈[2,u−1]∩b

∑
v∈b\{s,u}〈(b\{s, u})v,u〉

+
∑

t∈[u+1,n]∩b
∑

v∈b\{u,t}〈(b\{u, t})v,u〉
≡2

∑
s∈[2,u−1]∩b

∑
v∈b\{s,u}〈b\{s, v}〉

+
∑

t∈[u+1,n]∩b
∑

v∈b\{u,t}〈b\{v, t}〉
=
∑

s,v∈b\u, s 6=v〈b\{s, v}〉
= 2

∑
s,v∈b\u, s<v〈b\{s, v}〉.

Case u 6∈ b.

(〈b〉(1 u))h− (〈b〉h)(1 u) =
∑

s,t∈b, s<t〈b\{s, t}〉
−
∑

v∈b
∑

s,t∈bv,u, s<t〈bv,u\{s, t}〉
−
∑

s,t∈b, s<t

(
〈b\{s, t}〉 −

∑
w∈b\{s,t}〈(b\{s, t})w,u〉

)
= −

∑
v∈b
∑

s,t∈bv,u, s<t〈bv,u\{s, t}〉
+
∑

s,t∈b, s<t
∑

w∈b\{s,t}〈(b\{s, t})w,u〉
= −

∑
v∈b
∑

s,t∈b\v, s<t〈bv,u\{s, t}〉
−
∑

v∈b
∑

s∈([2,u−1]\v)∩b〈bv,u\{s, u}〉
−
∑

v∈b
∑

t∈([u+1,n]\v)∩b〈bv,u\{u, t}〉
+
∑

s,t∈b, s<t
∑

w∈b\{s,t}〈bw,u\{s, t}〉
= −

∑
s,t∈b, s<t

∑
v∈b\{s,t}〈bv,u\{s, t}〉

−
∑

v∈b
∑

s∈([2,u−1]\v)∩b〈b\{s, v}〉
−
∑

v∈b
∑

t∈([u+1,n]\v)∩b〈b\{v, t}〉
+
∑

s,t∈b, s<t
∑

w∈b\{s,t}〈bw,u\{s, t}〉
= −

∑
v∈b
∑

s∈b\v〈b\{s, v}〉
= −2

∑
v,s∈b,v<s〈b\{s, v}〉.

Remark 4.2.16 In the notation of (4.2.11, 4.2.13, 4.2.14, 4.2.15), neither the constant

sum morphism Sλ
k

/2 -s̄ Sλ
l

/2 nor the transposition morphism Sλ
k

/2 -z̄ S(λk)′/2 nor

the two box shift morphism Sλ
k

/2 -ḡ Sλ
k+2

/2 nor the two box cancellation morphism

Sλ
k

/2 -h̄ Sλ
k−2

/2 vanish, since in each case there exists an element in the image with a
nonvanishing coefficient when displayed as linear combination of standard polytabloids.

In the following examples (4.2.17, 4.2.18, 4.2.19) we regard some ties resulting from special-
izations of the generic morphisms exhibited so far.

Example 4.2.17 (the Kronecker quiver appears) Let n = 6. We have the box shift
morphism (4.2.3)

S(4,1,1)/2 -f̄ S(3,1,1,1)/2〈
2
3

〉
-

〈
2
3
4

〉
+
〈

2
3
5

〉
+
〈

2
3
6

〉
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given by the matrix 
1 1 1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0 0 0
1 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1 1 0
0 0 0 1 0 0 1 0 0 1
0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 1 0 0 1 1


with entries in F2, where the standard polytabloids are ordered by their first column lexico-
graphically and the matrix operates on the right on the row vectors representing elements
of the Specht modules.

We dispose of the constant sum morphism (4.2.11)

S(4,1,1)/2 -s̄ S(3,1,1,1)/2〈
2
3

〉
-

〈
2
3
4

〉
+
〈

2
3
5

〉
+
〈

2
3
6

〉
+
〈

2
4
5

〉
+
〈

2
4
6

〉
+
〈

2
5
6

〉
+
〈

3
4
5

〉
+
〈

3
4
6

〉
+
〈

3
5
6

〉
+
〈

4
5
6

〉
given by the matrix 

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

 .
Searching simultaneous bases amounts to search for a normal form for the corresponding
module over the Kronecker quiver. Whereas the situation generalizes to a generic one, I do
not know the generic answer.

In the other direction, we dispose of the transposition morphism (4.2.13)

S(3,1,1,1)/2 -z̄ S(4,1,1)/2〈
2
3
4

〉
-

〈
2
6

〉
+
〈

3
6

〉
+
〈

4
6

〉
+
〈

5
2

〉
+
〈

5
3

〉
+
〈

5
4

〉
given by the matrix 

0 0 1 1 0 1 1 1 1 0
0 1 0 1 1 0 1 1 0 1
0 1 1 0 1 1 0 0 1 1
1 0 0 1 1 1 0 0 1 1
1 0 1 0 1 0 1 1 0 1
1 1 0 0 0 1 1 1 1 0
1 1 1 0 0 0 1 0 1 1
1 1 0 1 0 1 0 1 0 1
1 0 1 1 1 0 0 1 1 0
0 1 1 1 1 1 1 0 0 0

 .
Denote X := S(4,1,1)/2 and Y := S(3,1,1,1)/2. We note that

· · · - X -f̄ Y -z̄ X -f̄ Y - · · ·

is a periodic exact sequence. Let

X ′ := F2〈
〈

3
4

〉
,
〈

3
5

〉
,
〈

3
6

〉
,
〈

4
5

〉
,
〈

4
6

〉
,
〈

5
6

〉
〉 ⊆ X

i.e. let X ′ correspond to the last six rows of the matrix of f̄ given above. X ′ is a complement
to the kernel of f̄ . Let Y ′ be a complement of X ′f̄ in Y . We obtain, identifying X ′ and
X ′f̄ via f̄ and Y ′ and the kernel of f̄ via z̄, the block matrices

(X -f̄ Y ) = (Y ′ ⊕X ′ -
(

0 0
0 1

)
Y ′ ⊕X ′)

(X -s̄ Y ) = (Y ′ ⊕X ′ -
(

0 0
0 s̃

)
Y ′ ⊕X ′)

(Y -z̄ X) = (Y ′ ⊕X ′ -
(

1 0
0 0

)
Y ′ ⊕X ′).

Note that in the chosen basis for X ′ above and the image of this chosen basis - the last six
rows of the matrix for f̄ given above - s̃ has the matrix1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

 .
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Conjugation by 1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 1 1 1 1 1


from the left turns this matrix into 0 0 0 0 0 1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .
Thus, shrinking blockwise and using the basis for X ′ corresponding to this conjugation, we
obtain

f̄ =

[0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
s̄ =

[0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]
z̄ =

[1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]
in which the blocks have sizes 4, 1, 4 and 1 from left to right resp. from top to bottom. We
choose a corresponding integral basis of the Specht lattices (A.2.1). Hence f̄ , s̄ and z̄ yield
the two-quasiblock-ties, where, as in (S 2.3.5), the quasiblock number 9 resp. 10 belongs to
(3, 1, 1, 1) resp. (4, 1, 1), and which we give in the redundant manner in which they result
from the morphisms,

9

4 1 4 1

c

2 a a a

2 a a a

2 a 2 a 2 a b

10

4 1 4 1

c 2 2 2

a b a a

a 2 a a

a 2 a a

a x9 ≡2 x10

b x9 ≡2 x10

c x9 ≡2 x10,

which one may compare to (S 2.3.5). NB this shows the possibility of the existence of
quasiblock ties that involve more than one entry and that are not induced by a modular
endomorphism of the corresponding Specht lattice – we check directly via a computer
calculation that there are no nontrivial endomorphisms modulo 2.

A generic extension of this example is unknown so far.

Example 4.2.18 We use matrices as in (4.2.17).

In case n = 2k − 1, we regard the transposition endomorphism

Sλk/2 -z̄ Sλk/2

of (4.2.13).

For k = 3, n = 5, we obtain 1 = z̄ + s̄, so that the arising quasiblock ties are known from s̄
already (4.2.12).
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For k = 4, n = 7, we let X := S(4,1,1,1)/2. z̄ has as matrix

0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0
1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0
1 1 1 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0
1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0
1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0
1 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0
0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1
0 1 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1
1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0
1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0
1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0
0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1
0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1
0 0 1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 1
0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1
0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1
0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1
0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0


.

We obtain z̄2 = 1, thus (1 + z̄)2 = 0. Let K be the kernel of (1 + z̄), which has dimension
14, let I be its image, which thus has dimension 6 and is contained in K. Let C be a
complement of K in X, let D be a complement of I in K, so that, identifying C with I via
(1 + z̄), we obtain

(X -1+z̄
X) = (C ⊕D ⊕ C -

(
0 0 0
0 0 0
1 0 0

)
C ⊕D ⊕ C).

Cf. (S F.7).

A generic extension of this example is unknown so far.

Example 4.2.19 (a decomposition) We use matrices as in (4.2.17).

Let n = 7. We have the constant sum morphisms (4.2.11)

S(3,1,1,1,1)/2 -s̄1 S(5,1,1)/2

S(5,1,1)/2 -s̄2 S(3,1,1,1,1)/2

S(3,1,1,1,1)/2 -s̄3 S(3,1,1,1,1)/2

S(5,1,1)/2 -s̄4 S(5,1,1)/2,

all of them given by matrices whose entries all equal 1. In particular, s̄1s̄2 = s̄3, s̄2s̄1 = s̄4.

We dispose of the two box cancellation morphism (4.2.15)

S(3,1,1,1,1)/2 -h̄ S(5,1,1)/2〈2
3
4
5

〉
-

〈
2
3

〉
+
〈

2
4

〉
+
〈

2
5

〉
+
〈

3
4

〉
+
〈

3
5

〉
+
〈

4
5

〉
given by the matrix 

1 1 1 0 0 1 1 0 0 1 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 1 0 0 0 0
1 1 0 0 1 1 0 0 1 0 0 1 0 0 0
1 0 1 1 0 0 1 1 0 0 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 0 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 0 0 0 1
0 1 1 1 0 0 0 0 0 1 1 0 1 0 0
0 1 1 0 1 0 0 0 0 1 0 1 0 1 0
0 1 0 1 1 0 0 0 0 0 1 1 0 0 1
0 0 1 1 1 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1 0 1 1 0 1 0 0
0 0 0 0 0 1 1 0 1 1 0 1 0 1 0
0 0 0 0 0 1 0 1 1 0 1 1 0 0 1
0 0 0 0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1


.

We dispose of the two box shift morphism (4.2.14)

S(5,1,1)/2 -ḡ S(3,1,1,1,1)/2〈
2
3

〉
-

〈2
3
4
5

〉
+

〈2
3
4
6

〉
+

〈2
3
4
7

〉
+

〈2
3
5
6

〉
+

〈2
3
5
7

〉
+

〈2
3
6
7

〉
given by the transpose of the matrix of h̄.
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Denote X := S(3,1,1,1,1)/2 and Y := S(5,1,1)/2. s̄3 is an idempotent of X, s̄4 is an idempotent
of Y . We decompose X = I3 ⊕K3 into the the image I3 and kernel K3 of s̄3 =

(
1 0
0 0

)
and

Y = I4 ⊕K4 into the image I4 and the kernel K4 of s̄4 =
(

1 0
0 0

)
.

Note that

(X -h̄ Y ) = (I3 ⊕K3
-

(
0 0
0 α

)
I4 ⊕K4)

(Y -ḡ X) = (I4 ⊕K4
-

(
0 0
0 β

)
I3 ⊕K3)

since s̄3h̄ = 0, h̄s̄4 = 0, s̄4ḡ = 0 and ḡs̄3 = 0. Now h̄ḡ = 1− s̄3 and ḡh̄ = 1− s̄4 yield αβ = 1
and βα = 1.

Moreover,

(X -s̄1 Y ) = (I3 ⊕K3
-

(
γ 0
0 0

)
I4 ⊕K4)

(Y -s̄2 X) = (I4 ⊕K4
-

(
δ 0
0 0

)
I3 ⊕K3)

since (1− s̄3)s̄1 = 0, s̄1(1− s̄4) = 0, (1− s̄4)s̄2 = 0 and s̄2(1− s̄3) = 0. Now s̄1s̄2 = s̄3 and
s̄2s̄1 = s̄4 yield γδ = 1 and δγ = 1.

Identifying K3 and K4 via α and identifying I3 and I4 via γ we therefore obtain the ties

X

2 b

a 2

1 14

Y

2 b

a 2

1 14

a x ≡2 y
b x ≡2 y,

the notation being selfexplanatory.

Cf. [J 78, 23.10.iii], (S F.4). A generic extension of this example is unknown so far.
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4.3 The one-box-shift morphism

We exhibit a generic modular morphism between Specht lattices attached to a combina-
torially related pair of partitions (4.3.31). More specifically, the second partition arises
from the first by a downwards shift of one box. The formula for the map is given by a
linear combination of polytabloids with coefficients polynomial in the combinatorial data,
the occurring polytabloids arising from the one which is to be mapped by shifting an entry
stepwise from the column of the first box position to the second.

The reader might wish to regard the ‘sufficiently large’ example in (S 4.3.5) beforehand.

4.3.1 Preparation

Notation 4.3.1 Let λ be a partition of the natural number n. Let z := λ1. Let g, k ∈
[1, z], g 6 k, such that (g = 1 or λ′g−1 > λ′g) and (λ′k+1 > λ′k+2), in particular, k + 1 6 z.
In other words, we require

µ′i :=


λ′i + 1 for i = g
λ′i − 1 for i = k + 1
λ′i else

to define a partition µ. Pictorially, we move a box from the bottom of the (k + 1)-th
column to the bottom of the g-th column in order to pass from λ to µ (8).

Note that the free ZSn-module on one generator can be realized as having as basis the
λ-tableaux, equipped with the natural operation, thus called F λ (cf. 4.1.1). We will define
ZSn-morphisms from F λ to Sµ as follows. Let

〈 a1 . . . az 〉

denote the µ-polytabloid generated by the tableau

[ a1 . . . az ],

where the ai denote µ′i-tuples giving the columns of the µ-tableau a. The entry in the i-th
column and the j-th row is thus denoted by ai,j. Note that this is a change of notation
compared to (4.1.1), necessary in order to handle columns.

Let e denote a function

[g + 1, k] -e {0, 1}
j - ej.

For example, in case g = 2, k = 5 we write e = 101 for e3 = 1, e4 = 0, e5 = 1. Let,
accordingly, i denote the strictly monotone function

[1, l] -i [g + 1, k]
j - ij

such that l = #e−1(1), j ∈ i[1,l] ⇐⇒ ej = 1, i.e. such that e is the characteristic function
of i. Note that l may be zero. Let i0 := g, il+1 := k + 1, and, consequently, eg := 1,

8C. Ringel suggested to generalize from λ′k+1 = 1 to λ′k+1 arbitrary, as presented here.
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ek+1 := 1. Furthermore, let ej = 0 for j 6∈ [g, k + 1]. To continue our example, we obtain
e1 = 0, e2 = 1, e3 = 1, e4 = 0, e5 = 1, e6 = 1 and ej = 0 for j > 7.

Occasionally, we allow ourselves to treat single elements and tuples of elements as sets,
as long as the notation remains unambiguous.

Recall that we write cs,t for the tuple c with its entry s replaced by t. Denote by cs, the
tuple c with its entry s removed and the following entries shifted by one to close the gap.
(This shift ‘causes’ the sign in the formula below.) Let, for the tableau a and for x ∈ a,
more precisely, x ∈ aj, π(x) be its position in aj minus one, i.e. aj,π(x)+1 = x.

Let fe be the ZSn-morphism defined by

F λ -fe Sµ

[a1 . . . az] -
∑

x1∈ai1 ,..., xl+1∈ail+1

(−1)π(xl+1)

〈
. . . ag . . . a

x1,x2

i1
. . . ax2,x3

i2
. . . a

xl,xl+1

il
. . . a

xl+1,
k+1 . . .

x1

〉

We also write xj ∈ aij as short for x1 ∈ ai1 , . . . , xl+1 ∈ ail+1
in such formulas to indicate

this multiple sum. F λ -fe Sµ in fact is a well defined ZSn-linear map since its defining
operations on the tableau entries depend only on their positions.

For a λ-tableau a, we denote∑
σ∈Sζ

〈 a1 . . . az 〉 σ εσ =: 〈 a1 . . . az 〉 ◦ ζ

where ζ ⊆ a, and where Sζ denotes the symmetric group on the elements of ζ, i.e.
Sζ := CSn([1, n]\ζ). ‘◦’ is to be read ‘moved in’. Analoguously for tableaux, the sum
being formed inside F λ.

For a tuple (s1, s2, . . .), we denote

(s1, . . . , ŝi1 , . . . , ŝi2 , . . .) := (s1, . . . , si1−1, si1+1, . . . , si2−1, si2+1, . . .).

In this section, the variable p is used as an index, which is not a prime number in general.

Lemma 4.3.2 The kernel of

F λ - Sλ

[a1 . . . az] - 〈a1 . . . az〉

is generated over ZSn by the one-step Garnir relations and by the signed column
transpositions.

One-step Garnir relations are elements of the form

Ga,ξ,η :=
∑

σ∈Sξ×Sη\Sξ∪η

[a1 . . . aj aj+1 . . . az] σεσ,

where j ∈ [1, k], ξ ⊆ aj, η ⊆ aj+1, ξ + η = #aj + 1.

Signed column transpositions are elements of the form

[a1 . . . aj . . . az] + [a1 . . . aj . . . az](s t),
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where s, t ∈ aj, s 6= t.

Modulo signed column transpositions a one-step Garnir relation can be written more con-
veniently as

Ga,ξ,η =
1

#ξ!#η!
[a1 . . . aj aj+1 . . . az] ◦ (ξ ∪ η).

The usual proof - usually phrased in terms of Sλ - that the standard tableaux generate
Z-linearly the module (F λ modulo one-step Garnir relations and modulo signed column
transpositions) suffices to prove the lemma, since therefore (F λ modulo these relations),
mapping onto Sλ (4.1.4), has the same rank over Z. We will give this usual proof, working
already in F λ

0 := (F λ modulo signed column transpositions, i.e. modulo signed column
permutations).

We order the tableaux such that for two tableaux the largest entry which lies in different
columns decides their ordering in such a way that in the smaller tableau this element lies
in a larger numbered column, i.e. further to the right. This leaves us with a total order in
the canonical Z-basis of F λ

0 , over which we perform an induction. The smallest tableau
is standard (up to column permutation).

Assume, after ordering the columns of the tableau a increasingly from top to bottom, that
a is not standard because the entry c in the j-th column aj is larger than the entry d in the
(j + 1)-th column aj+1, where both c and d lie in the t-th row. Let ξ := (aj,t, . . . , aj,λ′j),

let η := (aj+1,1, . . . , aj+1,t). Note aj+1,1 < · · · < aj+1,t = d < c = aj,t < · · · < aj,λ′j .
All summands occurring in Ga,ξ,η not equal to a modulo column permutation are smaller
than a, since the largest entry being moved out of its column is moved to the right, for it
cannot be a member of η. a itself occurs in Ga,ξ,η with coefficient 1.

Lemma 4.3.3 The signed column transpositions vanish under fe (4.3.1).

Let s, t ∈ ap, s 6= t. We have to consider the case ep = 1 only.

Case p ∈ [g + 1, k], i.e. p = iu, u ∈ [1, l] (the calculation is valid also for u = 1).

∑
xj∈aij

(−1)π(xl+1)

〈
. . . ag . . . a

xu−1,xu
iu−1

. . . a
xu,xu+1

iu
. . .

x1

〉
(s t)

= −
∑

xj∈aij , s 6=xu, t 6=xu

(−1)π(xl+1)
〈
. . . a

xu−1,xu
iu−1

. . . a
xu,xu+1

iu
. . .
〉

+
∑

xj∈aij , j 6=u

(−1)π(xl+1)
〈
. . . a

xu−1,t
iu−1

. . . (a
s,xu+1

iu
)t,s . . .

〉
+

∑
xj∈aij , j 6=u

(−1)π(xl+1)
〈
. . . a

xu−1,s
iu−1

. . . (a
t,xu+1

iu
)s,t . . .

〉
= −

∑
xj∈aij , s 6=xu, t 6=xu

(−1)π(xl+1)
〈
. . . a

xu−1,xu
iu−1

. . . a
xu,xu+1

iu
. . .
〉

−
∑

xj∈aij , j 6=u

(−1)π(xl+1)
〈
. . . a

xu−1,t
iu−1

. . . a
t,xu+1

iu
. . .
〉

−
∑

xj∈aij , j 6=u

(−1)π(xl+1)
〈
. . . a

xu−1,s
iu−1

. . . a
s,xu+1

iu
. . .
〉

= −
∑
xj∈aij

(−1)π(xl+1)

〈
. . . ag . . . a

xu−1,xu
iu−1

. . . a
xu,xu+1

iu
. . .

x1

〉
.
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Case p = k + 1 = il+1 (the calculation is valid also for l = 0).

∑
xj∈aij

(−1)π(xl+1)

〈
. . . ag . . . a

xl,xl+1

il
. . . a

xl+1,
il+1

. . .

x1

〉
(st)

= −
∑

xj∈aij , s 6=xl+1, t 6=xl+1

(−1)π(xl+1)
〈
. . . a

xl,xl+1

il
. . . a

xl+1,
il+1

. . .
〉

+
∑

xj∈aij , j 6=l+1

(−1)π(s)
〈
. . . axl,til

. . . (as,il+1
)t,s . . .

〉
+

∑
xj∈aij , j 6=l+1

(−1)π(t)
〈
. . . axl,sil

. . . (at,il+1
)s,t . . .

〉
= −

∑
xj∈aij , s 6=xl+1, t 6=xl+1

(−1)π(xl+1)
〈
. . . a

xl,xl+1

il
. . . a

xl+1,
il+1

. . .
〉

+
∑

xj∈aij , j 6=l+1

(−1)π(s)+(π(t)−π(s)+1)
〈
. . . axl,til

. . . at,il+1
. . .
〉

+
∑

xj∈aij , j 6=l+1

(−1)π(t)+(π(s)−π(t)+1)
〈
. . . axl,sil

. . . as,il+1
. . .
〉

= −
∑
xj∈aij

(−1)π(xl+1)

〈
. . . ag . . . a

xl,xl+1

il
. . . a

xl+1,
il+1

. . .

x1

〉
.

Case p = g. Nothing to do.

If the moved subset is too small for Garnir by one box, we still have the

Lemma 4.3.4 Consider the µ-polytabloid

〈 a1 . . . az 〉.

Let ξ ⊂ ap, ∅ 6= η ⊆ aq, p < q, such that #ξ + #η = #ap. Choosing x ∈ ap\ξ and y ∈ η we obtain

〈 . . . ap . . . aq . . . 〉 ◦ (ξ ∪ η)

=
#η

#ξ + 1
〈 . . . ax,yp . . . ay,xq . . . 〉 ◦ (ξ ∪ η).

The Garnir relations in Sµ (4.1.4) give

0 = 〈 . . . ap . . . aq . . . 〉 ◦ (ξ ∪ x ∪ η)

=
∑

w∈ξ∪x∪η

∑
σ∈Sξ∪x∪η, wσ=x

〈 . . . ap . . . aq . . . 〉 σ εσ

=
∑
w∈ξ

∑
σ∈Sξ∪x∪η, wσ=x

〈 . . . ap . . . aq . . . 〉 σ εσ

+ 〈 . . . ap . . . aq . . . 〉 ◦ (ξ ∪ η)

+
∑
w∈η\y

∑
σ∈Sξ∪x∪η, wσ=x

〈 . . . ap . . . aq . . . 〉 σ εσ

+
∑

σ∈Sξ∪x∪η, yσ=x

〈 . . . ap . . . aq . . . 〉 σ εσ
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=
∑
w∈ξ

∑
σ′∈Sξ∪η

〈 . . . ap . . . aq . . . 〉 σ′ εσ′ (via σ′ = (wx)σ)

+ 〈 . . . ap . . . aq . . . 〉 ◦ (ξ ∪ η)

+
∑
w∈η\y

∑
σ′∈Sξ∪x∪η, yσ′=x

〈 . . . ap . . . aq . . . 〉 σ′ εσ′ (via σ′ = (wy)σ)

+
∑

σ∈Sξ∪x∪η, yσ=x

〈 . . . ap . . . aq . . . 〉 σ εσ

= (#ξ + 1) 〈 . . . ap . . . aq . . . 〉 ◦ (ξ ∪ η)

+ #η
∑

σ∈Sξ∪x∪η, yσ=x

〈 . . . ap . . . aq . . . 〉 σ εσ

= (#ξ + 1) 〈 . . . ap . . . aq . . . 〉 ◦ (ξ ∪ η)

− #η
∑

σ′∈Sξ∪η

〈 . . . ax,yp . . . ay,xq . . . 〉 σ′ εσ′ (via σ′ = (xy)σ)

Blowing this up a bit, we obtain the

Lemma 4.3.5 Consider the µ-polytabloid

〈 a1 . . . az 〉.

Let ξ ⊆ ap, η ⊆ aq, p < q, such that #ξ + #η = #ap. Denote ξ̄ := ap\ξ. Then

〈 . . . ap . . . aq . . . 〉 ◦ (ξ ∪ η)

= #ξ!#η! 〈 . . . aξ̄,ηp . . . aη,ξ̄q . . . 〉.

where the tuple substition in the latter expression is to be understood as having fixed a bijection ξ̄ -∼ η
responsible for both substitutions. We will use this notation whenever using this lemma directly or indi-
rectly.

〈 . . . ap . . . aq . . . 〉 ◦ (ξ ∪ η)
(4.3.4)

= #η
#ξ+1 〈 . . . ax,yp . . . ay,xq . . . 〉 ◦ (ξ ∪ η)

(4.3.4)
= #η(#η−1)

(#ξ+1)(#ξ+2) 〈 . . . (ax,yp )x
′,y′ . . . (ay,xq )y

′,x′ . . . 〉 ◦ (ξ ∪ η)
(4.3.4)

= . . .
(4.3.4)

= #η!#ξ!
#ap! 〈 . . . aξ̄,ηp . . . aη,ξ̄q . . . 〉 ◦ (ξ ∪ η)

= #η!#ξ! 〈 . . . aξ̄,ηp . . . aη,ξ̄q . . . 〉.

So that in case the moved subset would be large enough for Garnir, but is deformed by one box, we
obtain the

Lemma 4.3.6 Consider the µ-polytabloid

〈 a1 . . . az 〉.

Let w ∈ ar, ξ ⊆ ap, η ⊆ aq, r < p < q, such that #ξ + #η = #ap. Denote ξ̄ := ap\ξ. Then

〈 . . . ar . . . ap . . . aq . . . 〉 ◦ (w ∪ ξ ∪ η)

=
(

#ap
#ξ

)−1

〈 . . . ar . . . aξ̄,ηp . . . aη,ξ̄q . . . 〉 ◦ (w ∪ ξ ∪ η).
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〈 . . . ar . . . ap . . . aq . . . 〉 ◦ (w ∪ ξ ∪ η)

= 〈 . . . ar . . . ap . . . aq . . . 〉 ◦ (ξ ∪ η)

−
∑
x∈ξ
〈 . . . aw,xr . . . ax,wp . . . aq . . . 〉 ◦ (w ∪ (ξ\x) ∪ η)

−
∑
y∈η
〈 . . . aw,yr . . . ap . . . ay,wq . . . 〉 ◦ (w ∪ ξ ∪ (η\y))

(4.3.5)
= #ξ!#η!

(
〈 . . . ar . . . aξ̄,ηp . . . aη,ξ̄q . . . 〉

−
∑
x∈ξ
〈 . . . aw,xr . . . (ax,wp )ξ̄,η . . . aη,ξ̄q . . . 〉

−
∑
y∈η
〈 . . . aw,yr . . . aξ̄,η

y,w

p . . . (ay,wq )η
y,w,ξ̄ . . . 〉

)
= #ξ!#η!

(
〈 . . . ar . . . aξ̄,ηp . . . aη,ξ̄q . . . 〉

−
∑
x∈ξ
〈 . . . aw,xr . . . (aξ̄,ηp )x,w . . . aη,ξ̄q . . . 〉

−
∑
y∈η
〈 . . . aw,yr . . . (aξ̄,ηp )y,w . . . aη,ξ̄q . . . 〉

)
=

#ξ!#η!

#ap!
〈 . . . ar . . . aξ̄,ηp . . . aη,ξ̄q . . . 〉 ◦ (w ∪ aξ̄,ηp )

In case we augment this subset by one box, Garnir applies again, so that we dispose of the

Lemma 4.3.7 Consider the µ-polytabloid

〈 a1 . . . az 〉.

Let w ∈ ar, ξ ⊆ ap, η ⊆ aq, r < p < q, such that #ξ + #η = #ap + 1. Denote ξ̄ := ap\ξ. Then

〈 . . . ar . . . ap . . . aq . . . 〉 ◦ (w ∪ ξ ∪ η) = 0.

〈 . . . ar . . . ap . . . aq . . . 〉 ◦ (w ∪ ξ ∪ η)

= 〈 . . . ar . . . ap . . . aq . . . 〉 ◦ (ξ ∪ η)

−
∑
x∈ξ
〈 . . . aw,xr . . . ax,wp . . . aq . . . 〉 ◦ (w ∪ (ξ\x) ∪ η)

−
∑
y∈η
〈 . . . aw,yr . . . ap . . . ay,wq . . . 〉 ◦ (w ∪ ξ ∪ (η\y))

Garnir, (4.1.4)
= 0−

∑
x∈ξ

0−
∑
y∈η

0.

Finally, a reindexing of a signed sum yields the

Remark 4.3.8 Consider the µ-polytabloid

〈 a1 . . . az 〉.

Let ζ ⊆ a, σ ∈ Sζ . Then

〈 . . . ap . . . aq . . . 〉 ◦ ζ
= εσ 〈 . . . ap . . . aq . . . 〉 σ ◦ ζ.

We will make use of this fact in composition with column permutations not necessarily within ζ.
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4.3.2 Strategy

Orientation 4.3.9
Our aim is to find a linear combination of the maps fe as defined in (4.3.1)

F λ -
f :=

∑
e uefe

Sµ,

ue ∈ Z, e running over the maps [g + 1, k] -
e {0, 1}, which factors as

F λ -f Sµ

? ?

Sλ - Sµ/m,

where m denotes the length of the path covered by the shifted box, i.e.

m := 1 + (k + 1− g) + (λ′g − λ′k+1).

This integer m, unfortunately, comes out of the calculation only, a priori there is no reason

for it to occur.

Suppose given some fe (4.3.1) and some one-step Garnir relation Ga,ξ,η for a
λ-tableau a and for ξ ⊆ ap, η ⊆ ap+1, p ∈ [1, z − 1], #ξ + #η = #ap + 1 (4.3.2).

We denote

#j :=

{
λ′j = #aj for j 6= g

λ′j + 1 = #aj + 1 for j = g.

We have to calculate the images of the one-step Garnir relations under fe (4.3.1) in case-
by-case analysis, i.e. we have to evaluate the expression

Ga,ξ,ηfe =
1

#ξ!#η!

∑
xj∈aij

〈
. . . ag . . . ax1,x2

i1
. . . a

xl,xl+1

il
. . . a

xl+1,
k+1 . . .

x1

〉
◦ (ξ ∪ η)

in order to be able to exhibit coefficients ue such that
∑

e ueGa,ξ,ηfe ∈ mSµ (4.3.2).

We have to distinguish eleven cases.

(I) ep = 1, ep+1 = 1. Let iν := p.

(i) ν = 0 6= l.

(ia) ν = 0 = l, i.e. g = i0, g + 1 = k + 1 = i1.

(ii) ν ∈ [1, l − 1].

(iii) ν = l 6= 0.

(II) ep = 1, ep+1 = 0. Let iν := p.
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(i) ν = 0.

(ii) ν ∈ [1, l].

(iii) ν = l + 1.

(III) ep = 0, ep+1 = 1. Let iν := p+ 1.

(i) g > 2, ν = 0.

(ii) ν ∈ [1, l].

(iii) ν = l + 1.

(IV) ep = 0, ep+1 = 0.

We continue to denote ξ̄ = ap\ξ, η̄ = ap+1\η.

Notation 4.3.10
Suppose given ξ ⊆ ag, η ⊆ ag+1, y ∈ η, such that #ξ + #η = #g, and a strictly increasingly ordered
tuple of t elements (s1, . . . , st) ⊆ [g + 2, k], possibly empty. Let st+1 := k + 1. Let

A(s1, . . . , st)
y
ξ,η :=

∑
xj∈asj , j∈[1,t+1]

(−1)π(xt+1)

〈
. . . a

ξ̄,η\y
g (a

η\y,ξ̄
g+1 )y,x1 . . . ax1,x2

s1 . . . a
xt+1,
st+1 . . .

y

〉
.

Alternatively, we admit, with [g + 1, k] -
e
{0, 1} such that ej = 1 ⇐⇒ j ∈ s[1,t], i.e. with e being the

characteristic function of s, the notation

Aye,ξ,η := A(s1, . . . , st)
y
ξ,η.

Furthermore, we let

A′yξ,η := (−1)π(y)

〈
. . . a

ξ̄,η\y
g (a

η\y,ξ̄
g+1 )y, . . .

y

〉
(6= A()yξ,η).

Notation 4.3.11
Suppose given ξ ⊆ ap, η ⊆ ap+1, p ∈ [g + 1, k], y ∈ η, such that #ξ + #η = #p + 1.

First, assume p ∈ [g + 1, k − 1]. Suppose given a strictly increasingly ordered tuple of t elements
(s1, . . . , st) ⊆ [g + 1, k]\{p, p+ 1}, possibly empty. Let st+1 := k + 1. Let

B(s1, . . . , st)
y
ξ,η

:=
1

#p!

∑
xj∈asj , j∈[1,t+1]

(−1)π(xt+1)

〈
. . . ag . . . a

xu−1,y
su−1 . . . a

ξ̄,η\y
p (a

η\y,ξ̄
p+1 )y,xu . . . a

xu,xu+1
su . . . a

xt+1,
st+1 . . .

x1

〉
◦ (ξ ∪ η).

Second, assume p = k. Suppose given a strictly increasingly ordered tuple of t elements (s1, . . . , st) ⊆
[g + 1, k − 1], possibly empty. Let

B′(s1, . . . , st)
y
ξ,η

:=
1

#k!

∑
xj∈asj , j∈[1,t]

(−1)π(y)

〈
. . . ag . . . a

x1,x2
s1 . . . axt,yst . . . a

ξ̄,η\y
k (a

η\y,ξ̄
k+1 )y, . . .

x1

〉
◦ (ξ ∪ η).

Alternatively, we admit, with [g + 1, k] -
e
{0, 1} such that ej = 1 ⇐⇒ j ∈ s[1,t], i.e. with e being the

characteristic function of s, the notation

Bye,ξ,η := B(s1, . . . , st)
y
ξ,η

B′ye,ξ,η := B′(s1, . . . , st)
y
ξ,η.

Remark 4.3.12 The expressions in (4.3.10, 4.3.11) are in fact independent of the choice
of y ∈ η. However, this will not play a role.
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4.3.3 Calculations

We keep all previous notation, e.g. ξ̄ = ap\ξ, η̄ = ap+1\η.

Calculation 4.3.13 We treat the case (I.i), i.e. ξ ⊆ ag = ai0 , η ⊆ ag+1 = ai1 , l 6= 0, #ξ + #η = #g.
Choose y ∈ η. We claim that

Ga,ξ,ηfe = (1 + #g −#g+1)A(i2, . . . , il)
y
ξ,η.

In order to evaluate

Ga,ξ,ηfe =
1

#ξ!#η!

∑
xj∈aij

(−1)π(xl+1)

〈
. . . ag ax1,x2

i1
. . .

x1

〉
◦ (ξ ∪ η)

we distinguish two subcases for the occurring summands.

Subcase x1 ∈ η.

∑
x1∈η

〈
. . . ag ax1,x2

i1
. . .

x1

〉
◦ (ξ ∪ η)

(4.3.8),σ = (x1 y x2)
=

∑
x1∈η

〈
. . . ag ay,x2

i1
. . .

y

〉
◦ (ξ ∪ η)

(4.3.5)
= (#ξ + 1)!(#η − 1)!#η

〈
. . . a

ξ̄,η\y
g (ay,x2

i1
)η\y,ξ̄ . . .

y

〉

Subcase x1 ∈ η̄.

∑
x1∈η̄

〈
. . . ag ax1,x2

i1
. . .

x1

〉
◦ (ξ ∪ η)

(4.3.5)
= #ξ!#η!

∑
x1∈η̄

〈
. . . a

ξ̄,η\y
g ((ax1,x2

i1
)η\y,ξ̄)y,x1 . . .

y

〉

= −#ξ!#η!
∑
x1∈η̄

〈
. . . a

ξ̄,η\y
g (ay,x2

i1
)η\y,ξ̄ . . .

y

〉

= −#ξ!#η!(#i1 −#g + #ξ)

〈
. . . a

ξ̄,η\y
g (ay,x2

i1
)η\y,ξ̄ . . .

y

〉

Altogether, we obtain

1

#ξ!#η!

∑
xj∈aij

(−1)π(xl+1)

〈
. . . ag ax1,x2

i1
. . .

x1

〉
◦ (ξ ∪ η)

= (1 + #g −#i1)
∑

xj∈aij , j 6=1

(−1)π(xl+1)

〈
. . . a

ξ̄,η\y
g (ay,x2

i1
)η\y,ξ̄ . . .

y

〉
(4.3.10)

= (1 + #g −#i1)A(i2, . . . , il)
y
ξ,η.

Calculation 4.3.14 We treat the case (I.ia), i.e. g = k, ξ ⊆ ag = ai0 , η ⊆ ag+1 = ai1 = ak+1,
#ξ + #η = #g. Choose y ∈ η. We claim that

Ga,ξ,ηfe = (1 + #g −#g+1)A′yξ,η.

In order to evaluate

Ga,ξ,ηfe =
1

#ξ!#η!

∑
x1∈ai1

(−1)π(x1)

〈
. . . ag ax1,

i1
. . .

x1

〉
◦ (ξ ∪ η)
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we distinguish two subcases for the occurring summands.

Subcase x1 ∈ η.

∑
x1∈η

(−1)π(x1)

〈
. . . ag ax1,

i1
. . .

x1

〉
◦ (ξ ∪ η)

(4.3.8),σ = (x1 y)
=

∑
x1∈η

(−1)π(y)

〈
. . . ag ay,i1 . . .

y

〉
◦ (ξ ∪ η)

(4.3.5)
= (−1)π(y)(#ξ + 1)!(#η − 1)!#η

〈
. . . a

ξ̄,η\y
g (ay,i1)η\y,ξ̄ . . .

y

〉

Subcase x1 ∈ η̄.

∑
x1∈η̄

(−1)π(x1)

〈
. . . ag ax1,

i1
. . .

x1

〉
◦ (ξ ∪ η)

(4.3.5)
= #ξ!#η!

∑
x1∈η̄

(−1)π(x1)

〈
. . . a

ξ̄,η\y
g ((ax1,

i1
)η\y,ξ̄)y,x1 . . .

y

〉

= −#ξ!#η!
∑
x1∈η̄

(−1)π(y)

〈
. . . a

ξ̄,η\y
g (ay,i1)η\y,ξ̄ . . .

y

〉

= −(−1)π(y)#ξ!#η!(#i1 −#g + #ξ)

〈
. . . a

ξ̄,η\y
g (ay,i1)η\y,ξ̄ . . .

y

〉

Altogether, we obtain

1

#ξ!#η!

∑
x1∈ai1

(−1)π(x1)

〈
. . . ag ax1,

i1
. . .

x1

〉
◦ (ξ ∪ η)

= (1 + #g −#i1)(−1)π(y)

〈
. . . a

ξ̄,η\y
g (ay,i1)η\y,ξ̄ . . .

y

〉
(4.3.10)

= (1 + #g −#i1)A′yξ,η.

Calculation 4.3.15 We treat the case (I.ii), i.e. ξ ⊆ ap = aiν , η ⊆ ap+1 = aiν+1
, ν ∈ [1, l − 1],

#ξ + #η = #iν + 1. Choose x ∈ ξ, y ∈ η. We claim that

Ga,ξ,ηfe = −(1 + #p −#p+1)B(i1, . . . , îν , îν+1, . . . , il)
y
ξ,η.

In order to evaluate

Ga,ξ,ηfe =
1

#ξ!#η!

∑
xj∈aij

(−1)π(xl+1) 〈 . . . axν−1,xν
iν−1

. . . a
xν ,xν+1

iν
a
xν+1,xν+2

iν+1
. . . 〉 ◦ (ξ ∪ η)

we distinguish four subcases for the occurring summands.

The subcases xν ∈ ξ̄, xν+1 ∈ η as well as xν ∈ ξ̄, xν+1 ∈ η̄ yield zero summands by the Garnir relations
(4.1.4).

Subcase xν ∈ ξ, xν+1 ∈ η.∑
xν∈ξ

∑
xν+1∈η

〈 . . . axν−1,xν
iν−1

. . . a
xν ,xν+1

iν
a
xν+1,xν+2

iν+1
. . . 〉 ◦ (ξ ∪ η)

(4.3.8),σ = (xν+1 y xν+2)(xν x y)
=

∑
xν∈ξ

∑
xν+1∈η

〈 . . . axν−1,x
iν−1

. . . ax,yiν a
y,xν+2

iν+1
. . . 〉 ◦ (ξ ∪ η)

(4.3.6)
= #ξ#η

(
#iν
#ξ

)−1

〈 . . . axν−1,x
iν−1

. . . (ax,yiν )ξ̄,η\y (a
y,xν+2

iν+1
)η\y,ξ̄ . . . 〉 ◦ (ξ ∪ η),
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where the (4.3.8)-step remains true, mutatis mutandis, for xν = x or xν+1 = y or both. Similarly further
down, without being explicitely mentioned.

Subcase xν ∈ ξ, xν+1 ∈ η̄.∑
xν∈ξ

∑
xν+1∈η̄

〈 . . . axν−1,xν
iν−1

. . . a
xν ,xν+1

iν
a
xν+1,xν+2

iν+1
. . . 〉 ◦ (ξ ∪ η)

(4.3.8),σ = (xν xxν+1)
=

∑
xν∈ξ

∑
xν+1∈η̄

〈 . . . axν−1,x
iν−1

. . . a
x,xν+1

iν
a
xν+1,xν+2

iν+1
. . . 〉 ◦ (ξ ∪ η)

(4.3.6)
=

(
#iν

#ξ−1

)−1 ∑
xν∈ξ

∑
xν+1∈η̄

〈 . . . axν−1,x
iν−1

. . . ((a
x,xν+1

iν
)ξ̄,η\y)xν+1,y ((a

xν+1,xν+2

iν+1
)η\y,ξ̄)y,xν+1 . . . 〉 ◦ (ξ ∪ η)

= −#ξ#η̄

(
#iν

#ξ−1

)−1

〈 . . . axν−1,x
iν−1

. . . (ax,yiν )ξ̄,η\y (a
y,xν+2

iν+1
)η\y,ξ̄ . . . 〉 ◦ (ξ ∪ η)

Altogether, we obtain thus

Ga,ξ,ηfe

= #ξ−#η̄
#iν !

∑
xj∈aij , j 6=ν,ν+1

(−1)π(xl+1) 〈 . . . axν−1,x
iν−1

. . . (ax,yiν )ξ̄,η\y (a
y,xν+2

iν+1
)η\y,ξ̄ . . . 〉 ◦ (ξ ∪ η)

(4.3.8),σ = (x y)
= − 1+#iν−#iν+1

#iν !

∑
xj∈aij , j 6=ν,ν+1

(−1)π(xl+1) 〈 . . . axν−1,y
iν−1

. . . a
ξ̄,η\y
iν

(a
y,xν+2

iν+1
)η\y,ξ̄ . . . 〉 ◦ (ξ ∪ η)

(4.3.11)
= −(1 + #iν −#iν+1

)B(i1, . . . , îν , îν+1, . . . , il)
y
ξ,η.

Calculation 4.3.16 We treat the case (I.iii), i.e. ξ ⊆ ak = ail , η ⊆ ak+1 = ail+1
, l 6= 0, #ξ + #η =

#k + 1. Choose x ∈ ξ, y ∈ η. We claim that

Ga,ξ,ηfe = −(1 + #k −#k+1)B′(i1, . . . , il−1)yξ,η.

In order to evaluate

Ga,ξ,ηfe =
1

#ξ!#η!

∑
xj∈aij

(−1)π(xl+1) 〈 . . . axl−1,xl
il−1

. . . a
xl,xl+1

il
a
xl+1,
il+1

. . . 〉 ◦ (ξ ∪ η)

we distinguish four subcases for the occurring summands.

The subcases xl ∈ ξ̄, xl+1 ∈ η as well as xl ∈ ξ̄, xl+1 ∈ η̄ yield zero summands by the Garnir relations
(4.1.4).

Subcase xl ∈ ξ, xl+1 ∈ η.∑
xl∈ξ

∑
xl+1∈η

(−1)π(xl+1) 〈 . . . axl−1,xl
il−1

. . . a
xl,xl+1

il
a
xl+1,
il+1

. . . 〉 ◦ (ξ ∪ η)

(4.3.8),σ = (xl+1 y)(xl x y)
=

∑
xl∈ξ

∑
xl+1∈η

(−1)π(y) 〈 . . . axl−1,x
il−1

. . . ax,yil ay,il+1
. . . 〉 ◦ (ξ ∪ η)

(4.3.6)
= (−1)π(y)

#ξ#η

(
#il
#ξ

)−1

〈 . . . axl−1,x
il−1

. . . (ax,yil )ξ̄,η\y (ay,il+1
)η\y,ξ̄ . . . 〉 ◦ (ξ ∪ η)

Subcase xl ∈ ξ, xl+1 ∈ η̄.∑
xl∈ξ

∑
xl+1∈η̄

(−1)π(xl+1) 〈 . . . axl−1,xl
il−1

. . . a
xl,xl+1

il
a
xl+1,
il+1

. . . 〉 ◦ (ξ ∪ η)

(4.3.8),σ = (xl xxl+1)
=

∑
xl∈ξ

∑
xl+1∈η̄

(−1)π(xl+1) 〈 . . . axl−1,x
il−1

. . . a
x,xl+1

il
a
xl+1,
il+1

. . . 〉 ◦ (ξ ∪ η)

(4.3.6)
=

(
#il

#ξ−1

)−1 ∑
xl∈ξ

∑
xl+1∈η̄

(−1)π(xl+1) 〈 . . . axl−1,x
il−1

. . . ((a
x,xl+1

il
)ξ̄,η\y)xl+1,y ((a

xl+1,
il+1

)η\y,ξ̄)y,xl+1 . . . 〉 ◦ (ξ ∪ η)

= −(−1)π(y)
#ξ#η̄

(
#il

#ξ−1

)−1

〈 . . . axl−1,x
il−1

. . . (ax,yil )ξ̄,η\y (ay,il+1
)η\y,ξ̄ . . . 〉 ◦ (ξ ∪ η)
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Altogether, we obtain thus

Ga,ξ,ηfe

= #ξ−#η̄
#il

!

∑
xj∈aij , j6l−1

(−1)π(y) 〈 . . . axl−1,x
il−1

. . . (ax,yil )ξ̄,η\y (ay,il+1
)η\y,ξ̄ . . . 〉 ◦ (ξ ∪ η)

(4.3.8),σ = (x y)
= − 1+#il

−#il+1

#il
!

∑
xj∈aij , j6l−1

(−1)π(y) 〈 . . . axl−1,y
il−1

. . . a
ξ̄,η\y
il

(ay,il+1
)η\y,ξ̄ . . . 〉 ◦ (ξ ∪ η)

(4.3.11)
= −(1 + #il −#il+1

)B′(i1, . . . , il−1)yξ,η.

Calculation 4.3.17 We treat the case (II.i), i.e. ξ ⊆ ag = ai0 , η ⊆ ag+1, eg+1 = 0, #ξ + #η = #g.
Choose y ∈ η. We claim that

Ga,ξ,ηfe = A(i1, . . . , il)
y
ξ,η.

1
#ξ!#η!

∑
xj∈aij

(−1)π(xl+1)

〈
. . . ag ag+1 . . . ax1,x2

i1
. . .

x1

〉
◦ (ξ ∪ η)

(4.3.5)
=

∑
xj∈aij

(−1)π(xl+1)

〈
. . . a

ξ̄,η\y
g (a

η\y,ξ̄
g+1 )y,x1 . . . ax1,x2

i1
. . .

y

〉
(4.3.10)

= A(i1, . . . , il)
y
ξ,η.

Calculation 4.3.18 We treat the case (II.ii), i.e. ξ ⊆ ap = aiν , ν ∈ [1, l], η ⊆ ap+1, ep+1 = 0,
#ξ + #η = #iν + 1. Choose y ∈ η. We claim that

Ga,ξ,ηfe = −B(i1, . . . , îν , . . . , il)
y
ξ,η.

1
#ξ!#η!

∑
xj∈aij

(−1)π(xl+1) 〈 . . . axν−1,xν
iν−1

. . . a
xν ,xν+1

iν
ap+1 . . . 〉 ◦ (ξ ∪ η)

Garnir, (4.1.4)
= 1

#ξ!#η!

∑
xj∈aij , j 6=ν

∑
xν∈ξ

(−1)π(xl+1) 〈 . . . axν−1,xν
iν−1

. . . a
xν ,xν+1

iν
ap+1 . . . 〉 ◦ (ξ ∪ η)

(4.3.6)
= 1

#ξ!#η!

(
#iν

#ξ−1

)−1 ∑
xj∈aij , j 6=ν

∑
xν∈ξ

(−1)π(xl+1) 〈 . . . axν−1,xν
iν−1

. . . ((a
xν ,xν+1

iν
)ξ̄,η\y)xν+1,y (a

η\y,ξ̄
p+1 )y,xν+1 . . . 〉 ◦ (ξ ∪ η)

(4.3.8),σ = (xν y)
= − 1

#ξ#iν !

∑
xj∈aij , j 6=ν

∑
xν∈ξ

(−1)π(xl+1) 〈 . . . axν−1,y
iν−1

. . . a
ξ̄,η\y
iν

(a
η\y,ξ̄
p+1 )y,xν+1 . . . 〉 ◦ (ξ ∪ η)

= − 1
#iν !

∑
xj∈aij , j 6=ν

(−1)π(xl+1) 〈 . . . axν−1,y
iν−1

. . . a
ξ̄,η\y
iν

(a
η\y,ξ̄
p+1 )y,xν+1 . . . 〉 ◦ (ξ ∪ η)

(4.3.11)
= −B(i1, . . . , îν , . . . , il)

y
ξ,η.

Calculation 4.3.19 We treat the case (II.iii), i.e. ξ ⊆ ap = ail+1
= ak+1, η ⊆ ap+1 = ak+2, #ξ+ #η =

#k+1 + 1. Choose y ∈ η. We claim that

Ga,ξ,ηfe = 0.

1
#ξ!#η!

∑
xj∈aij

(−1)π(xl+1) 〈 . . . axl,xl+1

il
. . . a

xl+1,
il+1

ap+1 . . . 〉 ◦ (ξ ∪ η)

Garnir, (4.1.4)
= 1

#ξ!#η!

∑
xj∈aij , j 6=l+1

∑
xl+1∈ξ

(−1)π(xl+1) 〈 . . . axl,xl+1

il
. . . a

xl+1,
il+1

ap+1 . . . 〉 ◦ (ξ ∪ η)

(4.3.7)
= 0.
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Calculation 4.3.20 We treat the case (III.i), i.e. ξ ⊆ ag−1, η ⊆ ag, #ξ + #η = #g−1 + 1, to obtain

Ga,ξ,ηfe
Garnir, (4.1.4)

= 0.

Calculation 4.3.21 We treat the case (III.ii), i.e. ξ ⊆ ap, ep = 0, η ⊆ ap+1 = aiν , ν ∈ [1, l], #ξ+#η =
#p + 1. Choose y ∈ η. We claim that

Ga,ξ,ηfe = B(i1, . . . , îν , . . . , il)
y
ξ,η.

1
#ξ!#η!

∑
xj∈aij

(−1)π(xl+1) 〈 . . . axν−1,xν
iν−1

. . . ap a
xν ,xν+1

iν
. . . 〉 ◦ (ξ ∪ η)

Garnir, (4.1.4)
= 1

#ξ!#η!

∑
xj∈aij , j 6=ν

∑
xν∈η

(−1)π(xl+1) 〈 . . . axν−1,xν
iν−1

. . . ap a
xν ,xν+1

iν
. . . 〉 ◦ (ξ ∪ η)

(4.3.8),σ = (xν y xν+1)
= 1

#ξ!#η!

∑
xj∈aij , j 6=ν

∑
xν∈η

(−1)π(xl+1) 〈 . . . axν−1,y
iν−1

. . . ap a
y,xν+1

iν
. . . 〉 ◦ (ξ ∪ η)

(4.3.6)
= 1

#ξ!#η! #η

(
#p
#ξ

)−1 ∑
xj∈aij , j 6=ν

(−1)π(xl+1) 〈 . . . axν−1,y
iν−1

. . . a
ξ̄,η\y
p (a

y,xν+1

iν
)η\y,ξ̄ . . . 〉 ◦ (ξ ∪ η)

= 1
#p!

∑
xj∈aij , j 6=ν

(−1)π(xl+1) 〈 . . . axν−1,y
iν−1

. . . a
ξ̄,η\y
p (a

y,xν+1

iν
)η\y,ξ̄ . . . 〉 ◦ (ξ ∪ η)

(4.3.11)
= B(i1, . . . , îν , . . . , il)

y
ξ,η.

Calculation 4.3.22 We treat the case (III.iii), i.e. ξ ⊆ ak, ek = 0, η ⊆ ak+1 = ail+1
, #ξ+#η = #k+1.

Choose y ∈ η. We claim that

Ga,ξ,ηfe = B′(i1, . . . , il)
y
ξ,η.

1
#ξ!#η!

∑
xj∈aij

(−1)π(xl+1) 〈 . . . axl,xl+1

il
. . . ak a

xl+1,
il+1

. . . 〉 ◦ (ξ ∪ η)

Garnir, (4.1.4)
= 1

#ξ!#η!

∑
xj∈aij , j 6=l+1

∑
xl+1∈η

(−1)π(xl+1) 〈 . . . axl,xl+1

il
. . . ak a

xl+1,
il+1

. . . 〉 ◦ (ξ ∪ η)

(4.3.8),σ = (xl+1 y)
= 1

#ξ!#η!

∑
xj∈aij , j 6=l+1

∑
xl+1∈η

(−1)π(y) 〈 . . . axl,yil
. . . ak ay,il+1

. . . 〉 ◦ (ξ ∪ η)

(4.3.6)
= 1

#ξ!#η! #η

(
#k
#ξ

)−1 ∑
xj∈aij , j 6=l+1

(−1)π(y) 〈 . . . axl,yil
. . . a

ξ̄,η\y
k (ay,il+1

)η\y,ξ̄ . . . 〉 ◦ (ξ ∪ η)

= 1
#k!

∑
xj∈aij ,j 6=l+1

(−1)π(y) 〈 . . . axl,yil
. . . a

ξ̄,η\y
k (ay,il+1

)η\y,ξ̄ . . . 〉 ◦ (ξ ∪ η)

(4.3.11)
= B′(i1, . . . , il)

y
ξ,η.

Calculation 4.3.23 We treat the case (IV), i.e. ep = 0, ep+1 = 0, to obtain

Ga,ξ,ηfe
Garnir, (4.1.4)

= 0.
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4.3.4 Polynomial coefficients

Example 4.3.24
Let g = 1 and k = 4. We list the images of Ga,ξ,ηfe (cf. 4.3.9).

Case ξ ⊆ a1, η ⊆ a2.

e Case Factor A, B
111 (I.i) (1 + #1 −#2) A(3, 4)yξ,η
011 (II.i) 1 A(3, 4)yξ,η
101 (I.i) (1 + #1 −#2) A(4)yξ,η
001 (II.i) 1 A(4)yξ,η
110 (I.i) (1 + #1 −#2) A(3)yξ,η
010 (II.i) 1 A(3)yξ,η
100 (I.i) (1 + #1 −#2) A()yξ,η
000 (II.i) 1 A()yξ,η

Case ξ ⊆ a2, η ⊆ a3.

e Case Factor A, B
111 (I.ii) −(1 + #2 −#3) B(4)yξ,η
011 (III.ii) 1 B(4)yξ,η
101 (II.ii) −1 B(4)yξ,η
001 (IV) 0
110 (I.ii) −(1 + #2 −#3) B()yξ,η
010 (III.ii) 1 B()yξ,η
100 (II.ii) −1 B()yξ,η
000 (IV) 0

Case ξ ⊆ a3, η ⊆ a4.

e Case Factor A, B
111 (I.ii) −(1 + #3 −#4) B(2)yξ,η
011 (I.ii) −(1 + #3 −#4) B()yξ,η
101 (III.ii) 1 B(2)yξ,η
001 (III.ii) 1 B()yξ,η
110 (II.ii) −1 B(2)yξ,η
010 (II.ii) −1 B()yξ,η
100 (IV) 0
000 (IV) 0

Case ξ ⊆ a4, η ⊆ a5.

e Case Factor A, B
111 (I.iii) −(1 + #4 −#5) B′(2, 3)yξ,η
011 (I.iii) −(1 + #4 −#5) B′(3)yξ,η
101 (I.iii) −(1 + #4 −#5) B′(2)yξ,η
001 (I.iii) −(1 + #4 −#5) B′()yξ,η
110 (III.iii) 1 B′(2, 3)yξ,η
010 (III.iii) 1 B′(3)yξ,η
100 (III.iii) 1 B′(2)yξ,η
000 (III.iii) 1 B′()yξ,η

Thus we want to (but not necesarily have to) find a column vector containing the coefficients
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ue, ordered according to the e’s as in the tables above, which annihilates



1 + #1 −#2 +1 0 0 0 0 0 0
0 0 1 + #1 −#2 +1 0 0 0 0
0 0 0 0 1 + #1 −#2 +1 0 0
0 0 0 0 0 0 1 + #1 −#2 +1
−(1 + #2 −#3) +1 −1 0 0 0 0 0
0 0 0 0 −(1 + #2 −#3) +1 −1 0
−(1 + #3 −#4) 0 +1 0 −1 0 0 0
0 −(1 + #3 −#4) 0 +1 0 −1 0 0
−(1 + #4 −#5) 0 0 0 +1 0 0 0
0 −(1 + #4 −#5) 0 0 0 +1 0 0
0 0 −(1 + #4 −#5) 0 0 0 +1 0
0 0 0 −(1 + #4 −#5) 0 0 0 +1


from the right modulo the path length m = (k + 1− g) + (#g −#k+1) = 4 + #1 −#5. We
substitute

Xj := 5−#5 + #j − j
1 + #4 −#5 = X4

1 + #j −#j+1 = Xj −Xj+1

m = X1 ,

yielding 

X1 −X2 +1 0 0 0 0 0 0
0 0 X1 −X2 +1 0 0 0 0
0 0 0 0 X1 −X2 +1 0 0
0 0 0 0 0 0 X1 −X2 +1
X2 −X3 −1 +1 0 0 0 0 0
0 0 0 0 X2 −X3 −1 +1 0
X3 −X4 0 −1 0 +1 0 0 0
0 X3 −X4 0 −1 0 +1 0 0
X4 0 0 0 −1 0 0 0
0 X4 0 0 0 −1 0 0
0 0 X4 0 0 0 −1 0
0 0 0 X4 0 0 0 −1



.

We choose the coefficient vector u to be

1
X2

X3

X2X3

X4

X2X4

X3X4

X2X3X4


,

thus annihilating this matrix from the right modulo m, and obtain

f = f111 +X2f011 +X3f101 +X2X3f001 +X4f110 +X2X4f010 +X3X4f100 +X2X3X4f000.

Notation 4.3.25
Let J ⊆ [g + 1, k]. Let [g + 1, k]\J -e

′

{0, 1}, J -e
′′

{0, 1}. Denote by [g + 1, k] -
[e′′e′]{0, 1}

the ‘concatenated’ map defined by [e′′e′]|[g+1,k]\J = e′ and [e′′e′]|J = e′′. Similarly multi-
concatenations.

Furthermore, we make use of multiindices in the sense that for a map [g + 1, k] ⊇
J -e {0, 1} we denote

X1−e :=
∏
j∈J

X
1−ej
j .
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We give a precursor of the result (4.3.31), the first subcase occurring in its proof we shall
also need later on.

Proposition 4.3.26 Keep the situation from (4.3.9). Let

Xj := k + 1−#k+1 + #j − j

for j ∈ [g, k]. In particular, m = Xg. Let

f 0 :=
∑

[g+1,k] -
e
{0,1}

X1−efe.

For a λ-tableau a, for p ∈ [1, z−1] and for ξ ⊆ ap, η ⊆ ap+1 such that #ξ+#η = #ap+1,
we have

Ga,ξ,ηf
0 ∈ mSλ.

Hence f 0 induces a morphism of ZSn-modules from Sλ/m to Sµ/m (4.3.2, 4.3.3, 4.3.9).

Choose y ∈ η.

Case g < k.

Subcase p = g, i.e. (I.i) or (II.i). Let [g + 2, k] -
e′ {0, 1} be given. From (4.3.13, 4.3.17)

we take

Ga,ξ,η(X
1−[1e′]f[1e′] +X1−[0e′]f[0e′]) = (1 · (1 + #g −#g+1) +Xg+1 · 1)X1−e′Ay[0e′],ξ,η

= (Xg −Xg+1 +Xg+1)X1−e′Ay[0e′],ξ,η
= mX1−e′Ay[0e′],ξ,η.

Subcase p ∈ [g+1, k−1], i.e. (I.ii), (II.ii), (III.ii) or (IV). Let [g+1, k]\{p, p+1} -e
′

{0, 1}
be given. From (4.3.15, 4.3.18, 4.3.21, 4.3.23) we take

Ga,ξ,η(X
1−[11e′]f[11e′] +X1−[10e′]f[10e′] +X1−[01e′]f[01e′] +X1−[00e′]f[00e′])

= (1 · (−(1 + #p −#p+1)) +Xp+1 · (−1) +Xp · 1 +XpXp+1 · 0)X1−e′By
[00e′],ξ,η

= (−Xp +Xp+1 −Xp+1 +Xp)X
1−e′By

[00e′],ξ,η

= 0.

Subcase p = k, i.e. (I.iii) or (III.iii). Let [g + 1, k − 1] -
e′ {0, 1} be given. From (4.3.16,

4.3.22) we take

Ga,ξ,η(X
1−[1e′]f[1e′] +X1−[0e′]f[0e′]) = (1 · (−(1 + #k −#k+1)) +Xk · 1)X1−e′B′y[0e′]

= (−Xk +Xk)X
1−e′B′y[0e′]

= 0.

Subcase p 6∈ [g, k], i.e. (II.iii), (III.i) or (IV). Let [g + 1, k] -
e {0, 1} be given. From

(4.3.19, 4.3.20, 4.3.23) we take
Ga,ξ,ηfe = 0.
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Case g = k = p.

The sum furnishing f 0 has only one summand associated to the index ∅ -e {0, 1} so that
f 0 = fe. Hence, by (I.ia) from (4.3.14) we obtain

Ga,ξ,ηf
0 = (1 + #g −#g+1)A′yξ,η

= mA′yξ,η.

We shall detect a redundant scalar factor in this provisional version.

Lemma 4.3.27 For g + 1 6 α 6 β 6 k we have∑
[α,β] -

e
{0,1}

X1−e =
∏

j∈[α,β]

(Xj + 1).

The induction step is given by∑
[α,β] -

e
{0,1}

X1−e = (Xα + 1)
∑

[α+1,β] -
e
{0,1}

X1−e.

Lemma 4.3.28 Consider an element p ∈ [g + 1, k − 1] with #p = #p+1. Furthermore,

let [g + 1, p− 1] -
e {0, 1}, [p+ 2, k] -

e′ {0, 1} be given. Then

f[e10e′] = f[e11e′].

Similarly, for p ∈ [g+2, k−1], eg+1 = 0, ξ ⊆ ag, η ⊆ ag+1, y ∈ η such that #ξ+#η = #g,
we assert that

Ay[e10e′],ξ,η = Ay[e11e′],ξ,η.

Moreover, in case p = g + 1 we have

Ay[00e′],ξ,η = Ay[01e′],ξ,η.

The Garnir relation (4.1.4) gives

〈 . . . axν ,xν+1
p ap+1 . . . 〉 =

∑
z∈ap+1

〈 . . . axν ,zp a
z,xν+1

p+1 . . . 〉.

Mutatis mutandis in case p = g + 1 for Ay[00e′],ξ,η.

Lemma 4.3.29 Let

r :=
∏

i∈[g+1,k−1], #i = #i+1
Xi ,

where the empty product equals 1.

Suppose given ξ ⊆ ag, η ⊆ ag+1, y ∈ η such that #ξ + #η = #g. The elements

[a]f 0 =
∑

[g+1,k] -
e
{0,1}

X1−e[a]fe

m−1Ga,ξ,ηf
0 =

∑
[g+2,k] -

e
{0,1}

X1−eAy[0e],ξ,η
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of Sµ are divisible by r.

Suppose given g + 1 6 α 6 β 6 k such that #i = #j for i, j ∈ [α, β]. For τ ∈ [α, β + 1],
we denote

[α, β] -e
τ

{0, 1}

i - eτi :=

{
0 for i ∈ [α, τ − 1]
1 for i ∈ [τ, β].

We fix maps [g + 1, α− 1] -
e′ {0, 1} and [β + 1, k] -

e′′ {0, 1} and obtain

∑
[α,β] -

e
{0,1}

X1−ef[e′ee′′]
(4.3.27, 4.3.28)

=
∑

τ∈[α,β+1]

f[e′eτ e′′]

 ∏
j∈[α,τ−1]

Xj

 ∏
j∈[τ+1,β]

(Xj + 1)


=

 ∑
τ∈[α,β]

f[e′eτ e′′]

 ∏
j∈[α,β−1]

Xj


+ f[e′eβ+1e′′]

 ∏
j∈[α,β]

Xj

 .

Similarly for A. In case g+2 6 α, we fix maps [g+2, α−1] -
e′ {0, 1}, [β+1, k] -

e′′ {0, 1}
and get

∑
[α,β] -

e
{0,1}

X1−eAy[0e′ee′′],ξ,η
(4.3.27, 4.3.28)

=
∑

τ∈[α,β+1]

Ay[0e′eτ e′′],ξ,η

 ∏
j∈[α,τ−1]

Xj

 ∏
j∈[τ+1,β]

(Xj + 1)


=

 ∑
τ∈[α,β]

Ay[0e′eτ e′′],ξ,η

 ∏
j∈[α,β−1]

Xj


+ Ay

[0e′eβ+1e′′],ξ,η

 ∏
j∈[α,β]

Xj

 .

In case g + 1 = α, we fix a map [β + 1, k] -
e′′ {0, 1} to obtain

∑
[g+2,β] -

e
{0,1}

X1−eAy[0ee′′],ξ,η
(4.3.27, 4.3.28)

= Ay[eg+2e′′],ξ,η

 ∏
j∈[g+2,β]

(Xj + 1)


= Ay[eg+2e′′],ξ,η

 ∏
j∈[g+1,β−1]

Xj

 .

Lemma 4.3.30 f can be written as a matrix with at least one entry equal to ±1.

Let [ǎ] be the standard λ-tableau for which i < i′ implies ǎi,j < ǎi′,j′ , i.e. the smallest

one in the sense of the proof of (4.3.2). Suppose given [g + 1, k] -
e {0, 1} such that for

p, q ∈ [g + 1, k], p < q and #p = #q we have ep 6 eq. The summands of

[ǎ]fe =
∑
xj∈ǎij

(−1)π(xl+1)

〈
. . . ǎg . . . ǎ

x1,x2

i1
. . . ǎx2,x3

i2
. . . ǎ

xl,xl+1

il
. . . ǎ

xl+1,
k+1 . . .

x1

〉
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are standard λ-polytabloids up to sign. Since we may write the image of [ǎ] under f as
an integral linear combination of such elements (4.3.28), and since the occurring standard
polytabloids are pairwise different because of different fillings of the columns, we are
reduced to consider a chosen such e and to regard the corresponding summand

1

r

 ∑
e′∈E(e)

X1−e′

 [ǎ]fe,

where

E(e) := {[g+1, k] -
e′ {0, 1} | ∀i ∈ [g+1, k] (e′i = ei ∨ ∃j ∈ [g+1, i−1] (#j = #i ∧ e′j = ej = 1))}.

However, for e = 11 . . . 1 we obtain∑
e′∈E(e)

X1−e′ (4.3.27)
=

∏
i∈[g+2,k], #i−1 = #i

(Xi + 1)
(4.3.29)

= r.

We summarize to the

Theorem 4.3.31 Keep the notation of (4.3.1, 4.3.25, 4.3.26, 4.3.29). The ZSn-linear
map

f :=
1

r
f 0 =

1

r

∑
[g+1,k] -

e
{0,1}

X1−efe : F λ - Sµ

factors over

(Sλ/m -f̄ Sµ/m) 6= 0.

More precisely, f can be written as a matrix with at least one entry equal to ±1.

From the proof of (4.3.26) it follows that (4.3.29) suffices to prove the factorization. The
second assertion follows from (4.3.30).

Remark 4.3.32 Based on [CL 74], Carter and Payne [CP 80] have obtained a closely
related non-vanishing result (9). It asserts in particular that for λ and µ as above we
have

HomKSn(K ⊗Z S
λ, K ⊗Z S

µ) 6= 0,

K being an infinite field of characteristic dividing m (10). This particular case of their
result now also ensues from (4.3.31).

For the application to integral representation theory, we need such a morphism in the
concrete form as given in (4.3.31) for the following two reasons. First, we need to calculate
modulo prime powers, not merely modulo primes (cf. 3.2.1 or e.g. 4.2.10). Second, we
need to know the elementary divisors as well as the behaviour under composition of the
of the various specializations (cf. e.g. 4.2.4, 4.2.8, S 4.4.2).

9Which G. James pointed out to me.
10A rank argument shows that [CP 80] also yields this result for K an arbitrary, possibly finite field of

characteristic dividing m, as pointed out by G. Nebe.
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The result of [CP 80] also comprises the case of a simultaneous shift of several boxes from
a column to a column further to the left. A first step in the direction of a concretization of
this result is undertaken in (4.4.3). Some further examples have been calculated directly
but are not yet understood (cf. 4.4.5).

Cf. also [J 78, 24.6 (ii), 24.10].

Remark 4.3.33 For n 6 7 the following assertions hold (cf. S 4.3.5).

(i) Let m2′ denote the 2′-part of m, i.e. m2′ := m/2v2(m). f̄ (4.3.31) generates

HomZSn(Sλ/m2′ , S
µ/m2′).

(ii) Let m′ be a natural number divisible by m. The map

HomZSn(Sλ/m, Sµ/m) - HomZSn(Sλ/m′, Sµ/m′),

induced by multiplication by m′/m, is an isomorphism.

A. Kleshchev [Kles 98] has given an argument for the dimension of the Hom-space treated
by Carter and Payne (4.3.32) to be one-dimensional in case of a one-box-shift over a field
of characteristic 6= 2. Note that in case of characteristic 2, the partitions λ = (4, 1, 1),
µ = (3, 1, 1, 1) furnish an example in which this Hom-space is two-dimensional (S 4.3.5).

Remark 4.3.34 In case λ and µ are hooks, f̄ coincides with the map given in (4.2.3).

We have g = 1, k = λ1 − 1 and m = n. Moreover, Xi = k+ 1− i for i ∈ [2, k], r = (k− 1)!.
The proof of (4.3.29) yields

f =
∑

τ∈[g+1,k+1]

feτ ,

using the notation introduced there.

We record a composition property of certain specializations of our morphism (which origi-
nally has been a failed attempt to prove their nonvanishing).

Lemma 4.3.35 Let ν > 2 be a natural number. Let the partition µ be such that the
binomial condition at ν is satisfied which says that(

µ′i+1
u

)
≡ν 0 for all u ∈ [1, µ′i+1] for all i ∈ [1, z].

Fix a µ-tableau [a]. The alternating augmentation

Sµ -d (Z/ν)−

〈as〉 - εs

is a well defined nonzero ZSn-morphism, where s ∈ Sn, and where (Z/ν)− denotes the
alternating module structure on Z/ν. NB the sign of d depends on the choice of [a].

We construct d as the factorization of

Fµ - (Z/ν)−

[as] - εs

over Fµ - Sµ. Signed column transpositions (4.3.2) vanish under this map. It remains
to be shown that the same holds for one-step-Garnir relations (4.3.2). But

Gas,ξ,η =
1

#ξ!#η!
[as] ◦ (ξ ∪ η) ∈ Fλ0

where j ∈ [1, z − 1], ξ ⊆ aj , ∅ 6= η ⊆ aj+1, ξ + η = µ′j + 1, is mapped to
(
µ′j+1
#η

)
, which is

divisible by ν by the binomial condition at ν for µ.



The one-box-shift morphism 105

Lemma 4.3.36 Keep the situation of (4.3.35). Moreover, assume that m ≡ν 0 and that
r = 1. Then the composition

Sλ/m -f̄ Sµ/m -d (Z/ν)−

(4.3.31) vanishes, except in case ν = 2, g + 1 = κ, k ≡2 g, consisting of hooks, in which it
is nonzero.

(The case r 6= 1 remains to be investigated.)

Case µ′k+1 > 1. We claim that the image of [b]fe under the alternating augmentation
(4.3.35), [b] being a λ-tableau, is given by

±(µ′k+1 + 1)
∏

i∈[g+1,k], ei=1

µ′i ≡ν ±(µ′k+1 + 1)
∏

i∈[g+1,k], ei=1

(−1).

NB in case µ′k+2 6= 0 we are already done with the whole case.

Replacement of xl+1 by x′l+1 in the summand occurring in the expression for the image of a
under fe (4.3.1) amounts to an operation of (xl+1 x

′
l+1) followed by an operation of a cycle

of length |π(xl+1) − π(x′l+1)| − 1. Replacement of xj by x′j in this expression, j ∈ [1, l],
amounts to an operation of (xj+1 xj x

′
j). Therefore all summands of this expression are

sent to +1 or all summands are sent to −1.

To determine the sign more precisely, we note that the summand of this expression with
each xj being the top entry of its column, changes by an operation (xj xj+1) if we drop the
column ij for some j ∈ [1, l]. Thus the image of [b]fe under the alternating augmentation
is given by

±(µ′k+1 + 1)(−1)
∑
i∈[g+1,k] ei

∏
i∈[g+1,k], ei=1

(−1) = ±(µ′k+1 + 1),

where the sign ± now is independent of e.

Note that by our assumption we have 0 ≡ν m = k − µ′k+1 + µ′g − g ≡ν k − g − µ′k+1 − 1,

whence Xi ≡ν g − i for i ∈ [g + 1, k] since µ′i ≡ν −1. Thus the composition f̄d maps [b] to

±(µ′k+1 + 1)
∑
eX

1−e (4.3.27)
= ±(µ′k+1 + 1)

∏
i∈[g+1,k](Xi + 1)

≡ν 0

because of the factor Xg+1 + 1 ≡ν 0.

Case µ′k+1 = 0, g 6 k − 1, r = 1. Note that still µ′k > 1. As in the first case, the image of
[b]fe under the alternating augmentation is given by

±(−1)
∑
i∈[g+1,k] ei

∏
i∈[g+1,k], ei=1

µ′i ≡ν ±
{

(−1)µ′k for ek = 1
1 for ek = 0

.

The composition f̄d maps [b] to

±

 ∑
[g+1,k−1] -

e
{0,1}

X1−e

 (1 · (−1)µ′k +Xk · 1) = 0.

Example 4.3.37 Let λ = (4, 1), µ = (3, 2), ν = 3. f̄ has rank 4, so that f̄ and d cause ties
just as those numbered e and h in (S 2.2.3). As usual, for accordance one should compare
this morphism with the one implicitely given there.
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4.3.5 Illustration

We perform some direct computer calculations in order to see to what extent our generic result (4.3.31)
is relevant when specialized to small cases. To a large extent, these specializations do not look exciting,
but we are as well interested in an illustration as in an exhaustive list for n 6 7.

We drop the brackets indicating polytabloids in our notation. Furthermore, by generate we mean that
the respective maps generate HomZSn(Sλ, Sµ/m) Z-linearly and that for m | m′ the map induced by
multiplication by m′/m

HomZSn(Sλ, Sµ/m) - HomZSn(Sλ, Sµ/m′)

is an isomorphism. Cf. (4.3.33).

To begin with, we give a ‘sufficiently large’ example.

Let n = 9, λ = (4, 3, 2), µ = (3, 3, 2, 1), so that m = 6, g = 1, k = 3, X2 = k + 3 − 2 = 4 and
X3 = k + 2− 3 = 2. The specialization takes the form

1 4 7 9
2 5 8
3 6

-f̄ X0
2X

0
3


1 7 9
2 5 8
3 6
4

+

1 4 9
2 7 8
3 6
5

+

1 4 9
2 5 8
3 7
6

+

1 8 7
2 5 9
3 6
4

+

1 4 7
2 8 9
3 6
5

+

1 4 7
2 5 9
3 8
6


+X1

2X
0
3


1 4 9
2 5 8
3 6
7

+

1 4 7
2 5 9
3 6
8


+X0

2X
1
3


1 9 7
2 5 8
3 6
4

+

1 4 7
2 9 8
3 6
5

+

1 4 7
2 5 8
3 9
6


+X1

2X
1
3


1 4 7
2 5 8
3 6
9

 .

Case n = 2.

λ = (2), µ = (1, 1), m = 2, g = 1, k = 1.

1 2 -f̄ 1
2

generates HomZS2
(S(2), S(1,1)/2).

Case n = 3.

λ = (3), µ = (2, 1), m = 3, g = 1, k = 2, X2 = 1.

1 2 3 -f̄ 1 3
2

+
1 2
3

generates HomZS3(S(3), S(2,1)/3).

λ = (2, 1), µ = (1, 1, 1), m = 3, g = 1, k = 1.

1 3
2

-f̄
1
2
3

generates HomZS3
(S(2,1), S(1,1,1)/3).

Case n = 4.

λ = (4), µ = (3, 1), m = 4, g = 1, k = 3, X2 = 2, X3 = 1, r = 2.

1 2 3 4 -f̄ 1 3 4
2

+
1 2 4
3

+
1 2 3
4

generates HomZS4
(S(4), S(3,1)/4).
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λ = (3, 1), µ = (2, 2), m = 2, g = 2, k = 2.

1 3 4
2

-f̄ 1 3
2 4

.

generates HomZS4
(S(3,1), S(2,2)/2).

λ = (3, 1), µ = (2, 1, 1), m = 4, g = 1, k = 2, X2 = 1.

1 3 4
2

-f̄
1 4
2
3

+
1 3
2
4

generates HomZS4
(S(3,1), S(2,1,1)/4).

λ = (2, 2), µ = (2, 1, 1), m = 2, g = 1, k = 1.

1 3
2 4

-f̄
1 3
2
4

−
1 4
2
3

generates HomZS4
(S(2,2), S(2,1,1)/2).

λ = (2, 1, 1), µ = (1, 1, 1, 1), m = 4, g = 1, k = 1.

1 4
2
3

-f̄
1
2
3
4

generates HomZS4
(S(2,1,1), S(1,1,1,1)/4).

Case n = 5.

λ = (5), µ = (4, 1), m = 5, g = 1, k = 4, X2 = 3, X3 = 2, X4 = 1, r = 6.

1 2 3 4 5 -f̄ 1 3 4 5
2

+
1 2 4 5
3

+
1 2 3 5
4

+
1 2 3 4
5

generates HomZS5
(S(5), S(4,1)/5).

λ = (4, 1), µ = (3, 2), m = 3, g = 2, k = 3, X3 = 1.

1 3 4 5
2

-f̄ 1 3 5
2 4

+
1 3 4
2 5

generates HomZS5(S(4,1), S(3,2)/3).

λ = (4, 1), µ = (3, 1, 1), m = 5, g = 1, k = 3, X2 = 2, X3 = 1, r = 2.

1 3 4 5
2

-f̄
1 4 5
2
3

+
1 3 5
2
4

+
1 3 4
2
5

generates HomZS5(S(4,1), S(3,1,1)/5).

λ = (3, 2), µ = (2, 2, 1), m = 4, g = 1, k = 2, X2 = 2.

1 3 5
2 4

-f̄
 1 5

2 4
3

+
1 3
2 5
4

+ 2 ·
1 3
2 4
5

generates HomZS5
(S(3,2), S(2,2,1)/4).
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λ = (3, 2), µ = (3, 1, 1), m = 2, g = 1, k = 1.

1 3 5
2 4

-f̄
1 3 5
2
4

−
1 4 5
2
3

generates HomZS5
(S(3,2), S(3,1,1)/2).

λ = (3, 1, 1), µ = (2, 2, 1), m = 2, g = 2, k = 2.

1 4 5
2
3

-f̄
1 4
2 5
3

generates HomZS5
(S(3,1,1), S(2,2,1)/2).

λ = (3, 1, 1), µ = (2, 1, 1, 1), m = 5, g = 1, k = 2, X2 = 1.

1 4 5
2
3

-f̄
1 5
2
3
4

+

1 4
2
3
5

generates HomZS5(S(3,1,1), S(2,1,1,1)/5). λ = (2, 2, 1), µ = (2, 1, 1, 1), m = 3, g = 1, k = 1.

1 4
2 5
3

-f̄
1 4
2
3
5

−

1 5
2
3
4

generates HomZS5
(S(2,2,1), S(2,1,1,1)/3).

λ = (2, 1, 1, 1), µ = (1, 1, 1, 1, 1), m = 5, g = 1, k = 1.

1 5
2
3
4

-f̄

1
2
3
4
5

generates HomZS5(S(2,1,1,1), S(1,1,1,1,1)/5.

Case n = 6.

λ = (6), µ = (5, 1), m = 6, g = 1, k = 5, X2 = 4, X3 = 3, X4 = 2, X5 = 1, r = 24.

1 2 3 4 5 6 -f̄ 1 3 4 5 6
2

+
1 2 4 5 6
3

+
1 2 3 5 6
4

+
1 2 3 4 6
5

+
1 2 3 4 5
6

generates HomZS6
(S(6), S(5,1)/6).

λ = (5, 1), µ = (4, 2), m = 4, g = 2, k = 4, X3 = 2, X4 = 1, r = 2.

1 3 4 5 6
2

-f̄ 1 3 5 6
2 4

+
1 3 4 6
2 5

+
1 3 4 5
2 6

generates HomZS6
(S(5,1), S(4,2)/4).

λ = (5, 1), µ = (4, 1, 1), m = 6, g = 1, k = 4, X2 = 3, X3 = 2, X4 = 1, r = 6.

1 3 4 5 6
2

-f̄
1 4 5 6
2
3

+
1 3 5 6
2
4

+
1 3 4 6
2
5

+
1 3 4 5
2
6

generates HomZS6
(S(5,1), S(4,1,1)/6).
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λ = (4, 2), µ = (3, 3), m = 2, g = 3, k = 3.

1 3 5 6
2 4

-f̄ 1 3 5
2 4 6

generates HomZS6(S(4,2), S(3,3)/2).

λ = (4, 2), µ = (3, 2, 1), m = 5, g = 1, k = 3, X2 = 3, X3 = 1.

1 3 5 6
2 4

-f̄
 1 5 6

2 4
3

+
1 3 6
2 5
4

+

 1 6 5
2 4
3

+
1 3 5
2 6
4


+3 ·

1 3 6
2 4
5

+ 3 ·
1 3 5
2 4
6

generates HomZS6
(S(4,2), S(3,2,1)/5).

λ = (4, 2), µ = (4, 1, 1), m = 2, g = 1, k = 1.

1 3 5 6
2 4

-f̄
1 3 5 6
2
4

−
1 4 5 6
2
3

generates HomZS6
(S(4,2), S(4,1,1)/2).

λ = (4, 1, 1), µ = (3, 2, 1), m = 3, g = 2, k = 3, X3 = 1.

1 4 5 6
2
3

-f̄
1 4 6
2 5
3

+
1 4 5
2 6
3

generates HomZS6
(S(4,1,1), S(3,2,1)/3).

λ = (4, 1, 1), µ = (3, 1, 1, 1), m = 6, g = 1, k = 3, X2 = 2, X3 = 1, r = 2.

1 4 5 6
2
3

-f̄
1 5 6
2
3
4

+

1 4 6
2
3
5

+

1 4 5
2
3
6

and

1 4 5 6
2
3

- 3 ·
∑

26i1<i2<i366

1 ∗ ∗
i1
i2
i3

generate HomZS6
(S(4,1,1), S(3,1,1,1)/6). Cf. (4.2.11, 4.2.17).

λ = (3, 3), µ = (3, 2, 1), m = 3, g = 1, k = 2, X2 = 1.

1 3 5
2 4 6

-f̄
 1 6 5

2 4
3

+
1 3 5
2 6
4

−
1 5 6
2 4
3

−
1 3 6
2 5
4

+

 1 3 5
2 4
6

−
1 3 6
2 4
5


generates HomZS6

(S(3,3), S(3,2,1)/3).

λ = (3, 2, 1), µ = (2, 2, 2), m = 3, g = 2, k = 2.

1 4 6
2 5
3

-f̄
1 4
2 5
3 6

generates HomZS6
(S(3,2,1), S(2,2,2)/3).
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λ = (3, 2, 1), µ = (2, 2, 1, 1), m = 5, g = 1, k = 2, X2 = 2.

1 4 6
2 5
3

-f̄


1 6
2 5
3
4

+

1 4
2 6
3
5

+ 2 ·

1 4
2 5
3
6

generates HomZS6(S(3,2,1), S(2,2,1,1)/5).

λ = (3, 2, 1), µ = (3, 1, 1, 1), m = 3, g = 1, k = 1.

1 4 6
2 5
3

-f̄
1 4 6
2
3
5

−

1 5 6
2
3
4

generates HomZS6(S(3,2,1), S(3,1,1,1)/3).

λ = (3, 1, 1, 1), µ = (2, 2, 1, 1), m = 2, g = 2, k = 2.

1 5 6
2
3
4

-f̄
1 5
2 6
3
4

generates HomZS6
(S(3,1,1,1), S(2,2,1,1)/2).

λ = (3, 1, 1, 1), µ = (2, 1, 1, 1, 1), m = 6, g = 1, k = 2, X2 = 1.

1 5 6
2
3
4

-f̄

1 6
2
3
4
5

+

1 5
2
3
4
6

generates HomZS6
(S(3,1,1,1), S(2,1,1,1,1)/6).

λ = (2, 2, 2), µ = (2, 2, 1, 1), m = 2, g = 1, k = 1.

1 4
2 5
3 6

-f̄ −

1 5
2 6
3
4

+

1 4
2 6
3
5

−

1 4
2 5
3
6

generates HomZS6
(S(2,2,2), S(2,2,1,1)/2).

λ = (2, 2, 1, 1), µ = (2, 1, 1, 1, 1), m = 4, g = 1, k = 1.

1 5
2 6
3
4

-f̄ −

1 6
2
3
4
5

+

1 5
2
3
4
6

generates HomZS6(S(2,2,1,1), S(2,1,1,1,1)/4).

λ = (2, 1, 1, 1, 1), µ = (1, 1, 1, 1, 1, 1), m = 6, g = 1, k = 1.

1 6
2
3
4
5

-f̄

1
2
3
4
5
6

generates HomZS6
(S(2,1,1,1,1), S(1,1,1,1,1,1)/6).



The one-box-shift morphism 111

Case n = 7.

λ = (7), µ = (6, 1), m = 7, g = 1, k = 6, X2 = 5, X3 = 4, X4 = 3, X5 = 2, X6 = 1, r = 120.

1 2 3 4 5 6 7 -f̄ 1 3 4 5 6 7
2

+
1 2 4 5 6 7
3

+
1 2 3 5 6 7
4

+
1 2 3 4 6 7
5

+
1 2 3 4 5 7
6

+
1 2 3 4 5 6
7

generates HomZS7
(S(6), S(5,1)/7).

λ = (6, 1), µ = (5, 2), m = 5, g = 2, k = 5, X3 = 3, X4 = 2, X5 = 1, r = 6.

1 3 4 5 6 7
2

-f̄ 1 3 7 5 6
2 4

+
1 3 4 7 6
2 5

+
1 3 4 5 7
2 6

+
1 3 4 5 6
2 7

generates HomZS7(S(6,1), S(5,2)/5).

λ = (6, 1), µ = (5, 1, 1), m = 7, g = 1, k = 5, X2 = 4, X3 = 3, X4 = 2, X5 = 1, r = 24.

1 3 4 5 6 7
2

-f̄
1 7 4 5 6
2
3

+
1 3 7 5 6
2
4

+
1 3 4 7 6
2
5

+
1 3 4 5 7
2
6

+
1 3 4 5 6
2
7

generates HomZS7
(S(6,1), S(5,1,1)/7).

λ = (5, 2), µ = (4, 3), m = 3, g = 3, k = 4, X4 = 1.

1 3 5 6 7
2 4

-f̄ 1 3 5 7
2 4 6

+
1 3 5 6
2 4 7

generates HomZS7
(S(5,2), S(4,3)/3).

λ = (5, 2), µ = (4, 2, 1), m = 6, g = 1, k = 4, X2 = 4, X3 = 2, X4 = 1, r = 2.

1 3 5 6 7
2 4

-f̄
 1 5 7 6

2 4
3

+
1 3 7 6
2 5
4

+
1 6 5 7
2 4
3

+
1 3 5 7
2 6
4

+
1 7 5 6
2 4
3

+
1 3 5 6
2 7
4


+ 4 ·

 1 3 7 6
2 4
5

+
1 3 5 7
2 4
6

+
1 3 5 6
2 4
7


generates HomZS7(S(5,2), S(4,2,1)/6).

λ = (5, 2), µ = (5, 1, 1), m = 2, g = 1, k = 1.

1 3 5 6 7
2 4

-f̄ −
1 4 5 6 7
2
3

+
1 3 5 6 7
2
4

generates HomZS7
(S(5,2), S(5,1,1)/2).

λ = (5, 1, 1), µ = (4, 2, 1), m = 4, g = 2, k = 4, X3 = 2, X4 = 1, r = 2.

1 4 5 6 7
2
3

-f̄
1 4 7 6
2 5
3

+
1 4 5 7
2 6
3

+
1 4 5 6
2 7
3

generates HomZS7
(S(5,1,1), S(4,2,1)/4).
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λ = (5, 1, 1), µ = (4, 1, 1, 1), m = 7, g = 1, k = 4, X2 = 3, X3 = 2, X4 = 1, r = 6.

1 4 5 6 7
2
3

-f̄
1 7 5 6
2
3
4

+

1 4 7 6
2
3
5

+

1 4 5 7
2
3
6

+

1 4 5 6
2
3
7

generates HomZS7
(S(5,1,1), S(4,1,1,1)/7).

λ = (4, 3), µ = (3, 3, 1), m = 5, g = 1, k = 3, X2 = 3, X3 = 2, r = 3.

1 3 5 7
2 4 6

-f̄
1 7 5
2 4 6
3

+
1 3 5
2 7 6
4

+
1 3 7
2 4 6
5

+
1 3 5
2 4 7
6

+ 2 ·
1 3 5
2 4 6
7

generates HomZS7
(S(4,3), S(3,3,1)/5).

λ = (4, 3), µ = (4, 2, 1), m = 3, g = 1, k = 2, X2 = 1.

1 3 5 7
2 4 6

-f̄
1 5 6 7
2 4
3

−
1 6 5 7
2 4
3

+
1 3 6 7
2 5
4

−
1 3 5 7
2 6
4

+
1 3 6 7
2 4
5

−
1 3 5 7
2 4
6

generates HomZS7(S(4,3), S(4,2,1)/3).

λ = (4, 2, 1), µ = (3, 3, 1), m = 2, g = 3, k = 3.

1 4 6 7
2 5
3

-f̄
1 4 6
2 5 7
3

generates HomZS7
(S(4,2,1), S(3,3,1)/2).

λ = (4, 2, 1), µ = (3, 2, 2), m = 4, g = 2, k = 3, X3 = 1.

1 4 6 7
2 5
3

-f̄
1 4 7
2 5
3 6

+
1 4 6
2 5
3 7

generates HomZS7
(S(4,2,1), S(3,2,2)/4).

λ = (4, 2, 1), µ = (3, 2, 1, 1), m = 6, g = 1, k = 3, X2 = 3, X3 = 1.

1 4 6 7
2 5
3

-f̄
1 6 7
2 5
3
4

+

1 4 7
2 6
3
5

+

1 7 6
2 5
3
4

+

1 4 6
2 7
3
5

+ 3 ·


1 4 7
2 5
3
6

+

1 4 6
2 5
3
7


generates HomZS7

(S(4,2,1), S(3,2,1,1)/6).

λ = (4, 2, 1), µ = (4, 1, 1, 1), m = 3, g = 1, k = 1.

1 4 6 7
2 5
3

-f̄
1 5 6 7
2
3
4

−

1 4 6 7
2
3
5

generates HomZS7
(S(4,2,1), S(4,1,1,1)/3).

λ = (4, 1, 1, 1), µ = (3, 2, 1, 1), m = 3, g = 2, k = 3, X3 = 1.

1 5 6 7
2
3
4

-f̄
1 5 7
2 6
3
4

+

1 5 6
2 7
3
4

generates HomZS7
(S(4,1,1,1), S(3,2,1,1)/3).
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λ = (4, 1, 1, 1), µ = (3, 1, 1, 1, 1), m = 7, g = 1, k = 3, X2 = 2, X3 = 1, r = 2.

1 5 6 7
2
3
4

-f̄

1 7 6
2
3
4
5

+

1 5 7
2
3
4
6

+

1 5 6
2
3
4
7

generates HomZS7
(S(4,1,1,1), S(3,1,1,1,1)/7).

λ = (3, 3, 1), µ = (3, 2, 2), m = 2, g = 2, k = 2.

1 4 6
2 5 7
3

-f̄
1 4 7
2 5
3 6

−
1 4 6
2 5
3 7

generates HomZS7(S(3,3,1), S(3,2,2)/2).

λ = (3, 3, 1), µ = (3, 2, 1, 1), m = 4, g = 1, k = 2, X2 = 1.

1 4 6
2 5 7
3

-f̄ −

1 6 7
2 5
3
4

−

1 4 7
2 6
3
5

+

1 7 6
2 5
3
4

+

1 4 6
2 7
3
5

−

1 4 7
2 5
3
6

+

1 4 6
2 5
3
7

generates HomZS7(S(3,3,1), S(3,2,1,1)/4).

λ = (3, 2, 2), µ = (2, 2, 2, 1), m = 5, g = 1, k = 2, X2 = 3.

1 4 7
2 5
3 6

-f̄
1 7
2 5
3 6
4

+

1 4
2 7
3 6
5

+

1 4
2 5
3 7
6

+ 3 ·

1 4
2 5
3 6
7

generates HomZS7(S(3,2,2), S(2,2,2,1)/5).

λ = (3, 2, 2), µ = (3, 2, 1, 1), m = 2, g = 1, k = 1.

1 4 7
2 5
3 6

-f̄
1 5 7
2 6
3
4

−

1 4 7
2 6
3
5

+

1 4 7
2 5
3
6

generates HomZS7
(S(3,2,2), S(3,2,1,1)/2).

λ = (3, 2, 1, 1), µ = (2, 2, 2, 1), m = 3, g = 2, k = 2.

1 5 7
2 6
3
4

-f̄
1 5
2 6
3 7
4

generates HomZS7
(S(3,2,1,1), S(2,2,2,1)/3).

λ = (3, 2, 1, 1), µ = (2, 2, 1, 1, 1), m = 6, g = 1, k = 2, X2 = 2.

1 5 7
2 6
3
4

-f̄

1 7
2 6
3
4
5

+

1 5
2 7
3
4
6

+ 2 ·

1 5
2 6
3
4
7

generates HomZS7
(S(3,2,1,1), S(2,2,1,1,1)/6).
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λ = (3, 2, 1, 1), µ = (3, 1, 1, 1, 1), m = 4, g = 1, k = 1.

1 5 7
2 6
3
4

-f̄

1 6 7
2
3
4
5

−

1 5 7
2
3
4
6

generates HomZS7(S(3,2,1,1), S(3,1,1,1,1)/4).

λ = (3, 1, 1, 1, 1), µ = (2, 2, 1, 1, 1), m = 2, g = 2, k = 2.

1 6 7
2
3
4
5

-f̄

1 6
2 7
3
4
5

generates HomZS7
(S(3,1,1,1,1), S(2,2,1,1,1)/2).

λ = (3, 1, 1, 1, 1), µ = (2, 1, 1, 1, 1, 1), m = 7, g = 1, k = 2, X2 = 1.

1 6 7
2
3
4
5

-f̄

1 7
2
3
4
5
6

+

1 6
2
3
4
5
7

generates HomZS7(S(3,1,1,1,1), S(2,1,1,1,1,1)/7).

λ = (2, 2, 2, 1), µ = (2, 2, 1, 1, 1), m = 3, g = 1, k = 1.

1 5
2 6
3 7
4

-f̄

1 6
2 7
3
4
5

−

1 5
2 7
3
4
6

+

1 5
2 6
3
4
7

generates HomZS7
(S(2,2,2,1), S(2,2,1,1,1)/3).

λ = (2, 2, 1, 1, 1), µ = (2, 1, 1, 1, 1, 1), m = 5, g = 1, k = 1.

1 6
2 7
3
4
5

-f̄

1 7
2
3
4
5
6

−

1 6
2
3
4
5
7

generates HomZS7(S(2,2,1,1,1), S(2,1,1,1,1,1)/5).

λ = (2, 1, 1, 1, 1, 1), µ = (1, 1, 1, 1, 1, 1, 1), m = 7, g = 1, k = 1.

1 7
2
3
4
5
6

-f̄

1
2
3
4
5
6
7

generates HomZS7(S(2,1,1,1,1,1), S(1,1,1,1,1,1,1)/7).
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4.4 Approximating (ZS6)[3]

We investigate in (S 4.4.2) the intermediate order between (ZS6)[3] and the direct prod-

uct of integral matrix rings described by specializations of the generic morphism (4.3.31)

and, moreover, by two morphisms which are not covered by this generic morphism. We

undertake the first two steps into the direction of a generic morphism in the situation of the

simultaneous shift of several boxes in (S 4.4.1) so that, in particular, these two morphisms

are obtained as specializations thereof.

4.4.1 Two-box-shift, easy cases

First we exhibit a generic morphism for a horizontal simultaneous two-box-shift in case there
are essentially only two rows (4.4.1). Then we exhibit a generic morphism for a vertical si-
multaneous two-box-shift in case there are only two columns (4.4.3). These morphisms then
cover the cases of the nonzero morphisms S(5,1)/3 - S(3,3)/3 and S(2,2,2)/3 - S(2,1,1,1,1)/3
needed for the approximation of (ZS6)[3] in (S 4.4.2).

Proposition 4.4.1 (a fixed point, cf. [J 78, 24.4]) Let n > 0, let g, l ∈ [0, n] such that g + 2 6 l.
Let λ be a partition of n with λ1 = l + 2 and λ2 = g. Let µ be the partition of n defined by

µi :=

 l for i = 1
g + 2 for i = 2
λi else.

In other words, µ arises from λ by a simultaneous shift of the rightmost two boxes from the first into the
second row.

In the sequel we shall restrict ourselves to the consideration of the case

g = 0,

in which λ is just a row of length l + 2 = n. The formula in case g = 0 generalizes to the case of g > 0
by letting the polytabloid entries in columns [1, g] constant under the map, and by performing the place
operations on the remaining entries just as in case g = 0, only shifted by g columns to the right. The
modulus in the general case is obtained by replacement of l by l − g.

We denote a µ-polytabloid by recording only the first two columns, i.e. in the form
〈
α β
γ δ

〉
. This is to say,

we drop the [3, l]-part of the first row without loss of information. The ZSn-linear map

Fλ -v Sµ

[12 . . . n] -
∑

i,j∈[3,n], i<j

〈
1 2
i j

〉
−
∑

k∈[4,n]

(k − 2)
〈

1 3
2 k

〉
induces a ZSn-linear map

Sλ/ν -v̄ Sµ/ν,

where ν stands for l + 1 in case l + 1 is odd, and for (l + 1)/2 in case l + 1 is even.

We justify the reduction to the case g = 0. The Garnir relations involving pairs of subsequent columns
in the range [1, g] will map to the according Garnir relations in the target lattice, and thus vanish under
the map extended by constant columns. The Garnir relation involving the columns g and g + 1 also will
do so, because, as the formula shows, the entry in the upper left corner is kept fix in the reduced case.
The remaining Garnir relation express, translated to the reduced case g = 0, that the image is a fixpoint
modulo ν under the operation of Sn.

We need to show that the right hand side element is invariant modulo ν under the operation of Sn. So
we claim that for d ∈ [2, n] we have ∑

i,j∈[3,n],i<j

〈
1 2
i j

〉
−
∑

k∈[4,n]

(k − 2)
〈

1 3
2 k

〉 ((1 d)− 1) ∈ νSµ.
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Case d = 2.  ∑
i,j∈[3,n], i<j

〈
1 2
i j

〉
−
∑

k∈[4,n]

(k − 2)
〈

1 3
2 k

〉 ((1 2)− 1)

=
∑
i,j∈[3,n], i<j(

〈
2 1
i j

〉
−
〈

1 2
i j

〉
)

−
∑
k∈[4,n](k − 2)(

〈
2 3
1 k

〉
−
〈

1 3
2 k

〉
)

=
∑
i,j∈[4,n], i<j(−

〈
1 3
2 j

〉
+
〈

1 3
2 i

〉
)

−
∑
j∈[4,n]

〈
1 3
2 j

〉
+
∑
k∈[4,n] 2(k − 2)

〈
1 3
2 k

〉
=
∑
k∈[4,n](−(k − 4) + (n− k))

〈
1 3
2 k

〉
+
∑
k∈[4,n](2k − 5)

〈
1 3
2 k

〉
=
∑
k∈[4,n](n− 1)

〈
1 3
2 k

〉
.

Case d = 3.  ∑
i,j∈[3,n], i<j

〈
1 2
i j

〉
−
∑

k∈[4,n]

(k − 2)
〈

1 3
2 k

〉 ((1 3)− 1)

=
∑
i,j∈[4,n], i<j(

〈
3 2
i j

〉
−
〈

1 2
i j

〉
)

+
∑
j∈[4,n](

〈
3 2
1 j

〉
−
〈

1 2
3 j

〉
)

−
∑
k∈[4,n](k − 2)(

〈
3 1
2 k

〉
−
〈

1 3
2 k

〉
)

= −
∑
i,j∈[4,n], i<j

〈
1 2
3 j

〉
−2
∑
j∈[4,n]

〈
1 2
3 j

〉
+
∑
k∈[4,n](k − 2)

〈
1 2
3 k

〉
= −

∑
j∈[4,n](j − 2)

〈
1 2
3 j

〉
+
∑
k∈[4,n](k − 2)

〈
1 2
3 k

〉
= 0.

Case d ∈ [4, n]. ∑
i,j∈[3,n], i<j

〈
1 2
i j

〉
−
∑

k∈[4,n]

(k − 2)
〈

1 3
2 k

〉 ((1 d)− 1)

=
∑
i,j∈[3,n]\d, i<j(

〈
d 2
i j

〉
−
〈

1 2
i j

〉
)

+
∑
j∈[d+1,n](

〈
d 2
1 j

〉
−
〈

1 2
d j

〉
)

+
∑
i∈[3,d−1](

〈
d 2
i 1

〉
−
〈

1 2
i d

〉
)

−
∑
k∈[4,n]\d(k − 2)(

〈
d 3
2 k

〉
−
〈

1 3
2 k

〉
)

−(d− 2)(
〈
d 3
2 1

〉
−
〈

1 3
2 d

〉
)

= −
∑
i,j∈[3,n]\d, i<j

〈
1 2
d j

〉
−2
∑
j∈[d+1,n]

〈
1 2
d j

〉
+
∑
i∈[3,d−1](

〈
1 i
2 d

〉
−
〈

1 2
i d

〉
)

+
∑
k∈[4,n]\d(k − 2)

〈
1 3
d k

〉
−(d− 2)(

〈
1 2
3 d

〉
−
〈

1 3
2 d

〉
)

= −
∑
j∈[3,d−1](j − 3)(

〈
1 2
j d

〉
−
〈

1 3
2 d

〉
+
〈

1 3
2 j

〉
)

−
∑
j∈[d+1,n](j − 4)

〈
1 2
d j

〉
−2
∑
j∈[d+1,n]

〈
1 2
d j

〉
+
∑
i∈[4,d−1](

〈
1 3
2 d

〉
−
〈

1 3
2 i

〉
−
〈

1 2
i d

〉
)

+
〈

1 3
2 d

〉
−
〈

1 2
3 d

〉
+
∑
k∈[4,d−1](k − 2)(

〈
1 2
k d

〉
+
〈

1 3
2 k

〉
−
〈

1 2
3 d

〉
)

+
∑
k∈[d+1,n](k − 2)(

〈
1 2
d k

〉
+
〈

1 3
2 d

〉
−
〈

1 2
3 d

〉
)

−(d− 2)(
〈

1 2
3 d

〉
−
〈

1 3
2 d

〉
)

=
∑
i∈[4,d−1]

〈
1 2
i d

〉
(−(i− 3)− 1 + (i− 2))

+
∑
i∈[d+1,n]

〈
1 2
d i

〉
(−(i− 4)− 2 + (i− 2))

+
∑
i∈[4,d−1]

〈
1 3
2 i

〉
(−(i− 3)− 1 + (i− 2))

+
〈

1 3
2 d

〉
((d− 3)(d− 4)/2 + (d− 4) + 1 + ((n− 2)(n− 1)/2− (d− 2)(d− 1)/2)) + (d− 2))

−
〈

1 2
3 d

〉
(n− 2)(n− 1)/2
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= (
〈

1 3
2 d

〉
−
〈

1 2
3 d

〉
)(n− 2)(n− 1)/2.

Now we set out to exhibit a somehow ‘dual version’ (?, cf. 6.2.6) of (4.4.1) by different means. Throughout
this enterprise we freely use the language of (S 4.3).

Lemma 4.4.2 Let n be a natural number, let µ be a partition of n and let 〈a〉 be a µ-polytabloid. Let
ξ ⊂ ap, ∅ 6= η ⊆ aq, p < q, such that #ξ + #η = #ap − 1. We obtain

〈 . . . ap . . . aq . . . 〉 ◦ (ξ ∪ η) = #ξ!#η!
∑
x∈ξ̄

〈 . . . aξ̄\x,ηp . . . a
η,ξ̄\x
q . . . 〉.

First we do a single step. Choose x ∈ ξ̄.

〈 . . . ap . . . aq . . . 〉 ◦ (ξ ∪ x ∪ η)
1., (4.3.5)

= (#ξ + 1)!#η! 〈 . . . aξ̄\x,ηp . . . a
η,ξ̄\x
q . . . 〉

2., proof of (4.3.4)
= (#ξ + 1) 〈 . . . ap . . . aq . . . 〉 ◦ (ξ ∪ η)

−#η 〈 . . . ax,yp . . . ay,xq . . . 〉 ◦ (ξ ∪ η)

Iterating this step we obtain, choosing a sequence x, x′, . . . resp. y, y′, . . . of pairwise different elements of
ξ̄ resp. of η such that x0 ∈ ξ̄ is not contained in the former,

〈 . . . ap . . . aq . . . 〉 ◦ (ξ ∪ η)

= #ξ!#η! 〈 . . . aξ̄\xp . . . a
η,ξ̄\x
q . . . 〉

+
#η

#ξ + 1
〈 . . . ax,yp . . . ay,xq . . . 〉 ◦ (ξ ∪ η)

= #ξ!#η! 〈 . . . aξ̄\xp . . . a
η,ξ̄\x
q . . . 〉

+
#η

#ξ + 1

(
(#ξ + 1)!(#η − 1)! 〈 . . . aξ̄\x

′,η
p . . . a

η,ξ̄\x′
q . . . 〉

+
#η − 1

#ξ + 2
〈 . . . (ax,yp )x

′,y′ . . . (ay,xq )y
′,x′ . . . 〉 ◦ (ξ ∪ η)

)
= . . .

= #ξ!#η!
∑

x∈ξ̄\x0

〈 . . . aξ̄\x,ηp . . . a
η,ξ̄\x
q . . . 〉

+
#η!#ξ!

(#ξ + #η)!
〈 . . . aξ̄\x0,η

p . . . a
η,ξ̄\x0
q . . . 〉 ◦ (ξ ∪ η)

= #ξ!#η!
∑
x∈ξ̄
〈 . . . aξ̄\x,ηp . . . a

η,ξ̄\x
q . . . 〉 .

Proposition 4.4.3 (two columns, two boxes) Let n be a natural number. Let k ∈ [0, n/2 − 2]. Let
λ be the partition of n having λ′1 = n − k − 2, λ′2 = k + 2. Let µ be the partition of n with µ′1 = n − k,
µ′2 = k.

In other words, µ arises from λ by the simultaneous shift of two boxes from the second column.

We denote the first column of a λ-tableau by a, the second by b. For elements i 6= j in b we denote

εij := (−1)πi+πj ,

where πi denotes the tuple position of i in b (from top to bottom). εij is not to be confused with the
signature of a permutation. Given a tuple b and two elements i, j in b, we denote by bij, the tuple b with
i and j dropped and the remaining part shifted accordingly.

The ZSn-linear map

Fλ -w Sµ

[a b] -
∑

i,j∈b, πi<πj

εij

〈
a bij,

i
j

〉
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factors over

Sλ/ν -w̄ Sµ/ν,

where ν stands for n− 2k − 1 in case n is even, and for (n− 2k − 1)/2 in case n is odd.

Note that we might still attach further columns to the left of λ in such a way that µ becomes a partition
and extend our morphism accordingly since such columns do not affect the following calculations.

Step 1. We claim that the signed column transpositions (4.3.2) vanish under w. It suffices to consider
transpositions in b. So, let s, t ∈ b, πs < πt. Let the symbol {u < v} take the value +1 in case u < v and
the value −1 in case u > v.

∑
i,j∈b, πi<πj

εij

〈 a bij,

i
j

〉
+

〈 a bij,

i
j

〉
(s t)


=
∑
i,j∈b\{s,t}, πi<πj εij

〈 a bij,

i
j

〉
−

〈 a bij,

i
j

〉
+
∑
j∈b\t, πs<πj εsj

〈 a bsj,

s
j

〉
+

〈 a (bsj,)t,s

t
j

〉
+
∑
j∈b, πt<πj εtj

〈 a btj,

t
j

〉
+

〈 a (btj,)s,t

s
j

〉
+
∑
i∈b, πi<πs εis

〈 a bis,

i
s

〉
+

〈
a (bis,)t,s

i
t

〉
+
∑
i∈b\s, πi<πt εit

〈 a bit,

i
t

〉
+

〈
a (bit,)s,t

i
s

〉
+εst

〈 a bst,

s
t

〉
+

〈
a bst,

t
s

〉
=
∑
j∈b\t, πs<πj

εsj 〈 a bsj,

s
j

〉
− {πt < πj}εjt

〈 a btj,

t
j

〉
+
∑
j∈b, πt<πj

εtj 〈 a btj,

t
j

〉
− εsj

〈 a bsj,

s
j

〉
+
∑
i∈b, πi<πs

εis〈 a bis,

i
s

〉
− εit

〈 a bit,

i
t

〉
+
∑
i∈b\s, πi<πt

εit〈 a bit,

i
t

〉
− {πi < πs}εis

〈 a bis,

i
s

〉
=
∑
j∈b, πs<πj<πt

εsj 〈 a bsj,

s
j

〉
+ εjt

〈 a btj,

t
j

〉
+
∑
i∈b, πs<πi<πt

εis〈 a bis,

i
s

〉
+ εit

〈 a bit,

i
t

〉
= 0.

It is helpful to draw the modifications of the column b as little diagrams. E.g. for the first step the
(abbreviated) equation (bsj,)t,s = −{πt < πj}εstbtj, can be deduced using the diagram
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t s

j

s

��

��

We leave it to the reader to sketch the necessary diagrams for the various steps, here and below.

Step 2. We claim that the one-step Garnir relations G[a b],ξ,η (4.3.2) such that ξ is the (numerically)
upper interval of a and η the (numerically) lower interval of b, and such that a and b are ordered
increasingly from top to bottom, vanish under w modulo ν. In particular, we may drop the π’s from the
formula giving their image of w. Recall that #ξ + #η = #a + 1. Pictorially, ξ and η are situated as
follows.

ξ̄

ξ

η

η̄

An inspection of the proof of (4.3.2) shows that this claim suffices to prove the proposition. We have to
calculate the expression

G[a b],ξ,ηw =
1

#ξ!#η!

 ∑
i,j∈b, i<j

εij

〈 a bij,

i
j

〉 ◦ (ξ ∪ η).

Case #η > 2.

Let y < y′ be the largest two elements of η, i.e. those sitting at the bottom of η. Note εyy′ = −1. Let

η̃ := η\y′
η′ := η\(y, y′).

All occurring bijections in the tuple substitutions are meant to respect the order of the elements they set
in correspondence and are thus determined uniquely once given two sets of numbers.

Step 2a. We calculate the following partial sum.

1

#ξ!#η!

 ∑
i,j∈b\η, i<j

εij

〈 a bij,

i
j

〉 ◦ (ξ ∪ η)

(4.4.2)
=

∑
i,j∈b\η, i<j

εij

∑
x∈ξ̄

〈
aξ̄\x,η

′
((bij,)η

′,ξ̄\x)(y,y′),(i,j)

y
y′

〉+

〈
aξ̄,η̃ ((bij,)η̃,ξ̄)y

′,j

i
y′

〉
+

〈
aξ̄,η̃ ((bij,)η̃,ξ̄)y

′,i

y′

j

〉
=

∑
i,j∈b\η, i<j

εyy′
∑
x∈ξ̄

〈
aξ̄\x,η

′
(byy

′,)η
′,ξ̄\x

y
y′

〉+ εiy′

〈
aξ̄,η̃ (biy

′,)η̃,ξ̄

i
y′

〉
− εy′j

〈
aξ̄,η̃ (by

′j,)η̃,ξ̄

y′

j

〉
= −

(
#b\η

2

)∑
x∈ξ̄

〈
aξ̄\x,η

′
(byy

′,)η
′,ξ̄\x

y
y′

〉+ (#b\η − 1)

∑
i∈b\η

εiy′

〈
aξ̄,η̃ (biy

′,)η̃,ξ̄

i
y′

〉 .

Step 2b. We calculate the following partial sum.

1

#ξ!#η!

 ∑
i∈η, j∈b\η

εij

〈
a bij,

i
j

〉 ◦ (ξ ∪ η)
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(4.3.8), (i y′)
=

1

#ξ!#η!

 ∑
i∈η, j∈b\η

(−εij)

〈
a (bij,)y

′,i

y′

j

〉 ◦ (ξ ∪ η)

=
#η

#ξ!#η!

∑
j∈b\η

εy′j

〈
a by

′j,

y′

j

〉 ◦ (ξ ∪ η)

(4.4.2)
= (#ξ + 1)

∑
j∈b\η

εy′j

∑
x∈ξ̄

〈
aξ̄\x,η

′
((by

′j,)η
′,ξ̄\x)y,j

y′

y

〉+

〈
aξ̄,η̃ (by

′j,)η̃,ξ̄

y′

j

〉
= (#ξ + 1)#b\η

∑
x∈ξ̄

〈
aξ̄\x,η

′
(byy

′,)η
′,ξ̄\x

y
y′

〉
− (#ξ + 1)

∑
j∈b\η

εy′j

〈
aξ̄,η̃ (by

′j,)η̃,ξ̄

j
y′

〉
.

Step 2c. We calculate the following partial sum.

1

#ξ!#η!

 ∑
i,j∈η, i<j

εij

〈 a bij,

i
j

〉 ◦ (ξ ∪ η)

(4.3.8), (y i)(y′ j)
=

1

#ξ!#η!

(
#η
2

)
εyy′

〈
a byy

′,

y
y′

〉
◦ (ξ ∪ η)

(4.4.2)
= −

(
#ξ + 2

2

)∑
x∈ξ̄

〈
aξ̄\x,η

′
(byy

′,)η
′,ξ̄\x

y
y′

〉

Writing

A :=
∑
x∈ξ̄

〈
aξ̄\x,η

′
(byy

′,)η
′,ξ̄\x

y
y′

〉

B :=
∑
i∈b\η

εiy′

〈
aξ̄,η̃ (biy

′,)η̃,ξ̄

i
y′

〉

we obtain, remarking that #ξ = n− k − 1−#η and #b = k + 2,

1

#ξ!#η!

 ∑
i,j∈b, i<j

εij

〈 a bij,

i
j

〉 ◦ (ξ ∪ η) = A

(
−
(

#b\η
2

)
+ (#ξ + 1)#b\η −

(
#ξ + 2

2

))
+B (#b\η − 1− (#ξ + 1))

= −
(
n− 2k − 1

2

)
A− (n− 2k − 1)B.

Case η = (y′) consists of a single element. In particular, ξ = a and ξ̄ = ∅. This case is only formally
distinct from the former for the lack of y.

Step 2a′. We calculate the following partial sum.

1

#ξ!

 ∑
i,j∈b\η, i<j

εij

〈 a bij,

i
j

〉 ◦ (ξ ∪ η)

(4.4.2)
=

∑
i,j∈b\η, i<j

εij

〈 a (bij,)y
′,j

i
y′

〉
+

〈
a (bij,)y

′,i

y′

j

〉
=

∑
i,j∈b\η, i<j

εiy′ 〈 a biy
′,

i
y′

〉
− εy′j

〈
a by

′j,

y′

j

〉
= (#b− 2)

∑
i∈b\η

εiy′

〈
a biy

′,

i
y′

〉
.
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Step 2b′. We calculate the following partial sum.

1

#ξ!

∑
j∈b\η

εy′j

〈
a by

′j,

y′

j

〉 ◦ (ξ ∪ η) = (#ξ + 1)
∑
j∈b\η

εy′j

〈
a by

′j,

y′

j

〉

Note that

(#b− 2)− (#ξ + 1) = −(n− 2k − 1).

Remark 4.4.4 The specializations of the generic morphisms obtained in (4.4.1) and (4.4.3)
are nonzero, as can be seen by regarding standard tableaux.

Remark 4.4.5 There exist the following two-box-shift morphisms, which are predicted
by the result of Carter and Payne [CP 80] and which have been calculated directly by
computer (11). We drop the brackets.

S(3,3,2)/5 - S(2,2,2,1,1)/5

1 4 7

2 5 8

3 6

- −

1 6

2 7

3 8

4

5

+

1 5

2 7

3 8

4

6

−

1 4

2 7

3 8

5

6

+

1 5

2 6

3 8

4

7

−

1 4

2 6

3 8

5

7

+

1 4

2 5

3 8

6

7

−

1 5

2 6

3 7

4

8

+

1 4

2 6

3 7

5

8

−

1 4

2 5

3 7

6

8

+ 2 ·

1 4

2 5

3 6

7

8

S(3,3,1,1)/3 - S(2,2,1,1,1,1)/3

1 5 7

2 6 8

3

4

- −

1 7

2 8

3

4

5

6

+

1 6

2 8

3

4

5

7

−

1 5

2 8

3

4

6

7

−

1 6

2 7

3

4

5

8

+

1 5

2 7

3

4

6

8

−

1 5

2 6

3

4

7

8

S(4,4)/5 - S(3,3,1,1)/5

1 3 5 7

2 4 6 8
- −2 ·

1 5 7

2 6 8

3

4

−

1 4 7

2 6 8

3

5

+

1 3 7

2 6 8

4

5

+

1 4 7

2 5 8

3

6

−

1 3 7

2 5 8

4

6

−2 ·

1 3 7

2 4 8

5

6

+

1 4 6

2 5 8

3

7

−

1 3 6

2 5 8

4

7

−

1 3 6

2 4 8

5

7

−

1 4 5

2 6 8

3

7

+

1 3 5

2 6 8

4

7

+

1 3 5

2 4 8

6

7

−

1 4 6

2 5 7

3

8

+

1 3 6

2 5 7

4

8

+

1 3 6

2 4 7

5

8

+

1 4 5

2 6 7

3

8

−

1 3 5

2 6 7

4

8

−

1 3 5

2 4 7

6

8

− 2 ·

1 3 5

2 4 6

7

8

11Cf. arxiv, math.RT/0003083.
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4.4.2 Approximating (ZS6)[3] via specializations

We shall investigate to what extent the specializations of the generic morphisms already
exhibited give the ties describing (ZS6)[3] (cf. S 2.3.3). This may be considered as the failure
of an attempt to describe the quasiblock 11 via specializations of generic morphisms, say,
up to the 9-tie, in a similar manner to the examples given in (S 4.2.2). We replace direct
matrix calculations by usage of elementary properties of the morphisms, viz. their ranks
and various commutativities.

Consider the following diagram of morphisms modulo 3, in which we abbreviate S̄λ := Sλ/3. The number
in brackets indicates the dimension of the respective Specht module over F3.

0 - S̄(6)
[1]
HHHHj

a

S̄(5,1)
[5]�

����
b @

@R
c

[5] S̄(3,3) S̄(4,1,1)
[10]

?

f

@
@
@R

d �
�
�	

e

[16] S̄(3,2,1)

�
�
�	

g @
@
@R

h

[5] S̄(2,2,2) S̄(3,1,1,1)
[10]

H
HHHj
i �

�	
j

S̄(2,1,1,1,1)
[5]�

����
k

S̄(1,1,1,1,1,1)
[1]�0

a, c, f , j and k form the long exact hook sequence (4.2.4), taken modulo 3. e, h, d and g are further
specializations of the generic morphism in (4.3.31). b is the specialization of the generic morphism in
(4.4.1), i is the negative of the specialization of the generic morphism in (4.4.3). We have

ab = 0
bd = ce
eh = f
dg = 0
dh = 0
eg = 0
gi = hj
ik = 0

as can be checked on a single polytabloid generating the Specht module (cf. S 4.3.5). It would be desirable
to have general statements of this kind.

The ranks of the linear maps are calculated resp. known (proof of 4.2.4) to be

rk a = 1
rk b = 4
rk c = 4
rk d = 5
rk e = 10
rk f = 6
rk g = 5
rkh = 10
rk i = 4
rk j = 4
rk k = 1
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Lemma 4.4.6 (of linear algebra type) Suppose given a commutative triangle in an abelian category
of the form

A⊕B -

[
0 0
1 0

]
B⊕C

@
@
@
@R

e

X,

�
�
�
��

h

where e is a split monomorphism and h is a split epimorphism. Then X can be replaced isomorphically
by A⊕B ⊕ C ⊕K for some object K such that the morphisms become

A⊕B -

[
0 0
1 0

]
B⊕C

@
@
@
@R

[
1 0 0 0
0 1 0 0

]
A⊕B⊕C⊕K.

�
�
�
��[0 0
1 0
0 1
0 0

]

Using that e is a split monomorphism and that the triangle commutes we may substitute X isomorphically
to obtain

A⊕B -

[
0 0
1 0

]
B⊕C

@
@
@
@R

[
1 0 0
0 1 0

]
A⊕B⊕Y .

�
�
�
��[ 0 0
1 0
α β

]

Writing down a coretraction retracted by the substitute of h yields β to be a split epimorphism. Substi-
tuting Y isomorphically then gives

A⊕B -

[
0 0
1 0

]
B⊕C

@
@
@
@R

[
1 0 0 0
0 1 0 0

]
A⊕B⊕C⊕K.

�
�
�
��[

0 0
1 0
α′ 1
α′′ 0

]

Isomorphic substitution by [
1 0 0 0
0 1 0 0
0 α′ 1 0
0 α′′ 0 1

]

yields the result.

Using the commutativities stated above and applying (4.4.6) to eh = f we may substitute our initial
diagram isomorphically by the following diagram of vector spaces over F3.
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0 - X1 HHHHj
[1 0 ]

X1⊕X2
�
����

[
0 0
1 0

]
@
@R

[
0 0
1 0

]
X2⊕U X2⊕X3

?

[
0 0
1 0

]
@
@
@R

[
1 0 0 0
δ 0 0 δ′

] �
�
�	

[
1 0 0 0
0 1 0 0

]
X2⊕X3⊕X4⊕K

�
�
�	

[ 0 0
0 0
ϕ 1
ϕ′ 0

]
@
@
@R

[0 0
1 0
0 1
0 0

]
V ⊕X4 X3⊕X4

H
HHHj

[
0 0
1 0

] �
�	
[

0 0
1 0

]
X4⊕X5�

����
[

0
1

]
X5,�0

in which however the morphisms are S6-linear - the respective module structure given by ‘transport de
structure’ -, only the direct sum decompositions are not.

Now ranks and dg = 0 yield δ′ and ϕ′ to constitute a short exact sequence. Isomorphic substitution
according to this short exact sequence as well as via

[
1 0
δ 1

]
and

[
1 0
ϕ 1

]
yields the diagram

0 - X1 HHHHj
[1 0 ]

X1⊕X2
�
����

[
0 0
1 0

]
@
@R

[
0 0
1 0

]
X2⊕U X2⊕X3

?

[
0 0
1 0

]
@
@
@R

[
1 0 0 0 0
0 0 0 1 0

] �
�
�	

[
1 0 0 0 0
0 1 0 0 0

]
X2⊕X3⊕X4⊕U⊕V

�
�
�	

[0 0
0 0
0 1
0 0
1 0

]
@
@
@R

[0 0
1 0
0 1
0 0
0 0

]
V ⊕X4 X3⊕X4

HHHHj
[

0 0
1 0

] �
�	
[

0 0
1 0

]
X4⊕X5�

����
[

0
1

]
X5.�0

Now choosing integral inverse image decompositions (A.2.1) we obtain the following ties caused by these
morphisms - i.e. resulting from the diagram expressing the linear map to be S6-linear modulo 3 - and
denoted by the same letter, except for the single ties. f is redundant since f = gh. The numbering of the
quasiblocks is that of (S 2.3.1), but we have also recorded the respective partition, and similarly, we have
recorded not only the Morita multiplicities but also the names of the corresponding linear summands.
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2,
(6)

a

1, X1

4,
(5,1)

a 3

c b

1, X1 4, X2

10,
(4,1,1)

c 3

f

e

e e

4, X2 6, X3

9,
(3,1,1,1)

f

j

3

h

h h

6, X3 4, X4

3,
(2,1,1,1,1)

j i 3

k

4, X4 1, X5

1,
(1,1,1,1,1,1)

k

1, X5

8,
(3,3)

b 3d

d d

4, X2 1, U

11,
(3,2,1)

d 3

d d

3

3

3

3

3

3

e

e 3 e 3 3

g 3

g g

h

h

3

h

4, X2 1, U 6, X3 1, V 4, X4

7,
(2,2,2)

3

i

g

g g

1, V 4, X4

a x2 ≡3 x4

b x4 ≡3 x8

c x4 ≡3 x10

d x8 ≡3 x11

e x10 ≡3 x11

f x10 ≡3 x9

g x11 ≡3 x7

h x11 ≡3 x9

i x7 ≡3 x3

j x9 ≡3 x3

k x3 ≡3 x1

As usual, for accordance with (2.3.3) one should check that the morphisms appearing there implicitely

conincide with the morphisms used here. The precise statement of what we have just obtained is that

there exist integral bases of the Specht lattices such that the image of the corresponding embedding of

(ZS6)[3] into a product of integral matrix rings Γ is contained in the ring just described. Which has index

3397 in Γ, whereas the index of that embedding is 3558 (S 2.3.1).
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4.5 Table of morphisms

For ease of reading, we list and describe in an informal manner the generic modular morphisms between
Specht lattices exhibited so far.

combinatorial situation type of formula modulus reference

the target partition arises
from the start by the shift
of an arbitrary box on the
edge to an arbitrary edge
position further down to
the left (provided the re-
sulting figure represents a
partition)

push through the entry on
the withdrawn box posi-
tion to the new position
stepwise and form a linear
combination in the pos-
sibilities of doing so the
coefficients of which are
polynomial in the combi-
natorial data

the path length covered by
the moved box

(4.3.31), in case of
hooks, alternatively
(4.2.3)

from the single row to
the partition with two
boxes shifted into the sec-
ond row, and mutatis mu-
tandis with columns ar-
bitrarily attached to the
left (provided the result-
ing figure represents a par-
tition)

a sum over two entry shifts
minus a sum over one en-
try shifts involving this
entry as coefficient

the row length minus one,
divided by two if possible,
mutatis mutandis in case
of attached columns

(4.4.1)

from a partition consist-
ing of two columns to the
partition arising from it
by shifting two boxes from
the second to the first col-
umn (provided the result-
ing figure represents a par-
tition)

a signed sum over two or-
dered entries from the sec-
ond column appended to
the first column

n− 2k− 1, divided by two
if possible, where k is the
length of the second col-
umn in the target parti-
tion

(4.4.3)

between hooks with cer-
tain parameters required
to be even

the sum of the standard
polytabloids in the target

2 (4.2.11)

from a hook with even col-
umn length to its trans-
pose

a sum over one-entry-
replacements in the trans-
posed polytabloid

2 (4.2.13)

two-box-shift downwards
between hooks, n odd

the sum over two ordered
entries in the row ap-
pended to the column

2 (4.2.14)

two-box-shift upwards be-
tween hooks

the sum over two ordered
entries in the column ap-
pended to the row

2 (4.2.15)



Chapter 5

The truss

We shall construct the truss (German: Gebälk), which is a certain combinatorially given
lattice over an integral path algebra the quiver of which can be depicted as a binary double
tree with some vertices identified, whence its name. The truss gives a complete set of ties for
the inclusion ZSn -

�� ∏
λ Znλ×nλ via (5.3.15). Thus the (non precisely posed) problem

of finding a normal form for the truss turns out to be equivalent to our initial (and likewise
non precisely posed) problem of finding a satisfactory embedding in the sense of (S 0.1.2).

Let it be remarked that the top part of the truss of ZSn arises from the truss of ZSn−1 via
induction (cf. 5.3.3, 5.3.5, 5.3.6, 5.3.7, 5.3.8).

James has discovered short exact sequences of ZSn-lattices, the James extensions [J 78,
17.13], which in particular may be used to filter ZSn by Specht lattices. Such a filtration a
priori suffices to give a complete set of ties, provided the extensions involved in this filtration
are sufficiently well known (cf. C 3).

More precisely, it is possible to write M (1n) as iterated extension, starting with Specht

lattices, and using only James extensions, which then yields such a filtration via pullbacks.

That procedure of unscrewing gives rise to the binary tree mentioned above. The infor-

mation needed of an occurring James extension in order to be able to read off the ties is

a retraction of its inclusion up to a nonzero integral scalar factor, which is divided by the

order of the element in Ext1 represented by such an extension. This can be done in a

combinatorial manner along the lines of the construction of the box shift morphism (S 4.3).

Thus this chapter may be viewed as a corollary to James’ discovery and, as we present it,

to the proof of (4.3.31). However, the latter dependence is merely due to the order in which

we proceed, in view of the overlap of arguments. This overlap consists of parts of (S 4.3.3)

and of the overall idea of (S 4.3). We shall need to recall slightly modified methods and

assertions from there.

Let n be a natural number.

5.1 The James extension

Since we need the integral version (5.1.18) of the James extension [J 78, 17.13], we review

the according part of [J 78]. We derive it from the combinatorial result [J 78, 15.14] by an

application of James’ arguments to our slightly modified assumption.

127
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Definition 5.1.1 A prepartition ν of n is a map

N -ν N
i - νi

such that
∑

i∈N νi = n. Replacing λ by ν, (4.1.1) carries over verbatim until the definition
of the ZSn-lattice Mν, which as a Z-module is free on the set of ν-tabloids.

Let ν be a prepartition of n, let λ be a partition of some natural number 6 n
such that

λi 6 νi

for all i ∈ N. For short, we write λ ⊆ ν for such a situation.

Definition 5.1.2 Let [a] be a ν-tableau. Let Ca,λ be the column stabilizer of [a] which
moves only entries inside λ, i.e.

Ca,λ := {σ ∈ Sn | aijσ ∈ a∗j for all i, j, aijσ = aij for j > λi}.

We define a λ ⊆ ν-semitabloid to be an element of Mν of the form

〈a〉λ :=
∑
σ∈Ca,λ

{a}σεσ

Let the James lattice Sλ⊆ν be the sublattice of Mλ generated over Z by the λ ⊆ ν-
semitabloids.

Note that for ρ ∈ Sn we have Caρ,λ = (Ca,λ)
ρ and thus (〈a〉λ)ρ = 〈aρ〉λ.

The notion of a James lattice is a common generalization both of the ZSn-lattice Mν

(λ = ∅) and of the Specht lattice Sν (λ = ν).

Remark 5.1.3 Let λ̃1 := ν1, λ̃i := λi for i > 2. Then

Sλ⊆ν = Sλ̃⊆ν

as ZSn-sublattices of Mν.

As a corollary to the Garnir relations for the λ-polytabloids in the Specht lattice Sλ (4.1.4)
we obtain the

Corollary 5.1.4 (Garnir relations for λ ⊆ ν-semitabloids) Let [a] be a ν-tableau.
Fix j < k. Let ξ ⊆ {aij | i 6 λ′j} resp. η ⊆ {aik | i 6 λ′k} be a subset of the col-
umn j resp. k inside λ such that

#ξ + #η > λ′j.

For a subset ζ ⊆ [1, n] we denote by Sζ the subgroup of Sn fixing the elements outside ζ,
i.e. Sζ := CSn([1, n]\ζ). We obtain ∑

σ∈Sξ×Sη\Sξ∪η

〈a〉λσεσ = 0.
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As a variant, we dispose of the following Garnir relation for a λ-column and a single
ν-element, not necessarily inside λ.

Corollary 5.1.5 Let [a] be a ν-tableau. Fix j < k. Let ξ := {aij | i 6 λ′j}, let y := alk
for some l ∈ [1, λ′j]. Then ∑

x∈ξ

〈a〉λ(x y) = 〈a〉λ.

Instead of modifying the argument for the ordinary Garnir relation (4.1.4), we prefer to
argue directly, so, in particular, we reprove the case l 6 λ′k. Let z := alj.∑

x∈ξ

〈a〉λ(x y) =
∑
x∈ξ

∑
σ∈Ca,λ

{a}σεσ(x y)

=
∑
x∈ξ

∑
σ∈Ca,λ, zσ=x

{a}σεσ(x y)

+
∑
x∈ξ

∑
σ∈Ca,λ, zσ>x

{a}σεσ(x y)

+
∑
x∈ξ

∑
σ∈Ca,λ, zσ<x

{a}σεσ(x y)

=
∑
x∈ξ

∑
σ∈Ca,λ, zσ=x

{a}σεσ

+
∑

x,u∈ξ, u>x

∑
σ∈Ca,λ, zσ=u

{a}σεσ(x y)

+
∑

x,u∈ξ, u<x

∑
σ∈Ca,λ, zσ=u

{a}σεσ(u y)(x y)

σ′ = σ(x u)
= 〈a〉λ

+
∑

x,u∈ξ, u>x

∑
σ∈Ca,λ, zσ=u

{a}σεσ(x y)

−
∑

x,u∈ξ, x>u

∑
σ′∈Ca,λ, zσ′=x

{a}σ′εσ′(u y)

= 〈a〉λ.

Assume given z > 2 such that λz < λz−1 = νz−1 and such that λz < νz.

Notation 5.1.6 Let

(λAz)i :=

{
λi + 1 for i = z
λi for i 6= z

define a partition λAz of some number 6 n, A for ‘add’. Let

(νRz)i :=


νz−1 + (νz − λz) for i = z − 1
λz for i = z
νi for i 6= z − 1, z

define a prepartition νRz of n, R for ‘raise’. For a ν-tableau [a] we let the νRz-tableau
[aRz] be defined by

(aRz)ij := aij for j 6 min(νi, (νRz)i)
(aRz)z−1, νz−1+j := az,λz+j for j ∈ [1, νz − λz],
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i.e. by ‘shifting the ν\νRz-part of [a] one row up while retaining the order’.

The possibility of νRz not being a partition even in case ν is a partition forces us to work
with prepartitions.

Remark 5.1.7 We have an embedding of ZSn-sublattices of Mν

SλAz⊆ν ⊆ Sλ⊆ν

For a ν-tableau [a] we may write

〈a〉λAz =
∑

σ∈Ca,λAz

{a}σεσ

=
∑

σ∈Ca,λ\Ca,λAz

(
∑
τ∈Ca,λ

{a}τετ )σεσ

=
∑

σ∈Ca,λ\Ca,λAz

〈a〉λσεσ.

Example 5.1.8 Let n = 9, z = 3, ν = (3, 3, 3), λ = (3, 3, 1),

a =
1 2 3
4 5 6
7 8 9

Then λA3 = (3, 3, 2), νR3 = (3, 5, 1),

aR3 =
1 2 3
4 5 6 8 9
7

We need some combinatorial notation in order to generalize the notion of a standard
polytabloid. It is not as straightforward as one may hope (cf. 5.1.15).

Definition 5.1.9 ([J 78, 15.2]) A sequence of type ν is a map

[1, n] -s N
i - si

such that #s−1(j) = νj. The subset Gs ⊆ [1, n] of good terms of the sequence s is
constructively determined by the conditions

(i) s−1(1) ⊆ Gs,

(ii) in case si > 2, i is in Gs iff

#
(
s−1(si − 1) ∩Gs ∩ [1, i− 1]

)
> #

(
s−1(si) ∩Gs ∩ [1, i− 1]

)
.

Let seq(λ ⊆ ν) be the set of sequences s of type ν such that, for all j > 0,

s−1(j) ∩Gs > λj.

More specifically, the prepartition µ of some number 6 n given by µi := #(Gs ∩ s−1(i))
is called the subtype of s. (In fact, µ is a partition).
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Example 5.1.10 Let n = 5, z = 3, ν = (2, 2, 1), λ = (2, 2), λA3 = (2, 2, 1), νR3 = (2, 3).
We list the sequences of type ν together with their subtypes. In the sequences in

seq(λ ⊆ ν)\seq(λAz ⊆ ν)

we replace the values si = z for i 6∈ Gs by s′i = z − 1 and list the resulting sequence s′ in
the third column. I.e. we replace the value 3 by 2 in case the sequence has subtype (2, 2).

sequence s subtype replaced sequence s′

11223 (2, 2, 1)
11232 (2, 2, 1)
11322 (2, 2) 11222
12123 (2, 2, 1)
12132 (2, 2, 1)
12213 (2, 1, 1)
12231 (2, 1, 1)
12312 (2, 2, 1)
12321 (2, 1, 1)
13122 (2, 2) 12122
13212 (2, 2) 12212
13221 (2, 1)
21123 (2, 1, 1)
21132 (2, 1)
21213 (2, 1, 1)
21231 (2, 1, 1)
21312 (2, 1)
21321 (2, 1)
22113 (2)
22131 (2)
22311 (2)
23112 (2, 1)
23121 (2, 1)
23211 (2)
31122 (2, 2) 21122
31212 (2, 2) 21212
31221 (2, 1)
32112 (2, 1)
32121 (2, 1)
32211 (2)

We list the sequences of type νRz together with their subtypes

sequence subtype
11222 (2, 2)
12122 (2, 2)
12212 (2, 2)
12221 (2, 1)
21122 (2, 2)
21212 (2, 2)
21221 (2, 1)
22112 (2, 1)
22121 (2, 1)
22211 (2)

and recognize that in this example there is a bijection from seq(λ ⊆ ν)\seq(λAz ⊆ ν) to
seq(λ ⊆ νRz) given by the replacement described above. This is in fact true in general, as
has been discovered by James [J 78, 15.14] (cf. 5.1.11).

The following combinatorial result of James is the key to the James extension [J 78,
17.13] as well as, independently, to the Littlewood-Richardson rule [J 78, 16.4]. We cite
it without proof.
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Theorem 5.1.11 (James, [J 78, 15.14])

#seq(λ ⊆ ν) = #seq(λAz ⊆ ν) + #seq(λ ⊆ νRz).

Lemma 5.1.12 ([J 78, 17.6, 17.9]) Let s ∈ seq(λ ⊆ ν). Let [as] be a ν-tableau con-
structed in the following manner. The j-th row of [as] is filled with s−1(j) such that
s−1(j) ∩ Gs appears increasingly from the left and such that s−1(j)\Gs appears increas-
ingly from the right. Then

(〈as〉λ | s ∈ seq(λ ⊆ ν)) ⊆ Sλ⊆ν

is a Z-linear independent tuple, in particular, s - 〈as〉λ is injective. Moreover, its Z-
linear span is a pure Z-sublattice of Mν.

In fact, it will turn out to be a Z-linear basis of Sλ⊆ν (cf. 5.1.18).

We claim that for s ∈ seq(λ ⊆ ν), as is standard inside λ, i.e. that (i) [as]i−1,j < [as]ij for
i ∈ [2, λ′j] and that (ii) [as]i,j−1 < [as]ij for j ∈ [2, λi]. Assume x := [as]i−1,j > [as]ij =: y
for some i ∈ [2, λ′j], so that sx = i− 1, sy = i. Since x and y are in Gs we would obtain

j − 1 = # (s−1(i− 1) ∩Gs ∩ [1, x− 1])
> # (s−1(i− 1) ∩Gs ∩ [1, y − 1])
> # (s−1(i) ∩Gs ∩ [1, y − 1])
= j − 1.

Consider the total order on the ν-tabloids in which the largest entry x in different rows
decides the order of two tabloids {a} and {b} as follows. If x is higher in {a} than in {b},
then {a} is smaller than {b}. Let a be a tableau satisfying ai−1,j < aij for i ∈ [2, λ′j]. In
the defining sum

〈a〉λ =
∑
σ∈Ca,λ

{a}σεσ,

{a} is the largest occurring summand. Since the map s - {as} is injective, for different
sequences yield different distributions over the rows, the matrix representing the elements
〈a〉λ, in terms of the tabloid basis ordered as just described, can be written in a lower
triangular manner with entries ∈ {−1, 0, 1}.

Remark 5.1.13 The equations

#seq((0) ⊆ ν) = rkMν

#seq(λ ⊆ λ) = rkSλ

hold.

The first equation results from the bijection from seq((0) ⊆ ν) to the set of ν-tabloids as
given in (5.1.12).

The second equation, which we won’t use but reprove further down, results from the
bijection from seq(λ ⊆ λ) to the set of standard λ-polytabloids as given in (5.1.12). In
fact, surjectivity follows, in the notation used there, by assuming [a] to be standard and,
using induction on y, by considering

# (s−1(i) ∩ [1, y − 1]) = # (s−1(i− 1) ∩ [1, x− 1])
< # (s−1(i− 1) ∩ [1, x])
6 # (s−1(i− 1) ∩ [1, y − 1])

in order to prove y ∈ Gs, so that eventually Gs = [1, n] results.
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Example 5.1.14 Let ν = (3, 3), λ = (3, 2). We list seq(λ ⊆ ν) together with the according
ν-tableaux.

111222 1 2 3
4 5 6

112122 1 2 4
3 5 6

112212 1 2 5
3 4 6

112221 1 2 6
3 4 5

121122 1 3 4
2 5 6

121212 1 3 5
2 4 6

121221 1 3 6
2 4 5

122112 1 4 5
2 6 3

122121 1 4 6
2 5 3

211122 2 3 4
5 6 1

211212 2 3 5
4 6 1

211221 2 3 6
4 5 1

212112 2 4 5
3 6 1

212121 2 4 6
3 5 1 .

Example 5.1.15 (dangerous bend) It is possible that a tableau which is standard inside
λ does not occur as as for some s ∈ seq(λ ⊆ ν). Let ν = (2, 2), λ = (2, 1). We list seq(λ ⊆ ν)
together with the according ν-tableaux,

1122 1 2
3 4

1212 1 3
2 4

1221 1 4
2 3

2112 2 3
4 1

2121 2 4
3 1 ,

and notice that 1 2
4 3 does not occur. Note that s - {as} couldn’t be injective if it did.

Proposition 5.1.16 ([J 78, 17.10, 17.12]) There is a ZSn-linear epimorphism

Sλ⊆ν - Sλ⊆νRz

〈a〉λ - 〈aRz〉λ

which annihilates SλAz⊆ν (cf. 5.1.7).

Given a ν-tableau [a], let

ξ := {azj | j ∈ [1, λz]} = {(aRz)zj | j ∈ [1, (νRz)z]}
η := {azj | j ∈ [λz + 1, νz]} = {(aRz)z−1,j | j ∈ [νz−1 + 1, (νRz)z−1]}.

Consider the ZSn-morphism

F ν - MνRz

[a] -
∑

σ∈Sξ×Sη\Sξ∪η{aRz}σ

(cf. 4.1.1, 5.1.6) which factors over

Mν -ψ MνRz

{a} -
∑

σ∈Sξ×Sη\Sξ∪η{aRz}σ.
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since az∗ = ξ ∪ η.

We evaluate
〈a〉λψ =

∑
ρ∈Ca,λ

({a}ψ)ρερ

=
∑
ρ∈Ca,λ

(
∑

σ∈Sξ×Sη\Sξ∪η{aRz}σ)ρερ

and claim that for (Sξ × Sη)σ 6= (Sξ × Sη) the summand∑
ρ∈Ca,λ

{aRz}σρερ

vanishes. In fact, let x ∈ ξ such that x ∈ ησ, and, writing x =: azj, let y := az−1,j. We
calculate ∑

ρ∈Ca,λ

{aRz}σρερ =
∑

ρ∈Ca,λ, xρ>yρ

({aRz}σρερ − {aRz}σ(x y)ρερ)

=
∑

ρ∈Ca,λ, xρ>yρ

({aRz}σρερ − {aRz}(xσ−1 y)σρερ)

=
∑

ρ∈Ca,λ, xρ>yρ

0.

Thus
〈a〉λψ =

∑
ρ∈Ca,λ

{aRz}ρερ

=
∑

ρ∈CaRz,λ

{aRz}ρερ

= 〈aRz〉λ.

It remains to be seen that 〈a〉λAzψ = 0. We modify the argument just given by remarking
that now for any σ there is an x := azj with j ∈ [1, λz + 1] such that x ∈ ησ.

Lemma 5.1.17 Let X -f Y be a morphism of Z-lattices. If dimFp Im (X/p -f Y/p) is
independent of the prime p, then Im f is a pure sublattice of Y .

Write f in elementary divisor form (A.1.1).

Theorem 5.1.18 (James, [J 78, 17.13]) The sequence of ZSn-lattices

0 - SλAz⊆ν - Sλ⊆ν - Sλ⊆νRz - 0,
〈a〉λAz - 〈a〉λAz

〈a〉λ - 〈aRz〉λ

called the James extension, is short exact. Moreover, rkSλ⊆ν = #seq(λ ⊆ ν), and the
tuple

(〈as〉λ|s ∈ seq(λ ⊆ ν))

forms a basis of Sλ⊆ν (cf. 5.1.12).

In order to apply a rank argument, we need to know the left hand side inclusion to be
pure. So we first reduce modulo a prime p, using the analogous definition of the James
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module Sλ⊆νFp
over FpSn as being generated by the λ ⊆ ν-semitabloids inside Mν/p. NB

we do not know yet that Sλ⊆ν/p = Sλ⊆νFp
but only a surjection of the former onto the

latter.

The above sequence also exists for the James modules over Fp, as can be seen by the
construction used in (5.1.16), moreover, composition is zero, the left hand side morphism
is an inclusion and the right hand side morphism is surjective.

The elements listed in (5.1.12) are linearly independent over Z and span a pure sublattice
of Mν . Hence their images in Sλ⊆νFp

⊆Mν/p are linearly independent over Fp.

Since every pair λ ⊆ ν, λ1 = ν1, can be turned into a pair of type (µ1) ⊆ µ, µ being
a prepartition, by a sequence of inverse Rζ-operations followed by a sequence of inverse
Aζ-operations for various ζ > 1 while taking care of the (λζ−1 = νζ−1)-condition, we
may assume by induction and by (5.1.13) the equality dimSλ⊆νFp

= #seq(λ ⊆ ν) to

hold in order to prove that the inequalities dimSλAz⊆νFp
> #seq(λAz ⊆ ν) as well as

dimSλ⊆νRzFp
> #seq(λ ⊆ νRz) are equalities.

#seq(λ ⊆ ν) = dimSλ⊆νFp

> dimSλAz⊆νFp
+ dimSλ⊆νRzFp

> #seq(λAz ⊆ ν) + #seq(λ ⊆ νRz)
(5.1.11)

= #seq(λ ⊆ ν).

Actually, we use only #seq(λAz ⊆ ν) + #seq(λ ⊆ νRz) > #seq(λ ⊆ ν), i.e. welldefinedness

and injectivity of a map seq(λ ⊆ ν)\seq(λAz ⊆ ν) - seq(λ ⊆ νRz).

Applying (5.1.17) to the map
F ν - Mν

[a] - 〈a〉λAz
etc. we see that the inclusions SλAz⊆ν ⊆ Sλ⊆ν ⊆Mν are pure. Therefore, Sλ⊆ν/p = Sλ⊆νFp

,

so that rkSλ⊆ν = #seq(λ ⊆ ν). A comparison of ranks shows the James extension to be
short exact.

Remark 5.1.19 There are further sublattices of Mν , given by summing up alternatingly
over place permutation actions for an arbitrary subdivision of ν into parts of columns (to
make it nonzero), and inclusions between them by fusing vertically such parts. I do not
know in which cases the cokernel of such an inclusion is again of such a form.
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5.2 Retracting the James extension up to an integer,

simple case

We keep the notation of (S 5.1), but specialize to the case that ν is a partition
and that there is a z > 2 such that

λi =

{
νz − 1 for i = z
νi for i 6= z.

Let k := ν1.

The James extension (5.1.18)

(0 - Sν - Sλ⊆ν - Sλ⊆νRz - 0) ∈ Ext1
ZSn(Sλ⊆νRz , Sν)

represents an element of finite order in Ext1 (cf. A.3.3), whence it allows a retraction up to

m = (Sν - Sλ⊆ν - Sν),

where m is a nonzero integer divisible by this order. In our particularly simple situation we
shall exhibit such a retraction in a combinatorial manner. Curiously, its formula is similar
to that of the morphism exhibited in (4.3.31). I tend to consider (5.2.9) to be the reason
for the sums of type fe to occur (cf. 5.2.1), being ‘potential retractions up to an integer’.

The reader might wish to have seen some illustration in advance (S 5.2.5).

5.2.1 Preparation

Notation 5.2.1 Let
[a] = [a1 . . . ak]

be a ν-tableau, where ai denotes its i-th column and ai,j the entry in the i-th column and
the j-th row. Note that this means a change of notation compared to (S 5.1), which is
convenient to handle columns. Let g := νz,

y := aνz ,z,

so that y is the ‘element in ν but not in λ’, situated in column g and in row z.

Let e be a function

[g + 1, k] -e {0, 1}
j - ej,

let

[1, l] -i [g + 1, k]
j - ij

be the strictly monotone function of which e is the characteristic function, i.e. l :=
#e−1(1), j ∈ i[1,l] :⇐⇒ ej = 1. Extend e to eg := 1 and, accordingly, i to i0 := g.
Finally, extend e to [1, k] by zero.

Let

F ν -fe Sν

[a] -
∑
xj∈aij

〈
. . . ay,x1

i0
. . . ax1,x2

i1
. . . axl,yil

. . .
〉
.

Without further specification, ‘xj ∈ aij ’ means ‘xj ∈ aij , j ∈ [1, l]’.
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Lemma 5.2.2 The kernel of
F ν - Sλ⊆ν

[a] - 〈a〉λ
is generated over ZSn by the signed column transpositions inside λ, by the Garnir
relations for y of the form G′a,λ,1 and by the one-step Garnir relations inside λ,
denoted Ga,λ,ξ,η.

Signed column transpositions inside λ are elements of the form

[a1 . . . aj . . . ak] + [a1 . . . aj . . . ak](s t)

where s = aj,p, t = aj,q for some p, q ∈ [1, λ′j], p 6= q.

Garnir relations for y are elements of the form

G′a,λ,j := [. . . aj . . . ag . . .]−
∑
x∈aj

[. . . ax,yj . . . ay,xg . . .]

where j < g. In case g = 1 we set G′a,λ,1 := 0.

Let j ∈ [1, k − 1]. Let ξ ⊆ {aj,i | i 6 λ′j}, η ⊆ {aj+1,i | i 6 λ′j+1} be given such that

#ξ + #η > λ′j.

A one-step Garnir relation inside λ is an element of the form

Ga,λ,ξ,η :=
∑

σ∈Sξ×Sη\Sξ∪η

[a]σεσ.

The elements of these three kinds in fact lie in that kernel (5.1.4, 5.1.5), so that (F ν modulo
the submodule generated by them)=: F̄ ν surjects onto Sλ⊆ν . Therefore, by (5.1.18), it
would suffice to show that ([as]|s ∈ seq(λ ⊆ ν)) generates F̄ ν . We proceed in different
way.

It suffices to exhibit a tuple in F ν which remains linearly independent in Sλ⊆ν and which
generates F̄ ν Z-linearly. For then the same argument applies, i.e. the induced surjection
from F̄ ν to Sλ⊆ν maps a Z-generating tuple to a Z-linearly independent tuple, hence a
Z-basis to a Z-basis.

[a] is (provisonally) called z-λ-standard if

ai,j < ai′,j for j > 1 and i, i′ ∈ [1, λj], i < i′

ai,j < ai,j′ for i > 1 and j, j′ ∈ [1, λ′i]\{z}, j < j′

ai,j < ai,z for i ∈ [1, λz] and j ∈ [1, λ′i]\{z}.

This is, we ‘think of the zth row as of the last one’. Accordingly, we introduce a total
order on the ν-tabloids by declaring {a} to be smaller than {b} if the largest entry x
which is in different rows decides their ordering as follows. If its row position in {a} (resp.
{b}) is z, then {b} is smaller than {a} (resp. {a} is smaller than {b}). If the row position
of x neither in {a} nor in {b} is z, then {a} is smaller than {b} iff x is higher in {a} than
in {b}.
Consider the row equivalence classes of the set of z-λ-standard ν-tableaux, i.e. the orbits
under the respective row stabilizer, and let [a] represent such a class. Assume y′ to be the
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minimal element of the z-th row. Replacing y by y′ and ordering the first g − 1 entries
of the z-th row increasingly yields a z-λ-standard ν-tableau again. Choose from the row
equivalence class this ν-tableau and consider the tuple T formed by them.

Letting [a] be such a chosen tableau, we observe that {a} is the maximal occurring element
in the defining sum of 〈a〉λ. Moreover, the tabloids corresponding to the chosen tableaux
differ pairwise by construction. Therefore, the tuple formed by the chosen tableaux is
linearly independent when regarded in Sλ⊆ν .

We claim that the tuple T (of y-minimal z-λ-standard tableaux) generates F̄ ν Z-linearly.
Using signed column transpositions inside λ and one-step Garnir relations to standardize
the λ-area by the method described in (4.3.2), we see that the z-λ-standard tableaux
generate F̄ ν . Moreover, we see that it is possible in F̄ ν to write an arbitrary tableau as
a linear combination of z-λ-standard tableaux of the same y-value.

We perform an induction over y.

Start of the induction, y = 1.

Step of the induction. Given a z-λ-standard tableau a. Assume y not to be minimal in
the z-th row and let y′ = a1,z < y the minimal element of the z-th row, whence g > 2.
The Garnir relation for y given by G′a,λ,1 has as its negative summands tableaux with
smaller y-value than [a].

Example 5.2.3 Let ν = (2, 2), let λ = (2, 1). The tuple T appearing in the proof of (5.2.2) consists of
the elements

1 2
4 3 ,

1 3
4 2 ,

1 4
3 2 ,

2 3
4 1 ,

2 4
3 1 ,

which differ from those chosen via sequences in (5.1.15).

Remark 5.2.4 I do not know whether the relations exibited above mutatis mutandis suffice to generate
the kernel of F ν - Sλ⊆ν for a general pair λ ⊆ ν.

Lemma 5.2.5 The signed column transpositions inside λ vanish under fe.

This is the same calculation as in (4.3.3, ‘Case p ∈ [g + 1, k]’).

Lemma 5.2.6 The Garnir relation for y given by Ga,λ,j, j < g, vanishes under fe.

This follows by (5.1.5).

5.2.2 Strategy

Orientation 5.2.7 We shall exhibit a Z-linear combination

F ν -f :=
∑
e uefe Sν

of the maps fe (5.2.1), where e runs over the maps [g + 1, k] -
e {0, 1}, which allows a

commutative diagram

Sν - Sλ⊆ν
〈a〉 - 〈a〉

?

m

@
@

@
@I

f̄

?

[a]

?
〈a〉λ

Sν� f F ν
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for some integer m that depends on the combinatorial data and which will result from
the calculation. Using (5.2.2, 5.2.5, 5.2.6), it remains to evaluate the expressions

Ga,λ,ξ,ηfe =
1

#ξ!#η!

∑
xj∈aij

〈. . . ay,x1
g . . . ax1,x2

i1
. . . axl,yil

〉 ◦ (ξ ∪ η)

and combine them Z-linearly over e to yield zero, where the coefficients may not depend
on ξ and η.

Suppose given a ν-tableau a. Let p ∈ [1, k − 1], let ξ ⊆ ap, η ⊆ ap+1 such that
y 6∈ ξ, y 6∈ η and such that

#ξ + #η = #λ′p + 1.

We have to distinguish seven cases.

(I) ep = 1, ep+1 = 1.

(i) p = g = i0, p+ 1 = g + 1 = i1.

(ii) p = is, p+ 1 = is+1, s ∈ [1, l − 1].

(II) ep = 1, ep+1 = 0.

(i) p = g = i0, eg+1 = 0.

(ii) p = is, s ∈ [1, l], ep+1 = 0.

(III) ep = 0, ep+1 = 1.

(i) g > 2, p = g − 1, p+ 1 = i0 = g.

(ii) ep = 0, p+ 1 = is, s ∈ [1, l].

(IV) ep = 0, ep+1 = 0.

Let a′g := ag\y. For a subset ξ ⊆ ap, let ξ̄ := ap\ξ in case p 6= g, let ξ̄ := a′g\ξ in
case p = g. Note that in the latter case we stipulate ξ ⊆ a′g.

We start by recalling a particular Garnir relation (4.1.4).

Lemma 5.2.8 Given a ν-tableau [a], p, q ∈ [1, k], p < q, c ∈ aq, d ∈ ap, we have∑
b∈ap

〈
. . . ab,cp . . . ac,bq . . .

〉
= 〈. . . ap . . . aq . . .〉 .∑

b∈ap\d
〈
. . . ab,cp . . . ac,bq . . .

〉
= 〈. . . ap . . . aq . . .〉 −

〈
. . . ad,cp . . . ac,dq . . .

〉
.

Lemma 5.2.9 (potential retractions) Suppose given an integral linear combination

F ν -f :=
∑
e uefe Sν

factorizing as in (5.2.7). Then

(Sν -ι Sλ⊆ν -f̄ Sν) =
∑

[g+1,k] -
e
{0,1}

ueν
′
il
,
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where, as in (5.2.1), il = max{e−1(1)}, including eg = 1, and where ι is the inclusion of the James
extension (5.1.18).

We calculate using the language of (4.3.1).

〈a〉 -ι 〈a〉
=

∑
σ∈Ca

{a}σεσ

=
∑

σ∈Ca, yσ=y

{a}σεσ

+
∑

x0∈a′g

∑
σ∈Ca, yσ=x0

{a}σεσ

σ′ = (x0 y)σ
=

∑
σ∈Ca,λ

{a}σεσ

−
∑

x0∈a′g

∑
σ′∈Ca(x0 y),λ

{a}(x0 y)σ′εσ′

= 〈a〉λ −
∑
x0∈a′g

〈
. . . (a′g)

x0,y . . .
x0

〉
λ

-
∑
e uefe

∑
e

ue

( ∑
xj∈aij , j∈[1,l]

〈
. . . ay,x1

i0
. . . ax1,x2

i1
. . . axl,yil

. . .
〉

−
∑

x0∈a′i0 , xj∈aij , j∈[1,l]

〈
. . . (a′i0)x0,y . . . ax1,x2

i1
. . . axl,x0

il
x1

〉)

=
∑
e

ue

( ∑
xj∈aij , j∈[1,l]

〈
. . . ay,x1

i0
. . . ax1,x2

i1
. . . axl,yil

. . .
〉

−
∑

x0∈a′i0 , xj∈aij , j∈[1,l]

〈
. . . (a′i0)x0,y . . . ax1,x2

i1
. . . (axl,yil

)y,x0

x1

〉)
(5.2.8)

=
∑
e

ue

( ∑
xj∈aij , j∈[1,l]

〈
. . . ay,x1

i0
. . . ax1,x2

i1
. . . axl,yil

. . .
〉

−
∑

xj∈aij , j∈[1,l]

〈
. . . a′i0 . . . ax1,x2

i1
. . . axl,yil

x1

〉)

+
∑

xj∈aij , j∈[1,l]

〈
. . . a′i0 . . . ax1,x2

i1
. . . axl,x1

il
y

〉)

=
∑
e

ue

( ∑
xj∈aij , j∈[1,l]

〈
. . . ai0 . . . ax1,x2

i1
. . . axl,x1

il

〉)
(5.2.8)

=
∑
e

ue

( ∑
xj∈aij , j∈[2,l]

〈
. . . ai0 . . . ax2,x3

i2
. . . axl,x2

il

〉)
(5.2.8)’s

=
∑
e

ue

( ∑
xl∈ail

〈
. . . ai0 . . . axl,xlil

〉)

=

(∑
e

ueν
′
il

)
〈a〉.

Notation 5.2.10 Suppose given ξ ∈ a′g, η ∈ ag+1 such that #ξ + #η = ν′g, w ∈ η, and a strictly
increasingly ordered tuple (u1, . . . , ut) ⊆ [g + 2, k], possibly empty, with characteristic function

[g + 1, k] -
e
{0, 1}.
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Denote

Awe,ξ,η := A(u1, . . . , ut)
w
ξ,η :=

∑
xj∈auj , j∈[1,t]

〈
. . . (a′g)

ξ̄,η\w (a
η\w,ξ̄
g+1 )w,x1 . . . ax1,x2

u1
. . . axt,yut . . .

w

〉
.

So in particular, in case t = 0 we obtain

A()wξ,η =

〈
. . . (a′g)

ξ̄,η\w (a
η\w,ξ̄
g+1 )w,y . . .

w

〉
.

Notation 5.2.11 Suppose given ξ ⊆ ap, η ⊆ ap+1, p ∈ [g + 1, k − 1], such that #ξ + #η = ν′p + 1,
w ∈ η, and a strictly increasingly ordered tuple (u1, . . . , ut) ⊆ [g + 1, k]\{p, p+ 1}, possibly empty, with

characteristic function [g + 1, k] -
e
{0, 1} (so ep = ep+1 = 0). Denote

Bwe,ξ,η := B(u1, . . . , ut)
w
ξ,η :=

1

ν′p!

∑
xj∈auj , j∈[1,t]

〈
. . . ay,x1

g . . . a
xq−1,w
uq−1 . . . a

ξ̄,η\w
p (a

η\w,ξ̄
p+1 )w,xq . . . a

xq,xq+1
uq . . . axt,yut . . .

〉
◦ (ξ ∪ η).

So in particular, in case t = 0 we obtain

B()wξ,η =
1

ν′p!

〈
. . . ay,wg . . . aξ̄,η\wp (a

η\w,ξ̄
p+1 )w,y . . .

〉
.

5.2.3 Calculations

We shall refer to the calculations in (S 4.3.3) in case this is possible after an obvious modification.

Calculation 5.2.12 We treat the case (I.i), i.e. ξ ⊆ a′g = a′i0 , η ⊆ ag+1 = ai1 , #ξ + #η = ν′g. Choose
w ∈ η. We obtain

Ga,λ,ξ,ηfe
(4.3.13)

= (1 + ν′g − ν′g+1)
∑

xj∈aij , j∈[2,l]

〈
. . . (a′g)

ξ̄,η\w (a
η\w,ξ̄
i1

)w,x2 . . . ax2,x3

i2
. . . axl,yil

. . .
w

〉
(5.2.10)

= (1 + ν′g − ν′g+1)A(i2, . . . , il)
w
ξ,η.

Calculation 5.2.13 We treat the case (I.ii), i.e. ξ ⊆ ap = ais , η ⊆ ap+1 = ais+1
, s ∈ [1, l − 1],

#ξ + #η = ν′is + 1. Choose w ∈ η. We obtain

Ga,λ,ξ,ηfe
(4.3.15)

= − 1+ν′p−ν
′
p+1

ν′p!

∑
xj∈aij , j 6=s,s+1

〈
ay,x1
g . . . a

xs−1,w
is−1

. . . a
ξ̄,η\w
is

(a
η\w,ξ̄
is+1

)w,xs+2 . . . a
xs+2,xs+3

is+2
. . . axl,yil

〉
◦ (ξ ∪ η)

(5.2.11)
= −(1 + ν′p − ν′p+1)B(i1, . . . , îs, îs+1, . . . , il)

w
ξ,η.

Calculation 5.2.14 We treat the case (II.i), i.e. ξ ⊆ a′g = a′i0 , η ⊆ ag+1, eg+1 = 0, #ξ + #η = ν′g.
Choose w ∈ η. We obtain

Ga,λ,ξ,ηfe
(4.3.17)

=
∑
xj∈aij

〈
. . . (a′g)

ξ̄,η\w (a
η\w,ξ̄
g+1 )w,x1 . . . ax1,x2

i1
. . . axl,yil

. . .
w

〉
(5.2.10)

= A(i1, . . . , il)
w
ξ,η.
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Calculation 5.2.15 We treat the case (II.ii), i.e. ξ ⊆ ap = ais , s ∈ [1, l], η ⊆ ap+1, ep+1 = 0, #ξ+#η =
νis + 1. Choose w ∈ η. We obtain

Ga,λ,ξ,ηfe
(4.3.18)

= − 1
ν′p!

∑
xj∈aij , j 6=s

〈
. . . ay,x1

g . . . a
xs−1,w
is−1

. . . a
ξ̄,η\w
is

(a
η\w,ξ̄
p+1 )w,xs+1 . . . a

xs+1,xs+2

is+1
. . . axl,yil

. . .
〉
◦ (ξ ∪ η)

(5.2.11)
= −B(i1, . . . , îs, . . . , il)

w
ξ,η.

Calculation 5.2.16 We treat the case (III.i), i.e. ξ ⊆ ag−1, η ⊆ a′g, #ξ + #η = ν′g−1 + 1, to obtain

Ga,λ,ξ,ηfe
Garnir, (4.1.4)

= 0.

Calculation 5.2.17 We treat the case (III.ii), i.e. ξ ⊆ ap, ep = 0, η ⊆ ap+1 = ais , s ∈ [1, l], #ξ+ #η =
ν′p + 1. Choose w ∈ η. We obtain

Ga,λ,ξ,ηfe
(4.3.21)

= 1
ν′p!

∑
xj∈aij , j 6=s

〈
. . . ay,x1

g . . . a
xs−1,w
is−1

. . . a
ξ̄,η\w
p (a

η\w,ξ̄
is

)w,xs+1 . . . a
xs+1,xs+2

is+1
. . . axl,yil

〉
◦ (ξ ∪ η)

(5.2.11)
= B(i1, . . . , îs, . . . , il)

w
ξ,η.

Calculation 5.2.18 We treat the case (IV), i.e. ξ ⊆ ap, η ⊆ ap+1, ep = 0, ep+1 = 0, #ξ+ #η = ν′p + 1,
to obtain

Ga,λ,ξ,ηfe
Garnir, (4.1.4)

= 0.

5.2.4 Polynomial Coefficients

We use the notation introduced in (4.3.25).

Proposition 5.2.19 Let

Yj := −(ν ′g − g) + (ν ′j − j)

for j ∈ [g, k], so Yg = 0. Let

f 0 :=
∑

[g+1,k] -
e
{0,1}

Y 1−efe.

For a ν-tableau a, for p ∈ [1, k − 1] and for ξ ⊆ ap, η ⊆ ap+1 such that y 6∈ ξ, y 6∈ η and
such that #ξ + #η = λ′p + 1 we have

Ga,λ,ξ,ηf
0 = 0.

Hence f 0 induces a morphism of ZSn-lattices

Sλ⊆ν -f̄
0

Sν

such that the composition with the inclusion of the James extension (5.1.18) turns out to
be

(Sν - Sλ⊆ν -f̄
0

Sν) =
∑

[g+1,k] -
e
{0,1}

Y 1−eν ′il
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where, as in (5.2.1), il = max{e−1(1)}, including eg = 1 (5.2.7, 5.2.9).

Choose w ∈ η.

Case p = g, i.e. (I.i) or (II.i). Let [g + 2, k] -
e′ {0, 1} be given. From (5.2.12, 5.2.14) we

take

Ga,λ,ξ,η(Y
1−[1e′]f[1e′] + Y 1−[0e′]f[0e′])

= (1 · (1 + ν ′g − ν ′g+1) + Yg+1 · 1)Y 1−e′Aw[0e′],ξ,η
= ((1 + ν ′g − ν ′g+1)− (ν ′g − g) + (ν ′g+1 − (g + 1)))Y 1−e′Aw[0e′],ξ,η
= 0.

Case p ∈ [g+ 1, k− 1], i.e. (I.ii), (II.ii), (III.ii) or (IV). Let [g+ 1, k]\{p, p+ 1} -e
′

{0, 1}
be given. From (5.2.13, 5.2.15, 5.2.17, 5.2.18) we take

Ga,λ,ξ,η(Y
1−[11e′]f[11e′] + Y 1−[10e′]f[10e′] + Y 1−[01e′]f[01e′] + Y 1−[00e′]f[00e′])

= (1 · (−(1 + ν ′p − ν ′p+1)) + Yp+1 · (−1) + Yp · 1 + YpYp+1 · 0)Y 1−e′Bw
[00e′],ξ,η

= (−(1 + ν ′p − ν ′p+1) + (ν ′g − g)− (ν ′p+1 − (p+ 1))− (ν ′g − g) + (ν ′p − p))Y 1−e′Bw
[00e′],ξ,η

= 0.

Case p ∈ [1, g − 1], i.e. (III.i) or (IV). Let [g + 1, k] -
e {0, 1} be given. From (5.2.16,

5.2.18) we take

Ga,λ,ξ,ηfe = 0.

We shall simplify the formula for the composition of the inclusion of the James extension with f0 (5.2.19)
which we obtain by (5.2.9).

Remark 5.2.20 For j ∈ [g + 1, k] we have

ν′j + (ν′g − g + j − 1)Yj = (Yj + 1)(ν′g − g + (j + 1)− 1).

Lemma 5.2.21 Let κ ∈ [g + 1, k + 1]. We obtain

 ∑
[κ,k] -

e
{0,1}

Y 1−eν′il

−
 ∏
j∈[κ−1,k]

Yj

 = (ν′g + k − g)
∏

j∈[κ,k]

(Yj + 1).

where il := κ− 1 for e = 0 or e = ∅ (i.e. κ = k + 1).

We sort the left hand side sum according to the occurring term ν′j , j ∈ [κ−1, k], which has as its coefficient

 ∑
[κ,j−1] -

e
{0,1}

Y 1−e


 ∏
i∈[j+1,k]

Yj

 =

 ∏
i∈[κ,j−1]

(Yi + 1)

 ∏
i∈[j+1,k]

Yi
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and rewrite it as

−
∏
j∈[κ−1,k] Yj +

∑
j∈[κ−1,k]

(∏
i∈[κ,j−1](Yi + 1)

)
· ν′j ·

(∏
i∈[j+1,k] Yi

)
= (ν′g − g + κ− 1)Yκ

∏
j∈[κ+1,k] Yj

+ν′κ
∏
j∈[κ+1,k] Yj

+
∑
j∈[κ+1,k]

(∏
i∈[κ,j−1](Yi + 1)

)
· ν′j ·

(∏
i∈[j+1,k] Yi

)
(5.2.20)

= (Yκ + 1)(ν′g − g + (κ+ 1)− 1)Yκ+1

∏
j∈[κ+2,k] Yj

+(Yκ + 1)ν′κ+1

∏
i∈[κ+2,k] Yi

+
∑
j∈[κ+2,k]

(∏
i∈[κ,j−1](Yi + 1)

)
· ν′j ·

(∏
i∈[j+1,k] Yi

)
(5.2.20)

= (Yκ + 1)(Yκ+1 + 1)(ν′g − g + (κ+ 2)− 1)Yκ+2

∏
j∈[κ+3,k] Yj

+(Yκ + 1)(Yκ+1 + 1)ν′κ+2

∏
i∈[κ+3,k] Yi

+
∑
j∈[κ+3,k]

(∏
i∈[κ,j−1](Yi + 1)

)
· ν′j ·

(∏
i∈[j+1,k] Yi

)
(5.2.20)

=
· · ·

(5.2.20)
= (Yκ + 1)(Yκ+1 + 1) · · · (Yk−1 + 1)(ν′g − g + k − 1)Yk

+(Yκ + 1)(Yκ+1 + 1) · · · (Yk−1 + 1)ν′k
(5.2.20)

=
(∏

j∈[κ,k](Yj + 1)
)

(ν′g − g + k).

We shall exhibit a redundant factor.

Lemma 5.2.22 Given p ∈ [g + 1, k], [g + 1, k]\{p, p + 1} -e
′

{0, 1} such that ν ′p = ν ′p+1,
we have

f[10e′] = f[11e′].

We apply a Garnir relation (4.1.4), cf. (4.3.28).

Lemma 5.2.23 Let

r :=
∏

j∈[g+1,k−1], ν′j = ν′j+1
Yj .

Then Sλ⊆ν -f
0

Sν is divisible by r. Let f := f 0/r. Note that we may also write

r =
∏

j∈[g+2,k], ν′j−1 = ν′j

(Yj + 1).

In the part of the proof of (4.3.29) concerning ‘f ’, we replace ‘X’ by ‘Y ’ and ‘(4.3.28)’ by
‘(5.2.22)’.

Lemma 5.2.24 f is indivisible.

Let [ǎ] be the ν-tableau which has y = n as its maximal entry, which is ordered increasingly
down columns and for which i < i′, ǎi,j 6= y and ǎi′,j′ 6= y implies ǎi,j < ǎi′,j′ . In particular,

[ǎ] corresponds to a sequence in seq(λ ⊆ ν) (5.1.12). Suppose given [g + 1, k] -
e {0, 1}

such that for p, q ∈ [g + 1, k], p < q and ν ′p = ν ′q we have ep 6 eq. The summands of

[ǎ]fe =
∑
xj∈ǎij

〈
. . . ǎ′g . . . ǎ

x1,x2

i1
. . . ǎx2,x3

i2
. . . ǎxl,yil

. . .
x1

〉
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are standard ν-polytabloids up to sign. Note that, after ordering columns, ‘the new place
of y is a proper corner’. Since we may write the image of [ǎ] under f as an integral linear
combination of such elements (5.2.22), and since the occurring standard polytabloids are
pairwise different because of different fillings of the columns, we are reduced to consider
a chosen such e and to prove indivisibility for the corresponding summand

1

r

 ∑
e′∈E(e)

Y 1−e′

 [ǎ]fe,

where

E(e) := {[g+1, k] -
e′ {0, 1} | ∀i ∈ [g+1, k] (e′i = ei ∨ ∃j ∈ [g+1, i−1] (ν ′j = ν ′i ∧ e′j = ej = 1))}.

However, for e = 11 . . . 1 we obtain∑
e′∈E(e)

Y 1−e′ (4.3.27)
=

∏
i∈[g+2,k], ν′i−1 = ν′i

(Yi + 1)
(5.2.23)

= r.

We summarize to the

Theorem 5.2.25 Keep the notation from (5.2.1, 5.2.19, 5.2.23). The ZSn-linear map

f =
1

r

∑
[g+1,k] -

e
{0,1}

Y 1−efe : F ν - Sν

factors over

Sλ⊆ν -f̄ Sν ,

which is indivisible, i.e. f̄ 6≡s 0 for s > 2, and which composes to

(Sν - Sλ⊆ν -f̄ Sν) = (ν ′g + k − g)
∏

j∈[g+1,k], ν′j−1>ν
′
j

(Yj + 1) =: mλ⊆ν

with the inclusion of the James extension (5.1.18).

This follows from (5.2.19, 5.2.23, 5.2.24, 5.2.21 for κ = g + 1).

Corollary 5.2.26 The James extension (5.1.18)

J := (0 - Sν - Sλ⊆ν - Sλ⊆νRz - 0) ∈ Ext1
ZSn(Sλ⊆νRz , Sν)

has order m := |mλ⊆ν |.
Let m′ be the order of J , so that m′ divides m (5.2.25). Note that HomZSn(Sλ⊆νRz , Sν) = 0
since Sλ⊆νRz has a filtration of Specht lattices to partitions strictly dominating ν (5.1.18,
[J 78, 3.2]). The exact sequence

0 - HomZSn(Sλ⊆νRz , Sν/m′) - Ext1
ZSn(Sλ⊆νRz , Sν) -m

′

Ext1
ZSn(Sλ⊆νRz , Sν)

yields a (unique) morphism Sλ⊆νRz - Sν/m′ which pulls back

0 - Sν -m
′

Sν - Sν/m′ - 0
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to J , so in particular it yields a retraction Sλ⊆ν -f
′

Sλ⊆νRz of J up to m′. Since the
morphism Sλ⊆νRz - Sν/m which pulls back

0 - Sν -m Sν - Sν/m - 0

to J is likewise unique, we obtain

f ≡m
m

m′
f ′,

thus

f ≡m/m′ 0,

whence m = m′ by indivisibility of f (5.2.25).

Remark 5.2.27 Assume νRz to be a partition. The composition

SνRz - Sλ⊆νRz -f̄ Sν/mλ⊆ν

of the inclusion of the James extension (5.1.18) with the morphism induced on the cokernels
by the morphism constructed in (5.2.25), again denoted by f̄ by abuse of notation, coincides
with the morphism constructed in (4.3.31) up to sign and in the direct limit (this is, we
adjust the modulus).

Let κ := νz−1. We exclude the case κ = k, z = 2, in which the assertion holds true, and

assume κ < k in the sequel. We shall pretend Sλ⊆νRz -fe Sν/mλ⊆ν to be well defined,

[g + 1, k] -
e
{0, 1}, which becomes correct as soon as we sum up as in (5.2.25). We do so

in order not to carry this sum through the calculation. Moreover, we denote the map called
f (resp. fe) in (4.3.31) (resp. (4.3.1)) by ϕ (resp. ϕe).

We send a νRz-polytabloid 〈aRz〉, which we may assume to take this shape, first to

SνRz - Sλ⊆νRz

〈aRz〉 - 〈aRz〉

=

〈
. . . a′g . . . aκ+1 . . .

y

〉
−
∑

x∈aκ+1

〈
. . . a′g . . . ax,yκ+1 . . .

x

〉
.

Case 1. κ+ 1 6 il.

Subcase 1.1. eκ+1 = 0, in particular, κ+1 < il. We send the element 〈aRz〉 via fe further
to the following element of Sν/mλ⊆ν .

∑
xj∈aij

〈
. . . a′g . . . ax1,x2

i1
. . . aκ+1 . . . axl,yil

. . .
x1

〉
−

∑
x∈aκ+1

∑
xj∈aij

〈
. . . a′g . . . ax1,x2

i1
. . . ax,yκ+1 . . . axl,xil

. . .
x1

〉
Garnir, (4.1.4)

= 0.

Subcase 1.2. eκ+1 = 1, κ + 1 < il. Let is := κ + 1. We send the element 〈aRz〉 via fe
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further to the following element of Sν/mλ⊆ν .

∑
xj∈aij

〈
. . . a′g . . . a

xs,xs+1

is
. . . axl,yil

. . .
x1

〉
(xs ∈ ax,yis \y) −

∑
xs,x∈ais , x 6=xs

∑
xj∈aij , j 6=s

〈
. . . a′g . . . (ax,yis )xs,xs+1 . . . axl,xil

. . .
x1

〉
(xs = y) −

∑
x∈ais

∑
xj∈aij , j 6=s

〈
a′g . . . a

xs−1,y
is−1

. . . a
x,xs+1

is
. . . a

xs+1,xs+2

is+1
. . . axl,xil

x1

〉
2× Garnir, (4.1.4)

=
∑
xj∈aij

〈
. . . a′g . . . a

xs,xs+1

is
. . . axl,yil

. . .
x1

〉
−
∑
xj∈aij

〈
. . . a′g . . . a

xs,xs+1

is
. . . axl,yil

. . .
x1

〉
(‘x = xs+1’) +

∑
xj∈aij

〈
. . . a′g . . . axs,yis

. . . a
xs+1,xs+2

is+1
. . . a

xl,xs+1

il
. . .

x1

〉
−

∑
xj∈aij , j 6=s

〈
. . . a′g . . . a

xs−1,y
is−1

. . . ais . . . a
xs+1,xs+2

is+1
. . . a

xl,xs+1

il
. . .

x1

〉
(5.2.8)

=
∑

xj∈aij , j∈[1,s]

ν′il ·
〈
. . . a′g . . . axs,yis

. . .
x1

〉
−

∑
xj∈aij , j∈[1,s−1]

ν′il ·
〈
. . . a′g . . . a

xs−1,y
is−1

. . . ais . . .

x1

〉
= (−1)ν

′
κ+1+1ν′il · 〈aRz〉ϕe|[g+1,κ]

,

where the sum involving ‘j ∈ [1, s− 1]’ is to be read as a single summand in case s = 1.

Subcase 1.3. eκ+1 = 1, κ + 1 = il. We send the element 〈aRz〉 via fe further to the
following element of Sν/mλ⊆ν .

∑
xj∈aij

〈
. . . a′g . . . axl,yil

. . .
x1

〉
(xl ∈ ax,yil \y) −

∑
xl,x∈ail , x 6=xl

∑
xj∈aij , j 6=l

〈
. . . a′g . . . (ax,yil )xl,x . . .

x1

〉
(xl = y) −

∑
x∈ail

∑
xj∈aij , j 6=l

〈
. . . a′g . . . a

xl−1,y
il−1

. . . (ax,yil )y,x . . .

x1

〉
=

∑
xj∈aij

〈
. . . a′g . . . axl,yil

. . .
x1

〉
+(ν′il − 1) ·

∑
xj∈aij

〈
. . . a′g . . . axl,yil

. . .
x1

〉
−ν′il ·

∑
xj∈aij , j 6=l

〈
. . . a′g . . . a

xl−1,y
il−1

. . . ail . . .

x1

〉
= (−1)ν

′
κ+1+1ν′il · 〈aRz〉ϕe|[g+1,κ]

.

Case 2. κ+ 1 > il. We send the element 〈aRz〉 via fe further to the following element of
Sν/mλ⊆ν . ∑

xj∈aij

〈
. . . a′g . . . axl,yil

. . . aκ+1 . . .
x1

〉
−

∑
x∈aκ+1

∑
xj∈aij

〈
. . . a′g . . . axl,xil

. . . ax,yκ+1 . . .
x1

〉
= −(−1)ν

′
κ+1+1〈aRz〉ϕe|[g+1,κ]

.
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Therefore 〈aRz〉 is sent via Sλ⊆νRz -f̄ Sν/mλ⊆ν to the following sum, up to sign. For
e′′ = 0 we let il := κ+ 1.

1

r

 ∑
[g+1,κ] -

e′

{0,1}

∑
[κ+2,k] -

e′′

{0,1}

Y 1−e′Y 1−e′′ν′il〈aRz〉ϕe′

−
∑

[g+1,κ] -
e′

{0,1}

Y 1−e′
(∏

j∈[κ+1,k] Yj

)
〈aRz〉ϕe′



=
1

r

∑
[g+1,κ] -

e′

{0,1}

Y 1−e′

 ∑
[κ+2,k] -

e′′

{0,1}

Y 1−e′′ν′il −
∏
j∈[κ+1,k] Yj

 〈aRz〉ϕe′
(5.2.21, κ < k)

=
1

r

∑
[g+1,κ] -

e′

{0,1}

Y 1−e′
[

(ν′g + k − g)
∏
j∈[κ+2,k](Yj + 1)

]
〈aRz〉ϕe′

= (ν′g + k − g)

∏
j∈[κ+2,k], ν′j−1 6= ν′j

(Yj + 1)∏
j∈[g+2,κ+1], ν′j−1 = ν′j

(Yj + 1)

∑
[g+1,κ] -

e′

{0,1}

Y 1−e′〈aRz〉ϕe′ .

Adjusting the modulus, i.e. replacing mλ⊆ν by m′ :=
∏
j∈[g+1,κ+1], ν′j−1>ν

′
j
(Yj + 1), we

obtain the according image of 〈aRz〉 to be

1∏
j∈[g+1,κ], ν′j = ν′j+1

Yj

∑
[g+1,κ] -

e′

{0,1}

Y 1−e′〈aRz〉ϕe′ ,

welldefinedness of the adjustment to be seen below. Note that for j ∈ [g + 1, κ] we have
Yj = −(ν′g−g)+(ν′g−1−j) = g−j−1, and that Yκ+1 = −(ν′g−g)+(ν′g−2−(κ+1)) = g−κ−3.
Hence m′ = (g − (g + 1))(g − κ− 2) = κ− g + 2 and the image of 〈aRz〉 becomes

1∏
j∈[g+1,κ−1] Yj

∑
[g+1,κ] -

e
{0,1}

Y 1−e〈aRz〉ϕe = Yκ〈aRz〉ϕeκ+1 +
∑

τ∈[g+1,κ]

〈aRz〉ϕeτ

in the notation and using the argument of the proof of (4.3.29), which is to be compared to
the image

1∏
j∈[g+1,κ−1]Xj

∑
[g+1,κ] -

e
{0,1}

X1−e〈aRz〉ϕe = Xκ〈aRz〉ϕeκ+1 +
∑

τ∈[g+1,κ]

〈aRz〉ϕeτ

under the morphism from (4.3.31). However, Xκ − Yκ = 1− (g − κ− 1) = m′.

5.2.5 Illustration

We give an example in order to illustrate what the summands of the image of a semitabloid under f̄ look
like. Let λ := (3, 2, 1), ν = (3, 2, 1, 1), i.e.

g k

x x x
x x
x
y
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We find g = 1, k = 3, ν′1 = 4, ν′2 = 2, ν′3 = 1. Thus Y2 = −(4−1)+(2−2) = −3, Y3 = −(4−1)+(1−3) =
−5, and therefore

f = 15 · f00 − 3 · f01 − 5 · f10 + 1 · f11.

This is, we map, dropping the brackets,

S(3,2,1)⊆(3,2,1,1) -f̄ S(3,2,1,1)

1 5 7
2 6
3
4

- 15 ·

1 5 7
2 6
3
4

− 3 ·

1 5 4
2 6
3
7

− 5 ·


1 4 7
2 6
3
5

+

1 5 7
2 4
3
6

+


1 7 4
2 6
3
5

+

1 5 4
2 7
3
6

 ,

giving a retraction to the inclusion S(3,2,1,1) - S(3,2,1)⊆(3,2,1,1) of the James extension up to

m(3,2,1)⊆(3,2,1,1) = (ν′g + k − g)(Y2 + 1)(Y3 + 1) = 48,

which is best possible, since being its order in Ext1.
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5.3 Construction of the truss

We consider a filtration of the regular lattice M (1n) built up of James extensions in the
following sense. First, consider a James extension with middle term M (1n). Second, consider
two James extensions with middle terms the kernel and the cokernel of the James extension
of the first step. Third, consider four James extensions with middle terms the kernels and
the cokernels of the James extensions of the second step. And so on. In case an end term of
an occurring James extension is a Specht lattice, we let the resulting tree end at this point.
This yields a finite tree, in which each Specht lattice Sλ occurs with multiplicity rkSλ as
an end point, as to be seen rationally. We obtain a filtration of the regular lattice by Specht
lattice quotients by pulling back an inclusion of an occurring James extension to a filtration
step of the regular lattice. Whereas we shall not make use of that filtration explicitely, but
only of these James extensions, the possibility of having such a filtration at our disposal in
principle has been our starting point.

Having constructed the system of occurring James extensions together with retractions up
to the Ext1-order, we need to find a tuple of bases for the occurring James lattices such that
the system of morphisms is of ‘simplest possible shape’. I.e. we have to identify the points
of our tree belonging to the same James lattice and to solve the ‘normal form problem’
for the module over this tree quotient which is given by that system of morphisms. This
module is called the truss of ZSn, according to the geometric shape of its underlying quiver
as a quotient of a binary tree (with double edges) (cf. S 5.4). Strictly speaking, we do not
deal with a normal form problem, i.e. with a classification of indecomposables, which would
hardly be possible, but with a (non well defined) normalization problem for a single module.
Given a tuple of bases for the occurring James lattices, we can read off a complete set of
ties describing the embedding

ZSn -
�� ∏

λ

Znλ×nλ

from the truss, using its system of morphisms (5.3.15). Therefore, our original problem of

finding a satisfactory embedding (S 0.1.2) is converted into a normal form problem for a

single module over a path algebra, i.e. to a problem of ‘simultaneous linear algebra’, similar

to, but more intricate than (S 4.4.2).

Suppose given λ ⊆ ν.

Lemma 5.3.1 (row switch) Let s be such that λs = λs+1. Define ν̄ by setting ν̄i :=
νi(s s+1) for i > 1, analogously λ̄, analogously the ν̄-tableau ā, given a ν-tableau a. There
is an isomorphism

Sλ⊆ν -∼ Sλ̄⊆ν̄

〈a〉λ - 〈ā〉λ̄

This isomorphism is defined already on the level Mν -∼ M ν̄ and restricts to the James
lattices in both directions.

Remark 5.3.2 (vertical box shift) Given λ ⊆ ν, z as in (S 5.2), we may use (5.3.1)
to substitute Sλ⊆νRz isomorphically by a James lattice to λ ⊆ ν̃, ν̃ being a partition, not
merely a prepartition, by shifting the rightmost box in the (z − 1)-st row upwards as far
as possible.

The following lemma is the reason for the top part of the truss of ZSn to arise from the
truss of ZSn−1 (cf. S 5.4).
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Lemma 5.3.3 (lengthening the first column) Suppose given λ ⊆ ν, z as in (S 5.2).
Let n 6 n̂, let

ν̂i :=

{
νi for i ∈ [1, ν ′1]
1 for i ∈ [ν ′1 + 1, ν ′1 + n̂− n]

for some ν̂ ′1 > ν ′1. The James extension

0 - SλAz⊆ν̂ - Sλ⊆ν̂ - Sλ⊆ν̂Rz - 0.

arises up to an isomorphism of exact sequences from the James extension

0 - Sν - Sλ⊆ν - Sλ⊆νRz - 0,

by induction from Sn, considered as the centralizer of [n+ 1, n̂] inside Sn̂, to Sn̂. Conse-
quently, the retraction up to mλ⊆ν of the inclusion of the sequence to λ ⊆ ν, z, induced up
from Sn to Sn̂, yields a retraction up to mλ⊆ν of the inclusion of the sequence to λ ⊆ ν̂,
z.

For a ν-tableau a, let the ν̂-tableau â be defined by filling up the first column, i.e. by

âij :=

{
aij for i ∈ [1, ν ′1]

n̂− (ν̂ ′1 − i) for i ∈ [ν ′1 + 1, ν̂ ′1], j = 1.

There is an epimorphism

Sλ⊆ν ⊗ZSn ZSn̂ - Sλ⊆ν̂

〈a〉λ ⊗ σ - 〈â〉λ σ,

given by the restriction of Mν -M ν̂ |Sn to the James lattices. For to prove injectivity it
suffices to show equality of ranks, so that we may assume by induction that n̂ = n+ 1. In
a sequence in s(λ ⊆ ν̂) (cf. 5.1.9) we may move the entry ν̂ ′1 arbitrarily without leaving
s(λ ⊆ ν̂). Therefore #s(λ ⊆ ν̂) = (n+ 1) ·#s(λ ⊆ ν), so that we may apply (5.1.18).

Now this isomorphism is applicable to the terms and compatible with the maps of the
James extension attached to λ ⊆ ν, z (5.1.18).

Proposition 5.3.4 A pair λ ⊆ ν for which λ is a partition and ν is a partition of n, for
which λ1 = ν1, for which νi 6 1 for i > λ′1 and for which

#{i ∈ [1, λ′1] | λi < νi} 6 1

holds, is called an occurring pair. For any occurring pair either we have λ = ν or the
corresponding James lattice can be written as the middle term of a James extension with
outer terms being attached to occurring pairs, up to (5.3.2, 5.1.3). (5.2.25, 5.3.3) give
a retraction up to a nonzero integer to this James extension. Moreover, starting with
M (1n) = S(1)⊆(1n), the binary tree arising from this process is finite. The set of occurring
pairs in this tree coincides with the set of occurring pairs.

Let z be minimal with λi < νi. The kernel of the corresponding James extension is
attached to an occurring pair without changes. The pair to which the cokernel is attached
possibly needs vertical shifting of the rightmost box in the (z − 1)-st row via (5.3.2) and
rewriting via (5.1.3).
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Example 5.3.5 (n = 3) The following diagram depicts a way how to unscrew M (13) via
James extensions. The respective λ-region is indicated via x’s, the ν-region via x’s and
y’s. Starting from such a pair, the James lattice attached to it can be written as a middle
term of a James extension with kernel attached to the pair to the left and down, and with
cokernel attached to the pair to the right and down.

x
y
y

�� @@x
x
y

x x
y

�� @@ �� @@x
x
x

x x
x

x x x

Example 5.3.6 (n = 4) The following diagram depicts a way how to unscrew M (14) via
James extensions.

x
y
y
y

�� @@x
x
y
y

x x
y
y

�� @@ �� @@x
x
x
y

x x
x
y

x x x
y

�� @@ �� @@ �
�
��

@@x
x
x
x

x x
x
x

x x
x y

x x x x

�� @@
x x
x x

x x x
x

Example 5.3.7 (n = 5) The following diagram depicts a way how to unscrew M (15) via
James extensions.

x
y
y
y
y

�������

PPPPPPP
x
x
y
y
y

x x
y
y
y

����

PPPPPPP

�������

HHHH
x
x
x
y
y

x x
x
y
y

x x x
y
y

�
���

H
HHH

�������

H
HHH

�
�
�

HHHH

x
x
x
x
y

x x
x
x
y

x x
x y
y

x x x
x
y

x x x x
y�

�
H
HHH

��
��

@@
��

��
HHHH

��������
@@

�
�
�
�
�
�

@@
x
x
x
x
x

x x
x
x
x

x x
x y
x

x x
x x
y

x x x
x
x

x x x
x y

x x x x
x

x x x x x

��
HH
HH

������
QQ

Q
Q
Q
Q

��� @@

x x
x x
x

x x x
x x
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Example 5.3.8 (n = 6) The following diagram depicts a way how to unscrew M (16) via
James extensions.

x
y
y
y
y
y

�������

PPPPPPP
x
x
y
y
y
y

x x
y
y
y
y

����

PPPPPPP

�������

HHHH
x
x
x
y
y
y

x x
x
y
y
y

x x x
y
y
y

�
���

H
HHH

�������

H
HHH

�
�
�

HHHH

x
x
x
x
y
y

x x
x
x
y
y

x x
x y
y
y

x x x
x
y
y

x x x x
y
y

�
�

HH
HH

����
@@

����
HHHH

���������
@@

�
�
�
�
�
�

@@
x
x
x
x
x
y

x x
x
x
x
y

x x
x y
x
y

x x
x x
y
y

x x x
x
x
y

x x x
x y
y

x x x x
x
y

x x x x x
y��

HH
HH

������
QQ

Q
Q
Q
Q

��� @@

x x
x x
x
y

x x x
x x
y

�
�

@
@

����
@@

�� @
@

��
���

@
@

��������

��
HH

HH

@
@

��
@
@

���
�

��

@
@@

�� @@

�����
���

@@

�
�
�

@@

@@
x
x
x
x
x
x

x x
x
x
x
x

x x
x x
x
x

x x
x y
x
x

x x x
x
x
x

x x
x x
x y

x x
x x
x x

x x x
x x
x

x x x
x y
x

x x x x
x
x

x x x
x x x

x x x
x x y

x x x x
x x

x x x x
x y

x x x x x
x

x x x x x x

Notation 5.3.9 (the binary tree) Let E be the set of pairs

(h, [1, h] -
e {0, 1}),

where h > 0. We drop the h in the notation and refer to such a pair as e, and to its
datum h as he. To the value of e at i ∈ [1, he] we refer as ei. For the unique map e in case

h = 0 we write [1, 0] -
∅ {0, 1}. For h > 1 we write e.g. 010 for the map e with he = 3,

e1 = 0, e2 = 1, e3 = 0.

Given [1, he] -
e {0, 1}, we let

[1, he + 1] -e0 {0, 1}
[1, he + 1] -e1 {0, 1}

be defined by e0|[1,he] := e1|[1,he] := e, e0he+1 := 0, e1he+1 := 1. In particular, we have
he0 = he1 = he + 1.

A binary double treeX with support in a subset E ′ ⊆ E and with values in a category C
is defined to be a diagram whose objects are indexed as Xe, e ∈ E ′, and whose morphisms
run as follows.

Xe0
-e0∗ Xe

Xe1
-e1∗ Xe

Xe
-e0
∗

Xe0

Xe
-e1
∗

Xe1,

provided the respective indices are both in E ′.
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Example 5.3.10 For example, the ‘two upper layers’ of a binary double tree as in (5.3.9),
for E′ = E say, yield a diagram that can be depicted as follows.

X∅

��
��*0∗ �
���� 0∗

HH
HHj

1∗

HH
HHY
1∗X0 X1

���
00∗
��	00∗

@@R
01∗

@@I01∗
���

10∗
��	10∗

@@R
11∗

@@I11∗

X00 X01 X10 X11

. . .

In the sequel, we shall define our e1∗ out of e0∗, e0
∗, e1∗ by the following

Lemma 5.3.11 Let m > 1, let

0 - X -a∗ Y -b∗
Z - 0

?

a∗

?

0 - X -m
X - X/m - 0

be a morphism of short exact sequences of ZSn-lattices. Then there exists a unique ZSn-morphism

Z -b∗ Y such that (a∗
b∗

)
(a∗ b∗ ) =

(
m 0
0 m

)
(a∗ b∗ )

(a∗
b∗

)
= m.

Uniqueness of the rational inverse together with a comparison of ranks shows that it suffices to find a
ZSn-linear map b∗ which satisfies the first equation. Let Z ′ be the kernel of a∗. The restriction of b∗

maps Z ′ injectively into Z, this inclusion being the kernel of Z - X/m, so that we obtain mZ ⊆ Z ′b∗.

Let Z -b∗ Y be defined by sending z to

mz ∈ mZ ⊆ Z ′b∗ �
b∗

∼ Z ′ ⊆ Y.

Then b∗a
∗ = 0 as well as b∗b

∗ = m.

Definition 5.3.12 (the truss, yet unglued) Let n > 1. Define inductively a subset
En ⊆ E, a subset ∂En ⊆ En, a surjective map

En -π { occurring pairs }
e - λe ⊆ νe

(cf. 5.3.4) as well as a binary double tree T with support in En as follows.

Let ∅ ⊆ En, let λ∅ := (1), let ν∅ := (1n), let T∅ := Sλ
∅⊆ν∅ .

Suppose given e ∈ En such that λe ⊆ νe has been defined.

Case λe = νe. Let any map e′ restricting to e0 or e1 be excluded from En, let e belong
to the boundary ∂En.

In order to prolong T (artificially) to the whole of E, suppose given e′ with he < he′ such
that e′|[1,he] = e.
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In case 1 ∈ e[he+1,he′ ]
, i.e. in case ‘there is a 1 in (e′\e)’, let Te′ := 0. Otherwise, let

Te′ := Te, and, moreover, let

(Te′0 -e
′0∗

Te′) := 1

(Te′ -e
′0∗

Te′0) := 1.

Case λe 6= νe. Let e0 and e1 be contained in En. Let z be minimal such that λez < νez , so
in particular z > 2. Provisionally, let

λe0 := λeAz
νe0 := νe

λ̃e1 := λe

ν̃e1 := νeRz

Te0 := Sλ
e0⊆νe0

T̃e1 := Sλ̃
e1⊆ν̃e1 ,

let
0 - Te0 -e0∗ Te -(e1∗ )̃

T̃e1 - 0

be the James extension for λe ⊆ νe, z (5.1.18). Let e0∗ be the retraction to e0∗ up to
mλe⊆νe given in (5.2.25), let (e1∗)̃ be as constructed in (5.3.11).

In case ν̃e1 is not a partition, we replace it via (5.3.2) by a partition and accordingly
substitute the James extension isomorphically, keeping the notation by abuse.

In case we obtain λ̃e11 < ν̃e11 , we replace λ̃e11 by ν̃e11 by (5.1.3), keeping the notation by
abuse.

Now we remove all twiddles.

Remark 5.3.13 We note that En is finite and that En−1 ⊆ En for n > 2 (cf. 5.3.5, 5.3.6,
5.3.7, 5.3.8). Furthermore, we note that by construction we have(

e0∗
e1∗

)
(e0∗ e1∗ ) =

(
mλ

e⊆νe 0

0 mλ
e⊆νe

)
(e0∗ e1∗ )

(
e0∗
e1∗

)
= mλe⊆νe .

whenever e, e0, e1 ∈ En, and that

0 - Te0 -e0∗ Te -e1
∗

Te1 - 0

is short exact. We have a filtration

M (1n) = T∅ -
�� T0⊕T1 -
�� T00⊕T01⊕T10⊕T11 -

�� · · · -
�� ⊕

e∈E, he=h

Te -
�� ⊕

e∈E, he=h+1

Te -
�� · · ·

given by

Te -(e0∗ e1∗ )
Te0 ⊕ Te1.

This filtration stabilizes at a finite stage h = H at a direct sum of Specht lattices,
isomorphic to

∏
λ EndZS

λ.

We do some general gymnastics on filtrations of lattices.
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Remark 5.3.14 Suppose given a full embedding of Z-orders Λ ⊆ Γ. Note that there is at most one way
to extend the operation of Λ on a Λ-lattice X to an operation of Γ, since Λ -

�� Γ is an epimorphism of
Z-orders. For Γ-lattices X and Y , the restriction

Γ(X,Y ) -
Λ(X|Λ, Y |Λ)

is bijective. The morphisms in the following are meant to be Λ-linear.

Let g ∈ Γ, let Λ[g] be the smallest suborder of Γ containing Λ and g. Let X be a Λ-lattice, let Y be a
Λ[g]-lattice, let

X -
�� Y

be a full inclusion. g is said to respect this inclusion if gX ⊆ X, or, in other words, if the rational
conjugation of g by X -

�� Y remains integral. In this case, X is a Λ[g]-lattice.

In case X ' Λ and Y ' Γ we obtain a factorization

(X -
�� Y ) = (X -
�� ΓX -
�� Y ),

the first step of which is isomorphic to

(X -
�� ΓX) ' (Λ⊗̃ΛX -

�� Γ⊗̃ΛX) ' (Λ -
�� Γ)

(cf. B.1.11). ΓX -
�� Y is in fact Γ-linear. Hence g ∈ Γ respects X -

�� Y iff g respects Λ -
�� Γ.

But this is the case if and only if g is already contained in Λ, since, in particular, g · 1Λ ∈ Λ ensues.

Let
X0 -
�� X1 -
�� · · · -
�� XN

be a finite filtration of Λ-lattices, consisting of full inclusions, let X0 ' Λ, XN ' Γ. We claim that g
is in Λ iff it respects each stage of the filtration, where the latter assertion is well defined when starting
from the right.

In case g is in Λ, it respects each stage of the filtration. In case g respects each stage Xi -
�� Xi+1 of

the filtration, starting from the right, it eventually respects X0 -
�� XN , thus g is contained in Λ by

what we have remarked above.

Theorem 5.3.15 Let Λ be the image of the embedding of ZSn into
∏

λ EndZS
λ =: Γ,

sending a group element to the tuple of its operations. Let g = (gλ)λ ∈ Γ. Define
inductively operations of g on QTe for e ∈ En as follows.

For e ∈ ∂En, we define
ge := gνe .

For e ∈ En\∂En, we may assume the operations ge0 resp. ge1 on QTe0 resp. QTe1 to be
defined. Let

ge :=
1

mλe⊆νe (e0∗ e1∗ )
(
ge0 0
0 ge1

) (
e0∗
e1∗

)
.

g ∈ Γ is contained in Λ iff ge is integral for all e ∈ En.

Consider the filtration appearing in (5.3.13). By (5.3.14), g is contained in Λ iff it respects
each step of that filtration, i.e. each summand

Te -(e0∗ e1∗ )
Te0 ⊕ Te1

of each step. In case e 6∈ En\∂En, this inclusion is just the identity, by construction. In
case e ∈ En\∂En, the operation of g induced on QTe by this inclusion is given by

(e0∗ e1∗ )
(
ge0 0
0 ge1

)
(e0∗ e1∗ )−1 =

1

mλe⊆νe (e0∗ e1∗ )
(
ge0 0
0 ge1

) (
e0∗
e1∗

)
= ge.
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Remark 5.3.16 Consider, for e ∈ En\∂En, the corresponding summand of a filtration
step of the filtration appearing in (5.3.13)

Te -(e0∗ e1∗ )
Te0 ⊕ Te1.

We write Te as Te0 Te1, e0∗ as (1 0), e1∗ as
(

0
1

)
(cf. S 3.1). By e0∗e0

∗ = mλe⊆νe =: m we

obtain e0∗ =
(m
f

)
for some Z-linear map

Te1 -f Te0

which gives the ZSn-linear map induced on the cokernels

Te1 -f Te0/m.

The condition on
(
ge0 0
0 ge1

)
, supposed integral, to respect the inclusion above is equivalent

to the condition that (
m 0
f 1

) (
ge0 0
0 ge1

) (
m 0
f 1

)−1

be integral, i.e. to

fge0 ≡m ge1f.

This is, we may as well express the integrality condition in (5.3.15) as a congruence given
by some modular morphism.

Remark 5.3.17 The product ∏
e∈E\∂E

(mλe⊆νe)rk Sλ
e0⊆νe0

is divisible by the total index √
n!n!∏
λ n

(n2
λ)

λ

.

The quotient contains the ‘amount of redundant ties’ given by our system of modular mor-
phisms.

Note that we may factor

T∅ ⊆ ΓT∅ ⊆
⊕
e∈∂En

Te.

The index of the left hand side inclusion is just the total index (1.1.4). The index of the
composition is given by the product of the indices of the inclusions

Te -(e0∗ e1∗ )
Te0 ⊕ Te1,

e running over En\∂En. But the cokernel of such an inclusion is given by Te0/m
λe⊆νe (cf.

5.3.11).

For example, consider the case n = 4, of total index 23433 (S 2.1.1). We have

E4\∂E4 = {∅; 0; 1; 00; 01, 10; 11; 011, 101}

(cf. 5.3.6). Accordingly, the factors of the product of the Ext1-orders are given by

212; 34; 38; 41; 82·3; 43; 22·2,

whence the quotient of this product by the total index is

(242312)/(23433) = 2839.
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Since it is desirable that the maps e0∗, e0
∗, e1∗, e1

∗, e ∈ En\∂En, take a simple form,
we collect them to a module over a path algebra in such a way that an isomorphism of
this module to another one corresponds to a tuple of integral base changes in the lattices
Sλ⊆ν for occurring pairs λ ⊆ ν.

Definition 5.3.18 (The truss) Let Qn be the quiver arising from En, equipped with
arrows

e0 -e0(∗) e

e1 -e1(∗) e

e -e0
(∗)

e0

e -e1
(∗)

e1

for e ∈ En\∂En, by identification of vertices e and e′ iff λe = λe′ and νe = νe′. Then the
lattices Te and the morphisms e0∗, e0

∗, e1∗, e1
∗, e ∈ En\∂En, given as in (5.3.12), form

a module over the integral path algebra ZQn by attaching e to Te, e0(∗) to e0∗, e1(∗) to e1∗,
e0(∗) to e0∗ and e1(∗) to e1∗. This module is called the truss of ZSn. It is again denoted
by T .

For the shape of Qn for n = 3, 4, 5, 6, we may replace in (5.3.5, 5.3.6, 5.3.7, 5.3.8) each
edge by one arrow upwards and one arrow downwards.

5.4 Small cases

We give normal forms for the trusses of ZS3 and of ZS4 (almost). We ‘cheat’ in that we
use the satisfactory embedding of ZS4 obtained in (S 2.1.1), in order to get acquainted to
the problem and to adjust our expectations concerning a possible solution.

It might be possible to use a normal form for the truss over Qn−1 to facilitate the search

for a normal form for the truss over Qn, given that the top part of the latter is obtained

by induction of the former along Sn−1 6 Sn. But I do not know how to follow the ac-

cording suggestion to ‘simplify from top to bottom’. Moreover, I lack an appropriate naive

localization technique.

5.4.1 The truss of ZS3

With respect to the semitabloid bases, brackets dropped,

S(1,0,0)⊆(1,1,1)
1
2
3

2
1
3

1
3
2

3
1
2

2
3
1

3
2
1

S(1,1,0)⊆(1,1,1)
1
2
3

1
3
2

2
3
1

S(2,0)⊆(2,1) 1 3
2

1 2
3

2 3
1

S(1,1,1)⊆(1,1,1)
1
2
3

S(2,1)⊆(2,1) 1 3
2

1 2
3

S(3)⊆(3) 1 2 3 ,
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the truss of ZS3 takes the following shape.

x
y
y

�
�
�
�
�
�
��

[
1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

] �
�

�
�

�
�
�	

 1 0 0
−1 0 0

0 1 0
0 −1 0
0 0 1
0 0 −1



@
@
@
@
@
@
@R

0 1 0
0 1 0
1 0 0
1 0 0
0 0 1
0 0 1



@
@

@
@
@

@
@I

[
0 0 1 1 0 0
1 1 0 0 0 0
0 0 0 0 1 1

]
x
x
y

x x
y

�
�
�
�
�
�
���

[1 −1 1 ]

�
�
�

�
�
�

��	

[
1
−1
1

]
@
@
@
@
@
@
@R

[
1 0
0 1
−1 1

]
@

@
@

@
@
@
@I

[
2 1 −1
1 2 1

]
�
�
�
�
�
�
��[

1 0 −1
0 1 −1

] �
�

�
�

�
�
�	

[
2 −1
−1 2
−1 −1

]
@
@
@
@
@
@
@R

[1 1 1 ]

@
@

@
@

@
@
@I [

1
1
1

]

x
x
x

x x
x x x x

We use the following base change matrices, in which the new basis elements are recorded as row vectors
in terms of the bases given above,

S(1,0,0)⊆(1,1,1)

1 −1 −1 1 1 −1
0 0 1 −1 0 0
0 0 1 −1 1 −1
1 0 0 0 0 −1
1 1 0 −1 0 −1
1 0 0 0 1 −1


S(1,1,0)⊆(1,1,1)

[
1 −1 1
0 1 0
0 1 1

]
S(2,0)⊆(2,1)

[
0 1 −1
−1 2 −1

0 1 0

]
S(1,1,1)⊆(1,1,1) [1]

S(2,1)⊆(2,1)
[

0 1
−1 2

]
S(3)⊆(3) [1] ,

to obtain the normal form

x
y
y

�
�
�
�
�
�
��[

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

] �
�

�
�

�
�
�	

2 0 0
0 2 0
0 0 2
1 1 0
0 0 1
1 0 1



@
@
@
@
@
@
@R

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1



@
@

@
@
@

@
@I

[−1 −1 0 2 0 0
0 0 −1 0 2 0
−1 0 −1 0 0 2

]
x
x
y

x x
y

�
�
�
�
�
�
���

[1 0 0 ]

�
�
�

�
�
�

��	

[
3
−1
0

]
@
@
@
@
@
@
@R

[
0 0
1 0
0 1

]
@

@
@

@
@
@
@I

[
1 3 0
0 0 3

]
�
�
�
�
�
�
��[

1 0 0
0 1 0

] �
�

�
�

�
�
�	

[
3 0
0 3
0 1

]
@
@
@
@
@
@
@R

[0 −1 3 ]

@
@

@
@

@
@
@I [

0
0
1

]

x
x
x

x x
x x x x .
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As mλ⊆ν ’s we have
m(1,0,0)⊆(1,1,1) = 2
m(1,1,0)⊆(1,1,1) = 3
m(2,0)⊆(2,1) = 3.

Suppose given

x1
11 ×

(
x2

11 x
2
12

x2
21 x

2
22

)
× x3

11 ∈ Z× Z2×2 × Z,

the factors ordered (1, 1, 1), (2, 1), (3). According to (5.3.15), the operation on S(1,1,0)⊆(1,1,1) is given by

1

3

[
3 0 0
−1 1 0
0 0 1

] [x1
11 0 0
0 x2

11 x
2
12

0 x2
21 x

2
22

] [
1 0 0
1 3 0
0 0 3

]
=

[
x1

11 0 0
1
3 (x2

11−x
1
11) x2

11 x
2
12

1
3x

2
21 x2

21 x
2
22

]
.

The operation on S(2,0)⊆(2,1) is given by

1

3

[
3 0 0
0 3 0
0 1 1

] [x2
11 x

2
12 0

x2
21 x

2
22 0

0 0 x3
11

] [
1 0 0
0 1 0
0 −1 3

]
=

[
x2

11 x2
12 0

x2
21 x2

22 0
1
3x

2
21

1
3 (x2

22−x
3
11) x3

11

]
.

So, finally, the operation on S(1,0,0)⊆(1,1,1) is given by

1

2

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
1 1 0 1 0 0
0 0 1 0 1 0
1 0 1 0 0 1




x1
11 0 0 0 0 0

1
3 (x2

11−x
1
11) x2

11 x
2
12 0 0 0

1
3x

2
21 x2

21 x
2
22 0 0 0

0 0 0 x2
11 x2

12 0
0 0 0 x2

21 x2
22 0

0 0 0 1
3x

2
21

1
3 (x2

22−x
3
11) x3

11


 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
−1 −1 0 2 0 0

0 0 −1 0 2 0
−1 0 −1 0 0 2



=


x1

11 0 0 0 0 0
1
3 (x2

11−x
1
11) x2

11 x2
12 0 0 0

1
3x

2
21 x2

21 x2
22 0 0 0

− 1
3 (x2

11−x
1
11) 0 0 x2

11 x2
12 0

− 1
3x

2
21 0 0 x2

21 x2
22 0

1
2 (x1

11−x
3
11) 1

3x
2
21

1
3 (x2

22−x
3
11) 1

3x
2
21

1
3 (x2

22−x
3
11) x3

11

 .
The ties known from (S 0.2) result.

5.4.2 The truss of ZS4

With respect to the semitabloid bases

S(1,0,0,0)⊆(1,1,1,1)
1
2
3
4

2
1
3
4

1
3
2
4

3
1
2
4

3
2
1
4

2
3
1
4

1
2
4
3

2
1
4
3

1
4
2
3

4
1
2
3

4
2
1
3

2
4
1
3

1
4
3
2

4
1
3
2

1
3
4
2

3
1
4
2

3
4
1
2

4
3
1
2

4
2
3
1

2
4
3
1

4
3
2
1

3
4
2
1

3
2
4
1

2
3
4
1

S(1,1,0,0)⊆(1,1,1,1)
1
2
3
4

1
3
2
4

3
2
1
4

1
2
4
3

1
4
2
3

4
2
1
3

1
4
3
2

1
3
4
2

3
4
1
2

4
2
3
1

4
3
2
1

3
2
4
1

S(2,0,0)⊆(2,1,1)
1 2
3
4

1 3
2
4

3 2
1
4

1 2
4
3

1 4
2
3

4 2
1
3

1 4
3
2

1 3
4
2

3 4
1
2

4 2
3
1

4 3
2
1

3 2
4
1

S(1,1,1,0)⊆(1,1,1,1)
1
2
3
4

1
2
4
3

1
4
3
2

4
2
3
1

S(2,1,0)⊆(2,1,1)
1 2
3
4

1 3
2
4

1 2
4
3

1 4
2
3

1 4
3
2

1 3
4
2

4 2
3
1

4 3
2
1

S(3,0)⊆(3,1) 1 2 3
4

1 2 4
3

1 4 3
2

4 2 3
1

S(1,1,1,1)⊆(1,1,1,1)
1
2
3
4

S(2,1,1)⊆(2,1,1)
1 2
3
4

1 3
2
4

1 4
2
3

S(2,1)⊆(2,2) 1 2
3 4

1 3
2 4

1 4
2 3

2 3
4 1

2 4
3 1

S(4)⊆(4) 1 2 3 4
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S(2,2)⊆(2,2) 1 2
3 4

1 3
2 4

S(3,1)⊆(3,1) 1 2 3
4

1 2 4
3

1 4 3
2

the maps of the truss

x
y
y
y

d

�
�
�	

cd

�
�
��
dc

@
@
@R

dg

@
@
@I
gd

x
x
y
y

c x x
y
y

g

�
�
�	

cb

�
�
��

bc
@
@
@R

cf

@
@
@I
fc

�
�
�	

gf

�
�
��

fg
@
@
@R

gj

@
@
@I
jg

x
x
x
y

b x x
x
y

f x x x
y

j

�
�
�	

ba

�
�
��

ab
@
@
@R

be

@
@
@I
eb

�
�
�	

fe
�
�
��

ef
@
@
@R

fi

@
@
@I
if �

�
�
�
�
�
��

kj

�
�
�
�
�
�
��

jk

@
@
@R

jl

@
@
@I
lj

x
x
x
x

a x x
x
x

e
x x
x yi x x x xl

�
�
�	

ih
�
�
��

hi
@
@
@R

ik

@
@
@I
ki

x x
x xh

x x x
xk

have the following shape. A block diagonal matrix carrying m times the block A will be denoted by Am.

cd = [1 −1 ]
12

dc =
[

1
−1

]12

dg =
[

1
1

]12

gd = [1 1 ]
12

bc = [1 −1 −1 ]
4

cb =
[

1
−1
−1

]4
cf =

[
0 1
1 0
−1 1

]4
fc =

[
1 2 −1
2 1 1

]4
fg =

[
1 0 −1
0 1 −1

]4
gf =

[
2 −1
−1 2
−1 −1

]4
gj =

[
1
1
1

]4
jg = [1 1 1 ]

4

ab = [1 −1 −1 −1 ]

ba =

[ 1
−1
−1
−1

]
be =

[ 0 0 1
0 1 0
−1 0 0

1 −1 1

]
eb =

[−1 1 −3 1
1 3 −1 −1
3 1 1 1

]
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ef =
[

1 0 −1 0 0 0 −1 0
0 1 0 0 0 −1 0 −1
0 0 0 1 −1 0 1 −1

]
fe =


3 0 1
0 3 −1
−3 1 0

0 −1 3
−1 0 −3

1 −3 0
−2 −1 1
−1 −2 −1


fi =


1 0 0 0 0
0 1 0 0 0
1 0 0 1 −1
0 0 1 0 0
0 0 1 0 1
0 1 0 1 0
0 0 0 −1 1
0 0 0 −1 0


if =

[ 5 0 3 −1 1 0 2 1
0 5 0 1 −1 3 1 2
0 1 0 5 3 −1 −3 2
−1 −2 1 −1 1 2 0 −5

1 −1 −1 −2 2 1 5 −5

]
kj =

[
1 0 0 −1
0 1 0 −1
0 0 1 −1

]
jk =

[ 3 −1 −1
−1 3 −1
−1 −1 3
−1 −1 −1

]
jl =

[1
1
1
1

]
lj = [1 1 1 1 ]
hi =

[
1 0 −1 0 −1
0 1 −1 0 0

]
ih =

[ 1 0
0 1
0 −1
−1 0
−1 1

]

ik =

[0 1 0
0 0 1
0 0 1
1 0 −1
0 1 −1

]
ki =

[
1 1 0 2 −1
1 0 1 0 1
0 1 1 0 0

]
.

The following calculations use maple, in particular, ismith. We perform base changes by the following
matrices, whose rows contain the new basis elements in terms of the ones listed above.

S(1,0,0,0)⊆(1,1,1,1)



1 −1 −1 1 −1 1 −1 1 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1 1 −1 1 −1
1 −1 −1 1 −1 1 0 0 0 0 0 0 1 −1 −1 1 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 1 −1 1 −1 1 1 −1 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 1 1 −1 1 −1 0 0 0 0 0 0
0 0 −1 1 0 0 1 −1 1 −1 0 0 0 0 −1 1 0 0 0 0 1 −1 −1 1
1 −1 1 −1 0 0 0 0 −1 1 0 0 −1 1 0 0 0 0 −1 1 −1 1 0 0
0 0 1 −1 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 −1 1 0 0
0 0 1 −1 1 −1 0 0 0 0 −1 1 0 0 −1 1 1 −1 1 −1 1 −1 −1 1
1 −1 1 −1 0 0 −1 1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 1 −1 −1 1 0 0 0 0 2 −2 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 1 −1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 1 −1
0 −1 −1 1 0 1 1 0 1 0 −1 −1 0 −1 −1 1 0 1 1 1 0 −1 −1 0
1 0 1 0 −1 −1 0 −1 −1 1 0 1 −1 1 0 −1 1 0 −1 0 −1 0 1 1
1 0 0 0 −1 0 −1 0 0 0 1 0 −1 1 1 −1 1 −1 −1 0 0 0 1 0
1 −1 0 1 −1 0 0 1 0 −1 0 0 −1 −1 0 1 1 0 1 1 1 −1 −1 −1
1 0 1 0 −1 −1 0 0 −1 0 0 1 −1 0 0 0 1 0 0 0 0 0 0 0
1 −1 −1 1 −1 1 0 2 0 −2 0 0 −1 −1 1 1 1 −1 −1 1 0 −1 1 0
0 0 0 0 0 0 1 0 −1 0 −1 1 −1 0 1 0 1 −1 0 0 0 0 0 0
1 −1 0 1 −1 0 −1 0 1 0 1 −1 −1 1 1 −1 1 −1 −1 0 1 0 1 −1
1 1 1 1 1 0 0 0 0 −2 −1 1 −1 −1 −1 1 1 −2 0 0 1 −1 −1 1
1 0 1 0 0 0 0 0 −1 0 −1 1 −1 0 0 0 1 −1 0 0 0 0 0 0
1 −1 0 0 −1 0 −1 0 0 0 1 −1 0 1 1 0 1 0 −1 0 0 0 1 −1
2 −1 2 −1 −1 −1 −1 0 −1 1 1 0 −1 1 0 0 1 0 −1 0 −1 1 1 0



S(1,1,0,0)⊆(1,1,1,1)



1 −1 −1 −1 1 1 −1 1 1 −1 1 1
1 −1 −1 0 0 0 1 −1 −1 0 0 0
0 0 0 1 −1 −1 −1 1 1 0 0 0
0 0 0 0 0 0 −1 1 1 0 0 0
0 −1 0 1 1 0 0 −1 0 0 1 −1
1 1 0 0 −1 0 −1 0 0 −1 −1 0
0 1 0 0 −1 0 0 0 0 0 −1 0
0 1 1 0 0 −1 0 −1 1 1 1 −1
1 1 0 −1 0 0 0 −1 0 0 0 0
0 0 0 −1 1 −1 0 0 2 −1 0 0
0 0 0 0 0 −1 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0 0 1



S(2,0,0)⊆(2,1,1)



−1 0 1 1 1 −2 −1 0 1 2 −1 −1
1 1 −2 −1 0 1 0 −1 1 −1 −1 2
1 0 −1 −1 0 1 0 0 0 −1 0 1
0 1 −1 1 −1 0 −2 1 1 2 0 −2
1 1 −2 0 −1 1 −1 0 1 0 0 0
0 0 0 2 −2 0 −2 2 0 0 −1 1
0 0 0 1 −1 0 −1 1 0 0 0 0
0 1 −1 −1 1 0 0 0 0 −1 1 0
2 2 1 0 −2 0 −2 0 −1 0 0 0
1 1 0 0 −1 0 −1 0 0 0 0 0
0 0 −1 −1 0 0 1 1 1 −1 0 0
1 1 −2 −1 0 1 0 0 1 −1 0 1
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S(1,1,1,0)⊆(1,1,1,1)

[1 −1 −1 −1
1 0 1 0
0 1 −1 0
0 0 −1 0

]

S(2,1,0)⊆(2,1,1)


−1 0 1 1 −1 0 2 −1

1 1 −1 0 0 −1 −1 −1
1 0 −1 0 0 0 −1 0
0 1 1 −1 −2 1 2 0
1 1 0 −1 −1 0 0 0
0 0 2 −2 −2 2 0 −1
0 0 1 −1 −1 1 0 0
0 1 −1 1 0 0 −1 1


S(3,0)⊆(3,1)

[ 5 −2 −3 0
2 −1 −1 0
−1 −1 3 −1

0 0 1 0

]

S(2,1)⊆(2,2)

[ 1 2 −3 0 −1
1 1 −2 0 −1
2 2 −4 5 −4
1 1 −2 2 −2
−1 1 1 −1 0

]

S(1,1,1,1)⊆(1,1,1,1) [1]

S(2,1,1)⊆(2,1,1)
[−1 0 1

1 1 0
1 0 0

]
S(2,2)⊆(2,2)

[
1 2
1 1

]
S(3,1)⊆(3,1)

[
5 −2 −3
2 −1 −1
−1 −1 3

]
S(4)⊆(4) [1]

This yields the following matrices for the maps of the truss, which we sort blockwise according to the
Specht lattices the James lattices are glued from, if necessary.

cd =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0



dc =



2 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 2
0 1 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 1 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1 0
1 0 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 1 1 0 1 0 0 1
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dg =



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



gd =



0 −1 0 0 −1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 −1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
−1 0 0 −1 0 0 −1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
−1 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
−1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 2 0 0 0 0 0
−1 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 −1 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 −1 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 2 0 0
−1 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 −1 0 −1 −1 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 2


bc =

[1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

]

cb =



3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3
0 1 0 0
0 0 1 0
−1 0 0 1
−1 −1 0 0

0 0 −1 0
1 −1 0 0
0 0 1 0
1 0 0 −1



cf =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



fc =


0 −1 0 0 3 0 0 0 0 0 0 0
0 0 −1 0 0 3 0 0 0 0 0 0
1 0 0 −1 0 0 3 0 0 0 0 0
1 1 0 0 0 0 0 3 0 0 0 0
0 0 1 0 0 0 0 0 3 0 0 0
−1 1 0 0 0 0 0 0 0 3 0 0

0 0 −1 0 0 0 0 0 0 0 3 0
−1 0 0 1 0 0 0 0 0 0 0 3



fg =


1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0



gf =



3 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3
−1 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1
0 1 1 0 1 0 0 1
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gj =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



jg =

[1 0 0 −1 0 −1 0 0 3 0 0 0
0 0 0 0 −1 0 −1 0 0 3 0 0
0 0 −1 0 0 0 0 −1 0 0 3 0
0 −1 −1 0 −1 0 0 −1 0 0 0 3

]
ab = [1 0 0 0 ]

ba =

[4
0
0
1

]

be =

[0 0 0
1 0 0
0 1 0
0 0 1

]

eb =
[

0 4 0 0
0 0 4 0
−1 0 0 4

]
ef =

[
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

]

fe =


8 0 0
0 8 0
0 0 8
4 0 0
0 4 0
1 0 0
0 −1 0
0 0 4



fi =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



if =

[−4 0 0 8 0 0 0 0
0 −4 0 0 8 0 0 0
−1 0 0 0 0 8 0 0

0 1 0 0 0 0 8 0
0 0 −4 0 0 0 0 8

]

kj =
[

1 0 0 0
0 1 0 0
0 0 1 0

]
jk =

[4 0 0
0 4 0
0 0 4
0 0 1

]

jl =

[0
0
0
1

]
lj = [0 0 −1 4 ]

hi =
[

1 0 0 0 0
0 1 0 0 0

]
ih =

[2 0
0 2
1 0
0 1
0 0

]

ik =

[0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

]

ki =
[−1 0 2 0 0

0 −1 0 2 0
0 0 0 0 2

]
.
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In the language of (S 2.1.1), the occurring James extensions cause the follwing ties, with some redundan-
cies cut down already.

S(2,1)⊆(2,2)



x4
11 ≡2 x5

11

x4
12 ≡2 x5

12

x4
21 ≡2 x5

21

x4
22 ≡2 x5

22

x4
31 ≡2 0
x4

32 ≡2 0

S(1,1,1,0)⊆(1,1,1,1)

 x3
13 ≡4 0
x3

23 ≡4 0
x3

33 ≡4 x1
11

S(3,0)⊆(3,1)

 x4
31 ≡4 0
x4

32 ≡4 0
x4

33 ≡4 x2
11

S(2,1)⊆(2,2)



x3
11 ≡2 x5

11

x3
12 ≡2 x5

12

x3
13 ≡2 0
x3

21 ≡2 x5
21

x3
22 ≡2 x5

22

x3
23 ≡2 0

2x5
11 ≡8 x4

11 + x3
11

2x5
12 ≡8 3x4

12 + x3
12

0 ≡8 −4x4
13 + x3

13

2x5
21 ≡8 x4

21 − x3
21

2x5
22 ≡8 3x4

22 − x3
22

0 ≡8 −4x4
23 − x3

23

0 ≡8 x4
31 + 4x3

31

0 ≡8 3x4
32 + 4x3

32

0 ≡8 −4x4
33 + 4x3

33

S(1,1,0,0)⊆(1,1,1,1)

{
x1

11 ≡3 x5
11

0 ≡3 x5
21

S(2,0,0)⊆(2,1,1)

{
x2

11 ≡3 x5
22

0 ≡3 x5
21

S(1,0,0,0)⊆(1,1,1,1)
{
x1

11 + 3x2
11 ≡8 x3

33 + 3x4
33

We may sort these ties to obtain the system

x4
11 ≡2 x5

11 ≡2 x3
11

x4
12 ≡2 x5

12 ≡2 x3
12

x4
21 ≡2 x5

21 ≡2 x3
21

x4
22 ≡2 x5

22 ≡2 x3
22

x1
11 ≡4 x3

33 ≡2 x4
33 ≡4 x2

11

x4
11 + x3

11 ≡8 2x5
11

x4
12 − x3

12 ≡8 2x5
12

x4
21 − x3

21 ≡8 2x5
21

x4
22 + x3

22 ≡8 2x5
22

4x4
13 ≡8 x3

13

4x4
23 ≡8 x3

23

x4
31 ≡8 4x3

31

x4
32 ≡8 4x3

32

x1
11 − x2

11 ≡8 x3
33 − x4

33

x1
11 ≡3 x5

11

x2
11 ≡3 x5

22

0 ≡3 x5
21.

Note that we have employed the actual Specht lattice S(3,1), whereas in (S 2.1.1) we used its dual S(2,1,1),−.

Presumably, a base change on S(3,1) via
[

1
−1

1

]
would yield a slightly better presentation still.



Chapter 6

Gram matrices

Inclusions of simple lattices cause ties by the requirement that the conjugation with this

inclusion be integral. A prominent role amongst them is taken by the inclusion of the

Specht lattice into its dual, described, in terms of linear algebra, by the Gram matrix of

the invariant bilinear form on the Specht lattice. Suborders of matrix rings described by a

single embedding of simple lattices are called Gram orders. However, note that a quasiblock

cannot possibly be a Gram order in case the decomposition numbers of its Specht module

are not contained in {0, 1}, since then it has to have a nonsimple indecomposable projective

module (cf. S 0.3, E.1.24).

6.1 Gram orders

Let R be a discrete valuation ring of characteristic zero with maximal ideal
(π), valuation v and field of fractions K.

Definition 6.1.1 Let m > 1, let G ∈ Km×m such that detG 6= 0. Let

ΛG = {A ∈ Rm×m|G−1AG ∈ Rm×m} = Rm×m ∩ G(Rm×m) ⊆ Km×m.

A Gram order is an R-order isomorphic to an R-order of the form ΛG.

Remark 6.1.2 Suppose given a Gram order ΛG. We may assume G to be integral. Write

G = SDT,

where S, T are in SL(R) and D is a main diagonal matrix in elementary divisor form
(A.1). Then

ΛG
-∼ ΛD

A - AS.

Hence we may restrict ourselves to the consideration of main diagonal matrices G in
elementary divisor form.

Definition 6.1.3 Let g := (g1, . . . , gm) be a tuple of integers, ordered increasingly, gi 6 gj
for i 6 j. Let G ∈ Rm×m be the main diagonal matrix with diagonal (πg1 , . . . , πgm). Let

Λg := ΛG = {(αij) ∈ Rm×m | αij ∈ (πgi−gj) for i > j}.

167
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An integer, when viewed as a tuple, stands for the constant tuple. Note that for c ∈ Z
the tuples g and g + c yield the same R-order, Λg = Λg+c.

Definition 6.1.4 There is a simple Λg-lattice Nγ for each increasingly ordered tuple
γ := (γ1, . . . , γm) of integers such that

γj − γi 6 gj − gi

for each pair i 6 j ∈ [1,m], defined as R-linear span of {πγ1e1, . . . , π
γmem} inside a column

of Rm×m, ei being the column having entries ei,j = ∂ij.

In particular we dispose of the lattices N0 and Ng.

We denote by [γ] the residue class of an increasing tuple γ modulo addition of constants,
and by Γ the set formed by these. There is a partial order on Γ, given by

[γ] 6 [γ′] :⇐⇒ γi − γj 6 γ′i − γ′j for all i 6 j.

In this section, g resp. γ will be used to denote a tuple of integers as in (6.1.3)
resp. as in (6.1.4).

Example 6.1.5 Let m = 3, let g = (0, 1, 3). We obtain

Λg =

 R R R
π R R
π3 π2 R

 .
We dispose e.g. of

N0 = N(0,0,0) =

 RR
R

 , N(0,1,1) =

 Rπ
π

 , Ng = N(0,1,3) =

 Rπ
π3

 .
Remark 6.1.6 (intrinsic characterization) The full suborder Λ ⊆ Rm×m is a Gram
order iff the indecomposable projective Λ-lattices are simple and there exist projective lattices
X and Y such that the inclusion Y -

�� X, which is existent and unique up to scalar, is
such that an element ξ ∈ EndRX ⊇ Λ restricts to Y iff it is contained in Λ.

Note that Krull-Schmidt holds for projective Λ-lattices (D.1.7, or, a bit breaking a fly on
a wheel, C.2.15), so that one merely has to consider the inclusions of the lattices given by
the columns of Λ. Cf. e.g. (6.1.29).

If Λ is a Gram order, say Λ ' Λg, then take X = N0 and Y = Ng or vice versa.

In case the conditions are satisfied, we conjugate rationally with Y - X.

Observation 6.1.7 Gram orders typically arise from invariant bilinear forms.

Let p be a prime. Consider the Specht lattice Sλ(p) over R := Z(p) to the partition λ of n.
It comes equipped with a nondegenerate Sn-invariant bilinear form

Sλ(p) ⊗R Sλ(p) -(−,=)
R

which gives an embedding of RSn-lattices

Sλ(p) -(−,=)
(Sλ(p))

∗
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having as matrix the Gram matrix Gλ of the bilinear form [J 78, < 4.8], cf. [Se 77, 13.2].
Since multiplication by group elements on Sλ(p) as well as on (Sλ(p))

∗ is an integral operation,
we obtain an inclusion of the local quasiblock

Qλ
(p)

-
�� i Λ(Gλ)−1 .

Remark 6.1.8 Conversely, consider the Gram order Λg, let G be the according main
diagonal matrix with diagonal (πg1 , . . . , πgm). There is an antiinvolution

ΛG -α ΛG
A - A− := (AG)t

which may be used to define a structure as a left lattice over ΛG on the R-linear dual N∗γ
via

(y)(Af) := (A−y)f

for y ∈ Nγ , f ∈ N∗γ , A ∈ Λg, giving an antiinvolution on ΛG-lat, since multiplication on the
dual of the dual is given by

(f)(A · evay) = (A−f)evay
= (y)(A−f)
= ((A−)−y)f
= (f)evaAy,

where f ∈ N∗γ , A ∈ Λg, and where evay denotes the evaluation at y ∈ Nγ .

There is some kind of an ‘invariant bilinear form’ on N0, viz. the Λg-morphism

N0
- N∗0

x - xtG′(−),

where G′ stands for the main diagonal matrix with diagonal (πgm−g1 , . . . , πgm−gm), i.e.
G′ = πgmG−1. Λg-linearity follows for A ∈ Λg and x, y ∈ N0 from

(Ax)tG′y = xtG′(AG)ty.

More generally, there is an isomorphism

Nγ -∼ N∗g−γ−gm
x - xtG′(−),

whence N∗γ ' Ng−γ .

Remark 6.1.9 (coinciding antiinvolutions) We roughly follow [Se 77, 13.2]. Assume
R ⊆ C.

Let H be a finite group. Let χ be a real valued ordinary irreducible character of H
such that the corresponding representation ρ can be realized over R. Let Q ⊆ Rm×m the
quasiblock of RG belonging to this representation. The antiinvolution of the group ring,
induced by the inversion of the group elements, induces an antiinvolution α on Q since the
corresponding rational central primitive idempotent

ε =
m

|H|
∑
h

χ(h−1)h

is invariant under this antiinvolution.

Note that an invariant bilinear form on the column X of Rm×m is unique up to scalar,
since it gives a morphism X - X∗. There exists such a form given by, say,

∑
h ρ(h)tρ(h),

which is nondegenerate since positive definite. The condition on G ∈ Rm×m to be the Gram
matrix of an invariant bilinear form is, x, y ∈ X, h ∈ H,

(ρ(h)x)tGy = xtG(ρ(h−1)y),
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i.e.
ρ(h)tG = Gρ(h−1).

By knowledge of AutKm×m (D.2.2), the antiinvolution α is given by transposition followed
by conjugation by a matrix G̃ ∈ Km×m. The condition on G̃ to furnish α in this manner is
thus

(ρ(h)t)G̃ = ρ(h−1),

whence G and G̃ differ by a scalar. Therefore, the antiinvolutions α and (A - (At)G)
coincide. Note that α being an involution implies G−1Gt to be a scalar, of value ±1.

In particular, note that besides the implication A ∈ Q =⇒ GA ∈ Rm×m we now also dispose
of the implication A ∈ Q =⇒ (At)G ∈ Q. Note that A ∈ Q =⇒ (At)G ∈ Rm×m ∩ (Rm×m)G

already holds by the former implication. It seems to be hard to use this newly found
implication.

In case of the quasiblock Q
(3,1,1)
(2) of Z(2)S5, the Gram matrix, written in a basis such that

the quasiblock takes a form as in (2.2.4), cannot be in elementary divisor form (cf. 6.3).
This example also shows that it is possible that A ∈ Q and (GA)t ∈ Q, whereas GA 6∈ Q,
in a case in which the Gram matrix is a scalar multiple of a SLm(R)-element.

Remark 6.1.10 We shall calculate the outer automorphism group of Λ(0,k) =
(
R R
πk R

)
as

an order over R. Assume k > 1. Right conjugation by the matrix
(
a b
c d

)
∈ GL2(K) yields

the following results (cf. D.2.2).

(
1 0
0 0

)(a b
c d

)
= 1

ad−bc

(
ad bd
−ac −bc

)
(

0 1
0 0

)(a b
c d

)
= 1

ad−bc

(
cd d2

−c2 −cd

)
(

0 0
πk 0

)(a b
c d

)
= πk

ad−bc

(
−ab −b2
a2 ab

)
The automorphism group of Λ(0,k) is given, modulo scalars, by those matrices

(
a b
c d

)
for

which these results lie in Λ(0,k). By multiplication with a scalar we may assume
(
a b
c d

)
to

lie in R2×2 and one of its entries to be equal to 1.

Case a = 1. Our results specialize to

1
d−bc

(
d bd
−c −bc

)
, 1
d−bc

(
cd d2

−c2 −cd

)
, πk

d−bc

(
−b −b2
1 b

)
,

whence v(d− bc) = 0, so that v(c) > k ensues, i.e. the automorphism turns out to be inner.

Case d = 1. Our results specialize to

1
a−bc

(
a b
−ac −bc

)
, 1
a−bc

(
c 1
−c2 −c

)
, πk

a−bc

(
−ab −b2
a2 ab

)
whence v(a− bc) = 0, so that v(c) > k ensues, i.e. the automorphism turns out to be inner.

Case c = 1. Our results specialize to

1
ad−b

(
ad bd
−a −b

)
, 1
ad−b

(
d d2

−1 −d

)
, πk

ad−b

(
−ab −b2
a2 ab

)
,

which would require v(ad− b) 6 −k, which is impossible.

Case b = 1. Our results specialize to

1
ad−c

(
ad d
−ac −c

)
, 1
ad−c

(
cd d2

−c2 −cd

)
, πk

ad−c

(
−a −1
a2 a

)
,

whence v(ad− c) ∈ [0, k].

Subcase v(ad − c) = 0. 2v(c) > k yields v(a) = 0 because of v(ad − c) = 0. Now
v(a) + v(c) > k yields v(c) > k, whence the automorphism is inner.
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Subcase 1 6 v(ad− c) =: ∆ 6 k − 1. From v(c) > ∆, v(d) > ∆ and 2v(a) > ∆ we deduce
v(c) = ∆, for otherwise v(ad − c) > ∆. But then 2∆ = 2v(c) > ∆ + k shows that this
subcase cannot occur.

Subcase v(ad − c) = k. As before, from v(c) > k, v(d) > k and 2v(a) > k we deduce
v(c) = k, for otherwise v(ad − c) > k. Hence v(a) + v(c) > 2k gives v(a) > k. We dispose

of the automorphism given by right conjugation by
(

0 1
πk 0

)
. Since

(
π−kc π−kd
a 1

)
is a unit in

Λ(0,k), the product (
0 1
πk 0

)(
π−kc π−kd
a 1

)
=
(
a 1
c d

)
shows that these automorphisms all belong to the coset modulo inner automorphisms rep-

resented by
(

0 1
πk 0

)
.

The result therefore is Out Λ(0,k) ' C2 for k > 1 (and trivial in case k = 0).

Probably, a more conceptual way to argue is needed in order to deal with the outer auto-
morphism groups of general Gram orders, which are of interest because they induce autoe-

quivalences on the respective category of lattices. For instance, conjugation by
(

0 1
πk 0

)
yields

an autoequivalence on Λ(0,k) which sends N(0,l) to N(0,k−l), which however can’t coincide
with duality since it is covariant (cf. 6.1.8). I do not quite understand yet the composi-
tion of the duality followed by the autoequivalence just derived. E.g. for 0 6 l 6 m 6 k
it sends the inclusion N(0,m ⊆ N(0,l), up to isomorphic substitution, to the embedding

N(0,l) -
��πm−l N(0,m).

Remark 6.1.11 Using the ‘thickened main diagonal’ as generators we obtain

Λg �
∼

(
E1

-A1

�
B1

· · · Em

)
/(AiBi = πgi+1−giEi, BiAi = πgi+1−giEi+1 | i ∈ [1,m−1]),

whence the according reductions modulo powers of π.

Proposition 6.1.12 (the sublattice lattice) The sublattices of the Λg-lattice N0 are
of the form Nγ such that [0] 6 [γ] 6 [g].

NB not only up to isomorphism, but ‘physically’, i.e. as inclusions up to isomorphism over
N0.

This proposition should also follow from [P 80/1, (I.8)].

Given a sublattice X of N0, we can, by choice of a basis of X, write its inclusion X -
�� N0

as a lower triangular matrix I = (αij) ∈ Rm×m, αij = 0 for i < j, αii 6= 0, v(αij) < v(αii)
or αij = 0 for i > j.

For i > j ∈ [1,m], let M ij ∈ Rm×m have entry M ij
ij = πgi−gj , zero elsewhere. Let,

for i 6 j ∈ [1,m], M ij ∈ Rm×m have entry M ij
ij = 1, zero elsewhere. Note that since

M ij ∈ Λg, I
−1M ijI is integral, giving the operation of Λg on X.

We prove by diagonalwise induction that αij = 0 if i 6= j.

Start of the induction. We claim that αij = 0 for i− j = 1. The entry

I−1
j+1,j = −α−1

jj α
−1
j+1,j+1αj+1,j

shows that (I−1M jjI)j+1,j = −α−1
j+1,j+1αj+1,j, forcing αj+1,j to be zero.

Step of the induction. We claim that αij = 0 for i − j = d, d > 2 and assume the
assertion known for i− j ∈ [1, d− 1]. Now the entry

I−1
j+d,j = −α−1

jj α
−1
j+d,j+dαj+d,j



172 Gram matrices

shows that (I−1M jjI)j+d,j = −α−1
j+d,j+dαj+d,j, forcing αj+d,j to be zero.

For i 6 j we deduce from
(I−1M ijI)ij = α−1

ii αjj

that v(αii) 6 v(αjj).

For i 6 j we deduce from
(I−1M jiI)ji = α−1

jj π
gj−giαii

that v(αjj)− v(αii) 6 gj − gi.

We shall investigate radical series of Gram orders. We restrict our attention to those
with Morita multiplicities 1. Assume g = (g1, . . . , gm) to be a strictly increasingly
ordered tuple of integers with g1 = 0.

Remark 6.1.13 The columns of Λg yield a decomposition into nonisomorphic indecom-
posable projectives since any morphism between them is a scalar.

Lemma 6.1.14 The radical of Λg is given by

rΛg = {(αkl) ∈ Λg ⊆ Rm×m | v(αkk) > 1 for k ∈ [1,m]}.

(6.1.13) taken under consideration, this follows from (E.1.20 iii).

Lemma 6.1.15 (periodicity) Assume R/π to be finite. Let Λ ⊆ Rm×m be a full subor-
der. There are positive integers i, k and l such that

ri+kΛ = πlriΛ.

Λ is a simple lattice over Λ⊗RΛo, of which the radical powers riΛ are Λ⊗RΛo-sublattices,
whose isomorphism classes in turn form a finite set by (D.2.6). So at least two of them
must be isomorphic, whence their inclusion corresponds to a scalar multiplication (cf.
E.2.1).

Lemma 6.1.16 Assume gj+1 − gj > 2 for j ∈ [1,m− 1]. Let i > 0 and let

ϕikl :=

{
max(0, i+ k − l) for k 6 l
max(0, i+ l − k) + gk − gl for k > l.

Then
riΛg = {(αkl) ∈ Rm×m | v(αkl) > ϕikl for k, l ∈ [1,m]}.

We proceed by induction, starting from the cases i = 0 and i = 1 (6.1.14). Assuming
the radical power to be calculated by our formula for the exponent i > 1, we claim this
formula to hold in case i+ 1, i.e.

min(ϕ1
ks + ϕisl | s ∈ [1,m])

!
= ϕi+1

kl .

We fix k and l and evaluate the left hand side.
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Case k 6 l.

Assume s < k 6 l.
ϕ1
ks + ϕisl = gk − gs + max(0, i+ s− l)

> 2 + max(0, i+ k − 1− l)
> max(0, (i+ 1) + k − l).

Assume s = k 6 l.
ϕ1
ks + ϕisl = 1 + max(0, i+ k − l)

> max(0, (i+ 1) + k − l).
Assume k < s 6 l.

ϕ1
ks + ϕisl = 0 + max(0, i+ s− l),

which is minimal at s = k + 1, taking value max(0, (i+ 1) + k − l).

Assume k 6 l < s.

ϕ1
ks + ϕisl = 0 + max(0, i+ l − s) + gs − gl

> max(0, i+ l − (l + 1)) + 2
= i+ 1
> max(0, (i+ 1) + k − l).

Case k > l.

Assume s 6 l < k.

ϕ1
ks + ϕisl = gk − gs + max(0, i+ s− l)

> gk − gl + i
> max(0, (i+ 1) + l − k) + gk − gl.

Assume l < s < k.

ϕ1
ks + ϕisl = gk − gs + max(0, i+ l − s) + gs − gl,

which is minimal at s = k − 1, taking value max(0, (i+ 1) + l − k) + gk − gl.

Assume l < k = s.

ϕ1
ks + ϕisl = 1 + max(0, i+ l − k) + gk − gl

> max(0, (i+ 1) + l − k) + gk − gl.

Assume l < k < s.

ϕ1
ks + ϕisl = 0 + max(0, i+ l − s) + gs − gl

> max(0, i+ l − (k + 1)) + 2 + gk − gl
> max(0, (i+ 1) + l − k) + gk − gl.

Corollary 6.1.17 We keep the assumptions of (6.1.16) and obtain

rmΛg = πrm−1Λg.

For a matrix size of m 6 4, we treat the remaining cases. We abbreviate [s, t] := min(s, t).

Lemma 6.1.18 Let m = 2, let g = (0, 1), i.e. Λg =
[
R R
π R

]
. Then, by (6.1.14), rΛg =

[
π R
π π

]
(6.1.14),

whence r2Λg = πΛg.
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Lemma 6.1.19 Let m = 3, let g = (0, 1, 2), i.e. Λg =

[
R R R
π R R
π2 π R

]
. Then, by (6.1.14),

rΛg =

[
π R R
π π R
π2 π π

]
, r2Λg =

[
π π R
π2 π π
π2 π2 π

]
, r3Λg =

[
π2 π π
π2 π2 π
π3 π2 π2

]
= πrΛg.

Lemma 6.1.20 Let m = 3, a > 2, g = (0, 1, 1 + a), i.e. Λg =

[
R R R
π R R

πa+1 πa R

]
, whence, by (6.1.14),

rΛg =

[
π R R
π π R

πa+1 πa π

]
, r2Λg =

[
π π R
π2 π π
πa+1 πa+1 π2

]
.

By induction we see that for i > 1

r2iΛg =

[
πi πi πi−1

πi+1 πi πi

πa+i πa+i π[2i,i−1+a]

]
,

whence r2aΛg = πr2a−2Λg.

The case g = (0, a, a+ 1) follows by transposition and conjugation.

Lemma 6.1.21 Let m = 4, let g = (0, 1, 2, 3), i.e.

Λg =

[
R R R R
π R R R
π2 π R R
π3 π2 π R

]
.

Then, by (6.1.14),

rΛg =

[
π R R R
π π R R
π2 π π R
π3 π2 π π

]
, r2Λg =

[
π π R R
π2 π π R
π2 π2 π π
π3 π2 π2 π

]
, r3Λg =

[
π2 π π R
π2 π2 π π
π3 π2 π2 π
π3 π3 π2 π2

]
, r4Λg =

[
π2 π2 π π
π3 π2 π2 π
π3 π3 π2 π2

π4 π3 π3 π2

]
= πr2Λg.

Lemma 6.1.22 Let m = 4, a > 2, g = (0, 1, 2, a+ 2), i.e.

Λg =

[
R R R R
π R R R
π2 π R R
πa+2 πa+1 πa R

]
.

Then, by (6.1.14),

rΛg =

[
π R R R
π π R R
π2 π π R
πa+2 πa+1 πa π

]
, r2Λg =

[
π π R R
π2 π π R
π2 π2 π π
πa+2 πa+1 πa+1 π2

]
.

By induction we see that for i > 1

r2iΛg =

[
πi πi πi−1 πi−1

πi+1 πi πi πi−1

πi+1 πi+1 πi πi

πa+i+1 πa+i πa+i π[2i,a+i−1]

]
,

whence r2aΛg = πr2a−2Λg.

The case g = (0, a, a+ 1, a+ 2) follows by transposition and conjugation.

Lemma 6.1.23 Let m = 4, a > 2, g = (0, 1, a+ 1, a+ 2), i.e.

Λg =

[
R R R R
π R R R

πa+1 πa R R
πa+2 πa+1 π R

]
.

Then, by (6.1.14),

rΛg =

[
π R R R
π π R R

πa+1 πa π R
πa+2 πa+1 π π

]
, r2Λg =

[
π π R R
π2 π π R
πa+1 πa+1 π π
πa+2 πa+1 π2 π

]
, r4Λg =

[
π2 π2 π π
π3 π2 π2 π
πa+2 πa+2 π2 π2

πa+3 πa+2 π3 π2

]
= πr2Λg.
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Lemma 6.1.24 Let m = 4, a, b > 2, g = (0, 1, a+ 1, a+ b+ 1), i.e.

Λg =

[
R R R R
π R R R

πa+1 πa R R
πa+b+1 πa+b πb R

]
.

Then, by (6.1.14),

rΛg =

[
π R R R
π π R R

πa+1 πa π R
πa+b+1 πa+b πb π

]
, r2Λg =

[
π π R R
π2 π π R
πa+1 πa+1 π2 π
πa+b+1 πa+b πb+1 π2

]
.

By induction we see that for i > 1

r2iΛg =

 πi πi πi−1 πi−1

πi+1 πi πi πi−1

πa+i πa+i π[2i,a+i−1] π[2i−1,a+i−1]

πa+b+i πa+b+i−1 πb+[2i−1,a+i−1] π[2i,a+b+i−2]

 ,
whence r2a+2b−2Λg = πr2a+2b−4Λg.

The case g = (0, b, a+ b, a+ b+ 1) follows by transposition and conjugation.

Lemma 6.1.25 Let m = 4, a, b > 2, g = (0, a, a+ 1, a+ b+ 1), i.e.

Λg =

[
R R R R
πa R R R
πa+1 π R R
πa+b+1 πb+1 πb R

]
.

Then, by (6.1.14),

rΛg =

[
π R R R
πa π R R
πa+1 π π R
πa+b+1 πb+1 πb π

]
, r2Λg =

[
π2 π R R
πa+1 π π R
πa+1 π2 π π
πa+b+1 πb+1 πb+1 π2

]
.

By induction we see that for i > 1

r2iΛg =

π[2i,a+i−1] πi πi−1 πi−1

πa+i πi πi πi−1

πa+i πi+1 πi πi

πa+b+i πb+i πb+i π[2i,b+i−1]

 ,
whence, letting c := max(a, b), r2cΛg = πr2c−2Λg.

Question 6.1.26 Let Λ be a Gram order. Does there exist an s > 0 and a k ∈ {1, 2}
such that

rs+kΛ = πrsΛ?

Let Λ ⊆ Rm×m be a full suborder. Does there exist an s > 0 and a k > 1 such that this
equation holds? Cf. (6.1.15, 6.1.27).

Let Qλ
(p) be the quasiblock of ZSn to the partition λ, localized at the prime p. Assume its

indecomposable projectives to be simple lattices. Recall that Qλ
(p) ⊆ Λ(Gλ)−1 (6.1.7). Does

there exist an integer m > 0 such that

rmQλ
(p) = rmΛ(Gλ)−1 ?

I.e. does a Gram order determine all but a finite part of the radical series? (12).

The assumption on the indecomposable projectives is not superfluous, as Q
(3,1,1)
(2) shows

(6.1.27).

12A counterexample to the question for m = 1 fixed can be found on p. 116 f. of G. Nebe,
Orthogonale Darstellungen endlicher Gruppen und Gruppenringe, Verlag Mainz, Aachen, see also
http://www.mathematik.uni-ulm.de/ReineM/nebe/pl.html. (6.1.26) is an attempt to formalize the
question to which extent the Gram matrix determines the quasiblock.



176 Gram matrices

We shall discuss the sublattice lattices of the quasiblocks which are not Gram orders discovered so far.

Example 6.1.27

From (S 2.2.4) we take that Q
(3,1,1)
(2) is Morita equivalent to, R = Z(2),

Λ :=

R 2 2

R R 2

R R R

��
k2

��

with Morita multiplicities (1, 4, 1). Using (E.1.20 iii, E.1.30), the radical series of Λ is given by

rΛ =
[ 2 2 2
R 2 2
R R 2

]
, r2Λ =

[
2 2 4
2 2 2
R 2 2

]
, r3Λ =

[
2 4 4
2 2 4
2 2 2

]
, r4Λ =

[
4 4 4
2 4 4
2 2 4

]
= 2rΛ.

The submodule lattices of S(3,1,1) and of its Morita correspondent

Y :=

 R

R

R


are isomorphic via Morita equivalence.

Let I be the inclusion matrix of a sublattice X ⊆ Y , which we may assume to be of the form

I =

 α11 0 0
α21 α22 0
α31 α32 α33


where v(αij) < v(αii) or αij = 0 for i > j. Writing (−)− for (−)−1, we obtain

I− =

 α−11 0 0
−α−11α

−
22α21 α−22 0

α−11α
−
22α
−
33α32α21 − α−11α

−
33α31 −α−22α

−
33α32 α−33

 .
The necessary calculation, as in (6.1.12), amounts to check the condition of integrality for I−MI for M
running over a basis of Λ.

First of all, M =
(

1 0 0
0 0 0
0 0 1

)
yields the integrality of

I−1MI =

 1 0 0
α−22α21 0 0
α−22α

−
33α32α21 α−33α32 1


from which we take α21 = 0 and α32 = 0. Inserting these values we obtain the following list of implications.

M =
(

0 0 0
0 0 0
0 0 2

)
=⇒ (i) α33 | 2α31

M =
(

0 0 0
1 0 0
0 0 0

)
=⇒ (ii) α22 | α11

M =
(

0 0 0
0 0 0
0 1 0

)
=⇒ (iii) α33 | α22

M =
(

0 0 2
0 0 0
0 0 0

)
=⇒ (iv) α11 | 2α31

(v) α11α33 | 2α2
31

(vi) α11 | 2α33

Assume that α31 6= 0. Then (i) forces v(α33) = v(α31) + 1, for v(α31) < v(α33). But v(α33) 6 v(α11) by
(ii) and (iii), and v(α11) 6 v(α31) + 1 = v(α33) by (iv), so, by (iii) and (ii), v(α11) = v(α22) = v(α33) =
v(α31) + 1. Hence (v) reads 2v(α31) + 2 6 2v(α31) + 1, which is a contradiction.
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Therefore α31 = 0. Thus, by (ii), (iii), (vi), the sublattices not contained in 2Y are given by the columns
of Λ, viz. by  R

R

R

 ,
 2

R

R

 ,
 2

2

R

 .
Example 6.1.28

From (S 2.3.5) we take that Q
(3,1,1,1)
(2) is Morita equivalent to, R = Z(2),

Λ :=

R 2 2 2

R R 2 2

R R R 2

R R R R

�� j2
��

with Morita multiplicities (4, 1, 4, 1), thus quite similar to (6.1.27). Let the inclusion of a sublattice given
by

I =


α11 0 0 0
α21 α22 0 0
α31 α32 α33 0
α41 α42 α43 α44

 ,
where v(αij) < v(αii) or αij = 0 for i > j. The integrality condition on I−MI yields for M =

(0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

)
that α21 = 0, α32 = 0 and α43 = 0, then, inserting these values, α41 = 0. Conjugating M =

(1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
we obtain α31 = 0. Using the arguments of (6.1.27) now, we see that α42 = 0 and moreover, that
α44 | α33 | α22 | α11 | 2α44. Therefore the sublattices of the column Y of R4×4 not contained in 2Y are
given by the columns of Λ.

Example 6.1.29

From (S 2.3.3) we take that Q
(3,2,1)
(2) is Morita equivalent to, R = Z(3),

R 3 3 3 9

R R 3 3 3

R 3 R 3 3

R 3 3 R 3

R R R R R

with Morita multiplicities (4, 1, 6, 1, 4), quite similar to Q
(3,2,1,1
(3) (S F.5). Since all main diagonal idem-

potents of Rn×n are contained in L, we obtain, as in (6.1.12), that we may assume the embedding of
a sublattice to be given by a main diagonal matrix with diagonal (α11, α22, α33, α44, α55). As usual, we
obtain α55 | α22, α33, α44 | α11 and α11 | 3α22, 3α33, 3α44 | 9α55, whence the following list of sublattices
of the column Y of R5×5 which are not contained in 3Y .

R

R

R

R

R

 ,


3

R

R

R

R

 ,


3

3

R

R

R

 ,


3

R

3

R

R

 ,


3

3

3

R

R

 ,


3

R

R

3

R

 ,


3

3

R

3

R

 ,


3

R

3

3

R

 ,


3

3

3

3

R

 ,


9

3

3

3

R

 .

In particular, Q
(3,2,1)
(2) is not a Gram order, using that all embeddings of simple projective lattices are

given by main diagonal matrices (cf. 6.1.6).
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6.2 Duality

To begin with, we need to rewrite [J 78, 6.7] in our integral context, without claiming

originality. Then we use the duality/transposition/alternation game to obtain information

about the Gram matrix of the invariant bilinear form on a Specht lattice.

Let n be a natural number. Let λ be a partition of n, let t be a λ-tableau.
Retain the notation from (4.1.1, S 6.1). Denote by Sλ,− := S(1n) ⊗Z S

λ the
tensor product of Sλ with the alternating lattice S(1n) on which s ∈ Sn acts as
εs. There is a Sn-invariant symmetric positive definite bilinear form (−,=) on
Mλ, given by ({a}, {b}) := ∂{a},{b}, which restricts to the positive definite, thus
nondegenerate Sn-invariant bilinear form attached to Sλ. We denote

Sλ,⊥ := {x ∈Mλ | (x, Sλ) = 0},
κt :=

∑
s∈Ct

εss,

ρt :=
∑
s∈Rt

s.

Lemma 6.2.1 (James, [J 78, 4.8]) If U is a pure ZSn-sublattice of Mλ, then either
Sλ ⊆ U or U ⊆ Sλ,⊥.

For u ∈ U we have uκt = αu〈t〉 for some αu ∈ Z [J 78, 4.6, 4.7].

In case αu = 0 for all u ∈ U , we obtain

0 = (uκt, {t})
= (u, {t}κt)
= (u, 〈t〉),

so U ⊆ Sλ,⊥ since 〈t〉 generates Sλ over ZSn and the form is Sn-invariant.

In case there is a u ∈ U with uκt = αu〈t〉 6= 0, we conclude from αu〈t〉 ∈ U and the
inclusion U ⊆ Mλ being pure that 〈t〉 ∈ U , hence Sλ ⊆ U since 〈t〉 generates Sλ over
ZSn.

Lemma 6.2.2 The epimorphism

F λ - Sλ
′,−

[t] - 1⊗ 〈t′〉

factors over

Mλ -Θ Sλ
′,−.

Mλ may be regarded as the quotient of F λ modulo unsigned row transpositions. Given a
row transposition (u v), i.e. u and v assumed to lie in the same column of t′, we obtain

(1⊗ 〈t′〉)(u v) = ε(u v) ⊗ 〈t′(u v)〉
= 1⊗ 〈t′〉.
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Lemma 6.2.3 The sublattices Sλ,⊥ and Kern Θ of Mλ coincide.

Since the inclusion Kern Θ ⊆Mλ is pure, by (6.2.1) it suffices to show for Kern Θ ⊆ Sλ,⊥

that SλΘ 6= 0, i.e. that

(
∑
s∈Ct

εs{t}s)Θ =
∑
s∈Rt′

εs ⊗ εs〈t′s〉

= 1⊗ 〈t′〉ρt′
6= 0.

Since both Kern Θ and Sλ,⊥ are pure ZSn-sublattices in Mλ of the same rank (rkMλ −
rkSλ) this inclusion even suffices to prove the initial assertion.

But
({t′}, 〈t′〉ρt′) = ({t′}ρt′ , 〈t′〉)

= |Rt′ |({t′}, 〈t′〉)
= |Rt′ |.

Lemma 6.2.4 The canonical morphism

Mλ/Sλ,⊥ - Sλ,∗

{t} - ({t},−)

is an isomorphism of ZSn-lattices.

Injectivity ensues by definition of Sλ,⊥. For to see surjectivity we need the inclusion
Sλ ⊆Mλ to be pure, thus inducing a surjection Mλ,∗ - Sλ,∗.

But this follows from [J 78, 8.3], using the basis consisting of standard polytabloids.

Proposition 6.2.5 The map determined by

Sλ
′,− - Sλ,∗

1⊗ 〈t′〉 - ({t},−)

is a well defined isomorphism of ZSn-lattices.

This ensues from (6.2.3, 6.2.4). Note that the sign of this map depends on the choice of
the λ-tableau [t].

Question 6.2.6 (13) Given a ZSn-morphism

Sλ/m -f Sµ/m

we may dualize Z/m-linearly and alternate to obtain

Sλ,∗,−/m�
f∗,−

Sµ,∗,−/m,

which we may substitute isomorphically by virtue of (6.2.5) by

Sλ
′
/m�

f ′

Sµ
′
/m,

which we take as the definition of the transpose f ′.

13C. Ringel asked for the behaviour of the morphism in (4.3.31) under dualization.
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Consider the situation of a one-box-shift downwards from λ to µ as in (4.3.31) and note
that λ′ arises from µ′ by a downwards shift of one box, too. Do the according specializations
of the generic morphism in (4.3.31) correspond, up to sign, under transposition? Moreover,
is the transpose of a specialization of the generic morphism given in (4.4.3) a specialization
of the generic morphism given in (4.4.1)? Cf. (4.3.33).

If so, the elementary divisors over Z/m would coincide and the composition properties would
dualize.

Lemma 6.2.7 ([J 78, 23.2 ii]) Let nλ := rkSλ. Then

{t}κtρtκt =
n!

nλ
{t}κt.

By [J 78, 4.6, 4.7], {t}κtρtκt is a scalar multiple of {t}κt, say {t}κtρtκt = α · {t}κt where
α ∈ Z.

Since by [J 78, > 4.13] we have

Mλ -∼ ρtZSn
{t} - ρt

the assertion is equivalent to

(ρtκt)
2 =

n!

nλ
(ρtκt),

whereas we know that (ρtκt)
2 = α(ρtκt).

Following e.g. [Rog 74, 4.10], we calculate the trace of

QSn -ρtκt(−)
QSn

twice. Since Ct ∩ Rt = 1, the 1-coefficient of ρtκt is 1, whence, using the canonical basis
of QSn, the trace equals n!. The isomorphism of Mλ with ρtZSn just cited restricts to
the isomorphism Sλ -∼ ρtκtZSn. Writing QSn = ρtκtQSn ⊕ V as vectorspaces, ρtκt(−)
reads (−)

(
α 0
∗ 0

)
. Consequently, we obtain

tr ρtκt(−)
1.
= n!

2.
= α · nλ.

Lemma 6.2.8 Let Gλ be the Gram matrix of the Sn-invariant bilinear form attached
to Sλ written in the standard basis given by the standard polytabloids. Then there are
GLnλ(Z)-elements Aλ such that

Aλ
′
Gλ′AλGλ =

n!

nλ
.

Gλ is the matrix of the morphism

Sλ - Sλ,∗

〈t〉 - (〈t〉,−)

when using the standard basis and its dual, respectively.
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Consider the composition with the isomorphism from (6.2.5)

Sλ - Sλ,∗ �∼ Sλ
′,−

〈t〉 - (1⊗ 〈t′〉)κt = 1⊗ 〈t′〉ρt′ .

The matrix of the inverse of Sλ
′,− -∼ Sλ,∗ with respect to the standard basis and its dual

denoted by Aλ
′
, we obtain the matrix of this morphism to be AλGλ.

Now composition yields

Sλ - Sλ
′,− - Sλ

〈t〉 - (1⊗ 〈t′〉)κt
1⊗ 〈t′〉 - 〈t〉ρt
(1⊗ 〈t′〉)κt - 〈t〉ρtκt = {t}κtρtκt

whence the result by (6.2.7).

The nontriviality of Aλ corresponds to the ‘annoying’ phenomenon mentioned in [J 78, 8.1]

that ({a}, 〈b〉) may be nonzero also for [a] and [b] being different standard tableaux.

Definition 6.2.9 Let M ∈ Rm×m, detM 6= 0. Let

dMi

denote the elementary divisors of M , ordered increasingly, dMi | dMj for i 6 j.

Proposition 6.2.10 Retain the notation from (6.2.8). We obtain

dG
λ

i dG
λ′

nλ+1−i = ± n!

nλ

for i ∈ [1, nλ].

This ensues from (6.2.8), using elementary divisors of the inverse.

6.3 List of elementary divisors

We list the local elementary divisors of the Gram matrices of the Sn-invariant bilinear form on the
Specht module in the following form. E.g. at the prime p the tuple (1, 0, 1, 3, 2) translates into the local
elementary divisor tuple (p0, p2, p3, p3, p3, p4, p4) (14).

n = 4.
partition divisors at 2 divisors at 3

(2,1,1) (0,1,0,2) (3)

(2,2) (0,2) (1,1)

n = 5.
partition divisors at 2 divisors at 3 divisors at 5

(2,1,1,1) (0,4) (0,4) (1,3)

(2,2,1) (0,0,1,4) (4,1) (5)

(3,1,1) (0,6) (6) (3,3)

14A. Mathas supplied me with an alternative routine for the elementary divisors, based on specht
under gap. Moreover, I used his routine schaper to compare (15).

15Cf. A. Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, Appendix C.
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n = 6.
partition divisors at 2 divisors at 3 divisors at 5
(2,1,1,1,1) (0,0,0,1,4) (0,1,4) (5)

(2,2,1,1) (0,0,4,1,4) (9) (1,8)

(2,2,2) (0,0,1,4) (0,4,1) (5)

(3,1,1,1) (0,4,6) (0,4,6) (10)

(3,2,1) (16) (4,8,4) (8,8)

n = 7.
partition divisors at 2 divisors at 3 divisors at 5 divisors at 7

(2,1,1,1,1,1) (0,0,0,6) (0,6) (0,6) (1,5)

(2,2,1,1,1) (0,0,0,14) (0,1,13) (6,8) (14)

(2,2,2,1) (0,0,6,8) (0,13,1) (1,13) (14)

(3,1,1,1,1) (0,0,0,15) (0,15) (15) (5,10)

(3,2,1,1) (0,14,0,1,20) (13,2,20) (35) (35)

(3,2,2) (0,0,1,20) (15,6) (13,8) (21)

(4,1,1,1) (0,20) (0,20) (20) (10,10)

n = 8.
partition divisors at 2 divisors at 3 divisors at 5 divisors at 7

(2,1,1,1,1,1,1) (0,0,0,0,1,0,0,6) (0,0,7) (0,7) (7)

(2,2,1,1,1,1) (0,0,0,0,6,14) (0,7,13) (20) (1,19)

(2,2,2,1,1) (0,0,0,14,6,8) (0,0,28) (7,21) (28)

(2,2,2,2) (0,0,0,0,6,8) (0,13,1) (1,13) (14)

(3,1,1,1,1,1) (0,0,0,6,0,0,15) (0,21) (0,21) (21)

(3,2,1,1,1) (0,64) (0,29,35) (21,43) (19,45)

(3,2,2,1) (0,0,6,8,14,2,40) (28,35,7) (70) (70)

(3,3,1,1) (0,0,14,42) (13,8,35) (43,13) (56)

(3,3,2) (0,0,0,42) (21,21) (21,21) (42)

(4,1,1,1,1) (0,0,0,15,0,0,20) (0,35) (35) (35)

(4,2,1,1) (0,14,0,62,0,14) (90) (90) (45,45)

n = 9.
partition divisors at 2 divisors at 3 divisors at 5 divisors at 7

(2,1,1,1,1,1,1,1) (0,0,0,0,8) (0,0,1,0,7) (0,8) (0,8)

(2,2,1,1,1,1,1) (0,0,0,0,0,1,0,26) (0,27) (0,27) (8,19)

(2,2,2,1,1,1) (0,0,0,48) (0,0,7,41) (27,21) (1,47)

(2,2,2,2,1) (0,0,0,0,0,26,16) (0,0,41,1) (8,34) (42)

(3,1,1,1,1,1,1) (0,0,0,0,28) (0,0,7,0,21) (0,28) (28)

(3,2,1,1,1,1) (0,0,0,26,0,1,0,78) (0,7,63,35) (105) (105)

(3,2,2,1,1) (0,0,0,26,94,2,40) (162) (28,134) (47,115)

(3,2,2,2) (0,0,26,18,40) (0,41,36,7) (1,83) (84)

(3,3,1,1,1) (0,0,78,42) (0,42,43,35) (120) (19,101)

(3,3,2,1) (0,0,0,8,160) (41,43,63,21) (134,34) (168)

(3,3,3) (0,0,0,42) (0,21,21) (21,21) (42)

(4,1,1,1,1,1) (0,0,0,56) (0,21,0,35) (0,56) (56)

(4,2,1,1,1) (0,78,0,1,40,2,68) (0,189) (56,133) (189)

(4,2,2,1) (0,0,56,160) (189,27) (83,133) (115,101)

(5,1,1,1,1) (0,0,0,70) (0,35,0,35) (70) (70)

Cf. [J 78, 23.8, 23.9].



Appendix A

Elementary divisors

A.1 Elementary Divisor Theorem for principal ideal

domains

We recall a constructive proof of the Elementary Divisor Theorem for a principal ideal
domain - constructive under the assumption that the greatest common divisor is given
constructively - , since it it used for a considerable number of arguments in the text as well
as for almost all computer calculations needed in the progress of this work.

For the history of this theorem, due to S. Smith, see [St 12, sec. 68].

It is not quite consequent not to presuppose any prerequisites on principal ideal domains,
but basic knowledge on Dedekind domains further down (S A.4).

Let R be a principal ideal domain.

A nonzero element a is called irreducible if a = bc implies (b) = (1) or (c) = (1). Hence a is irreducible
iff (a) is maximal, for (a) ⊆ (b) ⊆ (1) implies (b) = 1 or (a) = (b). In particular, irreducible elements are
prime, i.e. they generate a nonzero prime ideal. And conversely, prime elements are irreducible.

In order to see that each element of R allows a product decomposition into irreducible elements, we let
the ideal (a) 6= (0) be maximal with respect to the property that a does not allow such a decomposition,
under the assumption of the existence of a nonzero ideal of this kind. In particular, since a itself is not
irreducible there exists a factorization a = bc with (b), (c) ⊃ (a), which is a contradiction, for b and c
do have factorizations into irreducibles.

A decomposition into prime ideals is unique, since we may cancel and then use that the elements generate
prime ideals.

In order to avoid confusion, we also write (x1, . . . , xm) =: R(x1, . . . , xm) for the ideal of R generated by
the xi’s.

Proposition A.1.1 Let A = (aij)i∈[1,µ],j∈[1,ν] be a matrix in Rµ×ν , µ, ν > 2. There exist matrices
S ∈ SLµ(R), T ∈ SLν(R) such that SAT is a main diagonal matrix such that the entry at ii divides the
entry at jj for i 6 j. These entries are determined up to units in R and are called the elementary
divisors of A.

(i). Cleaning of the first column. We claim that we can multiply (aij) from the left by a matrix
in SLµ(R), such that (1) the result (a′ij) has R(a′11) = R(a11, . . . , aµ1) and (2) a′j1 = 0 for j ∈ [2, µ]. If
(1) is satisfied, (2) can be achieved by a further multiplication with an SLµ(R)-element. Moreover, by
construction we will be free to choose the ideal generator a′11.

Let x be a generator of R(a11, . . . , aµ1). Write x =
∑
j∈[1,µ] sjaj1 and note that R(s1, . . . , sµ) = R(1)

since we may divide each summand by x. In order to prove our claim it suffices to show that we can
realize a tuple (s1, . . . , sµ) which generates R(1) as a row of an element of SLµ(R). This is true for µ = 2
by

1 = s1b1 + s2b2 = det
( s1 s2
−b2 b1

)
.

183



184 Elementary divisors

By associativity of the greatest common divisor - obtained using unique factorization into prime elements
- it suffices to apply the transpose of the assertion just shown, viz. the possible multiplication of a two
element row with an SL2(R)-element from the right such that the gcd and a zero arise, to the last two
entries of our row (s1, . . . , sµ), and to apply induction.

(i’) Cleaning of the first row, transposed to (i).

(ii). For (x) =
∏

(p)(p)
ξp , let V (x) :=

∑
(p) ξp be the total value of (x), where (p) runs over the nonzero

prime ideals. Cleaning of the first column either strictly decreases the value of the top left entry or it is
possible with the top left entry as pivot element, so that in particular the first row is not affected. Hence
the process of alternating the cleaning of the first column and the cleaning of the first row ends up with
a cleaned first row and a cleaned first column.

(iii). In case that now the top left entry does not divide every entry, we clean the column and the row the
entry which is not divided sits in, without affecting the first column or the first row, which are already
cleaned. Now we add that column to the first column, which now contains two nonzero elements whose
gcd has a total value strictly smaller than the top left entry. Entering the (i, i’)-loop again at this stage
therefore yields a finite algorithm, resulting in a matrix with cleaned first row and column and top left
entry dividing all the others.

(iv). Iterating, i.e. applying (i-iii) to the respective remaining matrix to be diagonalized, we obtain a
diagonal matrix D = (dij) = SAT , S ∈ SLµ(R), T ∈ SLν(R) with diagonal entries dividing each other
consecutively, dii | di+1,i+1.

Uniqueness of the elementary divisors follows by regarding A as a morphism from Rµ to Rν . We
write the nonzero (dii)’s as (dii) =

∏
(p)(p)

αp,i . Localizing at (p), the cokernel of A(p) is isomorphic

to (
⊕

iR/(p
αp,i))⊕Rk, k > 0. Both summands, and so in particular the rank k of the torsionfree sum-

mand, are independent of the chosen bases of Rµ and Rν . Moreover, denoting the torsionfree summand
by T(p), we have for j > 1

dimR/(p) p
j−1T(p)/p

jT(p) = #{i |αp,i > j},

so that the αp,i’s are determined, which in turn determine the elementary divisors (dii).

Consider the proof in the particular case of A ∈ SLµ(R). Note that our construction uses only SL2(R)-
operations, embedded in various canonical ways into SLµ(R). Since(

0 −1
1 0

)
=
(

1 0
1 1

) (
1 −1
0 1

) (
1 0
1 1

)
,

and since we have, for u ∈ R∗, (
u 0
0 u−1

)
=
(

1 0
−u−1 1

) (
1 u
0 1

) ( 1 0
−u−1 1

) (
0 −1
1 0

)
so that we are free to choose ideal generators for (dii) for i ∈ [1, µ−1], the implication (SL2(R) is generated

by elementary matrices =⇒ SLµ(R) is generated by elementary matrices) follows. Its condition is met for

an euclidean domain, for we can use division with remainder to reduce the first row to (1 0) via column

operations. In particular, SLµ(Z) is generated by elementary matrices.

A.2 Chinese Remainder Theorem, version SL

Let R be a Dedekind domain. By p, q we denote nonzero prime ideals of R.

Lemma A.2.1 (16) Let b be a nonzero ideal in R, let m > 1. Then the residue class morphism

SLm(R) - SLm(R/b)

is surjective.

The problem is that we do not know whether SLm(R/b) is generated by elementary matrices, i.e. by
matrices with main diagonal constant 1 and a single nonzero non main diagonal entry (cf. S A.1).

16S. König helped to simplify the proof.
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Note that for a direct product of commutative rings A and B we have SLm(A×B) -∼ SLm(A)×SLm(B),
so that the target of our morphism may be replaced by

∏
p SLm(R/pβp) by the Chinese Remainder

Theorem, where b =
∏

p p
βp , p running over a finite set.

Suppose given M ∈ SLm(R/b). Choose entrywise an inverse image of M ∈ SL(R/pβp) in GLm(Rp)
and write it by the Elementary Divisor Theorem (A.1.1) as a product of elementary matrices, and one
extra factor in between being a main diagonal matrix D having as entries 1’s except for a unit of Rp in
the lower right corner. Changing the inverse image without changing its image in SLm(R/pβp) we may
assume that these elementary matrices lie in SLm(R). Moreover, since detD ≡pβp 1 we may assume D to
vanish. Furthermore, by the Chinese Remainder Theorem we may assume the non main diagonal entries
of the elementary matrices occurring in our product to vanish modulo qβq for q 6= p. Hence the product
over p of our products of elementary matrices is in SLm(R) and maps to M ∈ SLm(R/pβp) for all p, and
therefore to M ∈ SLm(R/b).

A.3 Some Ext-preliminaries

Let R - S be a flat morphism of commutative noetherian rings. Denote S(−) := S ⊗R −.
Let A be a R-algebra, finitely generated as an R-module. Let X and Y be finitely generated
A-modules.

Lemma A.3.1 Let i > 0. ExtiA(X,Y ) is a finitely generated R-module.

Since R is noetherian, we may resolve X with projective modules which are finitely generated as R-
modules.

Lemma A.3.2 Let i > 0. The natural transformation

ExtiA(X,Y ) -S(−)
ExtiSA(SX,SY ).

induces a natural isomorphism

SExtiA(X,Y ) -∼ ExtiSA(SX,SY ).

Using flatness of R - S we pass to the level of projective resolutions. Now

SHomA(P, Y ) - HomSA(SP, SY )

is an isomorphism for P finitely generated projective, since the assertion is true for P = A and extends
by naturality and additivity to the required generality.

Corollary A.3.3 In case R is an integral domain with field of fractions K and KA is semisimple,
ExtiA(X,Y ) is a finitely generated torsion module over R for i > 1.

A.4 The Steinitz-Chevalley Elementary Divisor The-

orem for Dedekind domains

For us, this generalization of (A.1.1) is mainly of importance because the structure of finitely
generated torsion modules over Dedekind domains ensues. We follow Chevalley’s artistic
proof [C 36, App. II, Th. 1], for whose understanding [CR 62] was helpful. Chevalley’s
assertion is more general than Steinitz’, the latter treating only the case of M being finitely
generated free over R [St 12, §41]. For further historical comments cf. [C 36].

Let R be a Dedekind domain with field of fractions K. By p, q we denote nonzero prime
ideals of R. Writing the expression x/y ∈ K it is understood that x, y ∈ R and y 6= 0. Let M
be a finitely generated torsion free R-module, let N ⊆M be a submodule.
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The following basic facts on Dedekind domains will be used, cf. [S 68].

(A) A fractional ideal in K has a unique decomposition as a product of integral powers of prime ideals.

(B) Rp is a discrete valuation ring.

Lemma A.4.1 Let X, Y be finitely generated R-modules.

(i) We have a natural isomorphism

(R(X,Y ))p -∼
Rp

(Xp, Yp).

(ii) X = 0 iff Xp = 0 for all p.

(iii) A sequence is exact iff it is exact at all p.

(iv) X is projective iff Xp is projective for all p.

(v) An ideal a ⊆ R is a projective R-module.

(i). The reader might amuse himself in giving a direct proof, alternatively to (A.3.2).

(ii). Xp = 0 is equivalent to the annihilator of X being not contained in p.

(iii). Regard the homology.

(iv). Use (A.3.2) or use (i) and (iii).

(v). ap is a principal ideal.

Definition A.4.2 The pure closure of N in M is defined to be

N̄ := {m ∈M | there is a y ∈ R\{0} such that ym ∈ N}.

M/N̄ is torsionfree, whence the name.

Lemma A.4.3 M is isomorphic to a direct sum of ideals of R. In particular, M is projective.

Let m ∈M be a nonzero element. Let

U := {u ∈M | there is a x/y ∈ K such that yu = xm}

be the pure closure of the submodule generated by m.

By uniqueness of x/y for a given u ∈ U and conversely, U is isomorphic to the fractional ideal

u := {x/y ∈ K| there is a u ∈ U such that yu = xm},

which is a fractional ideal via this isomorphism, M being noetherian. A fractional ideal, however, is
isomorphic to, say, the ideal obtained by multiplying with a common denominator of its generators.

By induction on the rank of M and in view of (A.4.1 v) it remains to be remarked that M/U is torsionfree.

Corollary A.4.4 The pure closure of a submodule of M is a direct summand of M .

Lemma A.4.5 (principal ideal approximation) Suppose given a nonzero ideal a ⊆ R. Fix a finite
set of nonzero prime ideals {p1, . . . , pk}. There is an element x ∈ a with

vpi(x) = vpi(a)

for i ∈ [1, k].

In particular, choosing two elements in this manner, the set of primes for the first being the set of prime
ideal divisors of a, the set of primes for the second being the set prime ideal divisors of a united with the
set of prime ideal divisors of the first element, we see that each ideal of R is generated by two elements.

We may assume the prime divisors of a to be contained in {p1, . . . , pk}. Regard the diagram
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R/ap1 · · · pk -∼
R/p

vp1 (a)+1
1 × · · · ×R/pvpk (a)+k

k

6 6

R/a -∼
R/p

vp1
(a)

1 × · · · ×R/pvpk (a)

k

and choose elements xi ∈ p
vpi (a)

i \pvpi (a)+1

i for i ∈ [1, k].

NB in case a is not a principal ideal, x has to have valuations > 0 away from this set, as long as it includes
the prime divisors of a.

Lemma A.4.6 Suppose given nonzero ideals a, b ⊆ R. Let x ∈ a be an element having the same
valuations as a at all prime ideal divisors of b (A.4.5). We obtain an isomorphism

R/b -∼ a/ab
1 - x.

Localizing at a prime ideal not occurring in b, we obtain 0 -∼ 0, localizing at a prime ideal p occurring
in b, we obtain the isomorphism, π ∈ R denoting an element with vp(π) = 1,

Rp/(π
vp(b)) -∼ (πvp(a))/(πvp(a)+vp(b))

1 - πvp(a)up,

up being a unit in Rp so that the result follows from (A.4.1 iii).

Corollary A.4.7 Keep the notation from (A.4.6). We obtain

a⊕ b ' R⊕ ab.

In particular, letting b = a−1(y) for some 0 6= y ∈ a, we see that each ideal of R is generated by two
elements.

The pushout (A.4.6)

b - R

6 6

ab - a

1

6

x

is also a pullback. Its short exact diagonal sequence splits by projectivity of a (A.4.1 v).

Theorem A.4.8 (Steinitz-Chevalley Elementary Divisor Theorem)

(i) There is an isomorphism
M -∼ a1 ⊕ · · · ⊕ aα

which restricts to an isomorphism

N -∼ b1a1 ⊕ · · · ⊕ bαaα

for suitable ideals ai, bi ⊆ R, such that bi ⊇ bi+1 for i ∈ [1, α− 1].

(ii) The ideals bi, called the elementary divisors of the inclusion N ⊆ M , are independent of the
choice of the isomorphism.

We may restrict ourselves to the case N̄ = M by (A.4.4, A.4.3).

(i). Choose 0 6= r ∈ R such that rM ⊆ N ⊆M . Let fr := AnnR(N/rM), let e := rf−1
r . Since r ∈ fr, e is

an ideal in R.
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(In case given M and N as in the result, we obtain e = b1.)

Note that
N ⊆ eM,

and that e is contained in any ideal with this property (showing e to be independent of r). In particular,
we have N 6⊆ qeM for any q.

Decompose

(r) =
∏
p

pvp(r)

into prime ideals. For a prime ideal p occurring in r, we choose

np ∈ N\peM.

By the Chinese Remainder Theorem, for p occurring in r we choose a νp ∈ R such that for q occurring
in r we have valuations

vq(νp) =

{
0 for q = p
1 for q 6= p

Since νpnp 6∈ peM (invert νp in R/p) whereas νpnp ∈ qN ⊆ qeM for q 6= p, we obtain

n :=
∑

p occ. in r

νpnp ∈ N\
⋃

p occ. in r

peM.

(In case given M and N as in the result, we find such an element n e.g. as an element of b1a1 whose
valuations coincide with those of b1a1 at all prime ideals occurring in r.)

The R-submodules of K
n := {x/y ∈ K | xn ∈ yN}
m := {x/y ∈ K | xn ∈ yM}

are fractional ideals, since there are injections n -∼ N1 ⊆ N and m -∼ M1 ⊆M by uniqueness of, say,
m in xn = ym for a given x/y ∈ K. We claim that

me = n,

which then implies that
M1e = N1.

m ⊇ ne−1 follows by N ⊆ eM , for given xn = yem, x/y ∈ K, n ∈ N , m ∈ M , e ∈ e, and given u/v ∈ K
with ue/v ∈ R, we get (xu)n = yuem = (yv)(ue/v)m, hence (x/y)(u/v) ∈ m.

Let c := (me)−1n ⊆ R. Note that rM ⊆ N implies rm ⊆ n, so that

(r) ⊆ nm−1 = ce,

therefore a prime ideal factor p of c occurs in r, if existent. But in this case we had, since

1 ∈ n = mec ⊆ mep,

i.e.
1 =

∑
(xi/y)eipi,

where xi/y ∈ K with xin = ymi for some mi ∈M , ei ∈ e, pi ∈ p, that

yn =
∑

xieipin = y(
∑

eipimi),

thus
n =

∑
eipimi ∈ epM,

which we have excluded however.

Since M1 is the pure closure in M of the submodule generated by n, it has, by (A.4.4), a complement

M = M1 ⊕M2.
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We claim that
N = N1 ⊕ (N ∩M2).

For to show that N1 and N ∩M2 generate N , we regard an element m1 +m2 ∈ N , where m1 ∈M1 and
m2 ∈M2. Now m1 +m2 ∈ eM = eM1 ⊕ eM2 implies m1 ∈ eM1 = N1 (this equality being crucial), thus
also m2 ∈ N .

By induction on the rank of M we may assume given the decomposition

M2
-∼ a2 ⊕ · · · ⊕ aα

N ∩M2
-∼ b2a2 ⊕ · · · ⊕ bαaα,

the second isomorphism being the restriction of the first, with bi ⊇ bi+1 for i ∈ [2, α− 1]. Letting b1 := e
it remains to be shown in case α > 2 that e ⊇ b2. But N ⊆ eM implies b2a2 ⊆ ea2.

(ii). In view of (A.4.6) we may write the quotient M/N as

M/N -∼ R/b1 ⊕ · · · ⊕R/bα

and compare to
M/N -∼ R/b′1 ⊕ · · · ⊕R/b′α′ ,

where bi ⊇ bi+1 for i ∈ [1, α − 1] and b′i ⊇ b′i+1 for i ∈ [1, α′ − 1]. Appending trivial quotients, we may
assume α = α′. We have to prove vp(bi) = vp(b′i) for all prime ideals p. However, these valuations are
determined by, π ∈ R denoting an element with vp(π) = 1,

dimRp/(π)

[
πi−1(M/N)p/π

i(M/N)p
]

= #{j ∈ [1, α] | vp(bj) > i}.

Corollary A.4.9 A finitely generated R-module X can be written as

X -∼ R/b1 ⊕ · · · ⊕R/bs ⊕ a1 ⊕ · · · ⊕ at,

where bi and aj are ideals of R.

Apply (A.4.8) to the inclusion of a kernel of a surjection from a direct sum of copies of R to X and
consider (A.4.6).

Corollary A.4.10 A finitely generated R-module has a decomposition

X = X0 ⊕
⊕
p

Xp

with X0 torsionfree, AnnRXp = pip , Xp 6= 0 only for a finite number of p’s.

We call Xp the p-part and
⊕

q6=pXq the p′-part of X.

Moreover, the p-parts Xp of X are uniquely determined as submodules. A morphism X -f Y maps Xp

into Yp. The torsionfree part X0 is determined up to isomorphism as the quotient of X by its torsion
part.

Existence of such a decomposition follows from (A.4.9) and the Chinese Remainder Theorem. Uniqueness
and preservation of the p-part by morphisms follow from the characterization

Xp = {x ∈ X | AnnRx is a power of p}.

Corollary A.4.11 In case R is the ring of algebraic integers in a number field K, a finitely generated
R-module X with KX = 0 is finite.

By (A.4.9) it suffices to show that R/b is finite for an ideal b ⊆ R, which follows by b ∩ Z 6= 0 (consider
e.g. the constant term of a minimal polynomial over Z of an element in b).

Remark A.4.12
Let R be the ring of algebraic integers in a number field K, let S ⊆ R be a multiplicative
subset. Since S−1R/R is torsion, S−1R is not finitely generated over R as long as S−1R/R
is infinite (A.4.11). Hence in this case, S−1R is a fortiori not finitely generated. In par-
ticular, let x ∈ R\p be a nonunit with, say, vq(x) > 1. The difference of two elements of
{x−1, x−2, . . .} ⊆ Rx has a negative valuation at q, thus Rx/R is infinite and therefore Rx
is not finitely generated over R. A fortiori, K is not finitely generated over R. Since given
p there exists a nonunit in R\p, also Rp is not finitely generated over R.
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Remark A.4.13 We justify the name Elementary Divisor Theorem for (A.4.8) by deducing
the Elementary Divisor Theorem for principal ideal domains from (A.4.8).

Let R be a principal ideal domain. Let A ∈ Rµ×ν be a matrix over R. Let M = Rν ,
regarded as a row, let N ⊆M be its submodule generated by the rows of A. By (A.4.8) we
obtain isomorphisms, the latter being a restriction of the former,

M �f
∼ Rν

N �∼ ⊕ν
i=1(bi).

Denote by εi the standard basis of Rν . Let

(εi)f =:

ν∑
j=1

ξijεj ,

let
∑
m ξimξ̄mj = ∂ij . There is a matrix η = (ηij) ∈ Rµ×µ such that for m ∈ [1, ν]

µ∑
l=1

ηilalm = biξim,

whence ∑
l,m

ηilalmξ̄mj =
∑
m

biξimξ̄mj = bi∂ij .

We claim that η may be chosen to be invertible. η has to make the following diagram
commute, in which the downwards morphisms are split epimorphisms

Rµ -η
Rµ

?

N .

@
@
@
@R

εl

@
@R

blξl

εl

?
al

Replacing the morphisms Rµ - N isomorphically by canonical projections N⊕N ′ -
(

1
0

)
N

(i.g. by different substitution isomorphisms) we obtain as substituted condition on the hor-
izontal morphism that it be of the form (

1 ∗
0 ∗
)
,

whence the claim.

Example A.4.14 Given an ideal a ⊆ R. We shall construct a matrix whose rows generate
a submodule of the free module on (1 0) and (0 1) having elementary divisors a and (y)a−1,
where y ∈ a2. Note that a−1(y) ⊆ a. Let x ∈ a−1(y) such that vp(x) = vp(a−1y) for all
prime ideal divisors p of a (A.4.5). Choose s ∈ a(y)−1, t ∈ a such that

sx+ t = 1,

existent by surjectivity of a⊕a(y)−1 -

(
1
x

)
R, which can be seen locally. Letting matrices act

on the right,

R⊕ (y) -

(
t x
−s 1

)
a⊕ a−1(y)

is inverted by
(

1 −x
s t

)
. Therefore the matrix

R⊕R -

(
t x
−ys y

)
R⊕R

gives the required example.



Appendix B

Two tools

The lattice tensor product over an order is defined as the torsion free part of the tensor

product. Moreover, we introduce the Higman ideal, i.e. of the annihilator ideal of Ext1.

B.1 The lattice tensor product

Let R be a Dedekind domain with field of fractions K (to which we refer by ‘rational’). Let
Λ and ∆ be orders over R, i.e. R-algebras which are finitely generated projective as modules
over R. By p, q we denote nonzero prime ideals of R. p denotes a prime element of R except
stated otherwise.

A Λ-lattice is a Λ-module which is finite projective over R. A Λ-∆-bilattice over R is a
Λ ⊗R ∆o-lattice. We abbreviate K ⊗R − by K(−). A simple lattice is a lattice X such that
KX is a simple KΛ-module. A pure monomorphism of Λ-lattices has a torsionfree quotient,
a full monomorphism has a torsion quotient.

Example B.1.1 Let R = Z, let Λ = {x× y | x ≡2 y} ⊆ Z× Z. Then

0 6= t := (0× 1)⊗ (1× 0) ∈ (Z× Z)⊗Λ (Z× 0),

whereas 2t = 0. For to see this, we regard the Λ-bilinear map

(Z× Z) × (Z× 0) - Z/2
(a× b) × (c× 0) - bc

which sends t to 1.

Lemma B.1.2 The inclusion

Λ-lat - Λ-mod

has a left adjoint, denoted by (−̃) and called lattification. Which is compatible with the forgetful functors
from Λ to R.

Note that for X in Λ-mod there exists a short exact sequence

0 - X ′ - X -ε X̃ - 0,

split over R (A.4.10), with X ′ torsion over R and X̃ torsionfree over R. It follows that this sequence is

functorial, that X -ε X̃ is the unit and Y Y , Y ∈ Λ-lat, is the counit of the required adjunction.

Definition B.1.3 Let, for X a left Λ-lattice and Y a right Λ-lattice,

X⊗̃ΛY := (X ⊗Λ Y )̃

191
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be their lattice tensor product, or just tensor product as long as no confusion may arise. Accord-
ingly, its elements are generated by elements of the form

x⊗̃y := (x⊗ y)ε.

It ensues that the lattice tensor product is an addititve functor in both variables.

Lemma B.1.4 Let X a left Λ-lattice and Y a right Λ-lattice. Let U be an R-lattice. The Λ-bilinear
maps

X × Y -Φ U,

i.e. Φ being R-linear in both variables and Φ(xλ, y) = Φ(x, λy), are in bijection to the R-linear maps

X⊗̃ΛY -Φ
′

U,

where Φ′ arises from Φ via the restriction of the induced map on the ordinary tensor product.

Note that

R(X ⊗Λ Y, U) -∼
R(X⊗̃ΛY,U)

via restriction (B.1.2).

Lemma B.1.5 Let X be a Λ-∆-bilattice over R, let Y be a left ∆-lattice. X⊗̃∆Y is a left Λ-lattice via

X ⊗̃Λ Y -(λ(−))̃
X ⊗̃Λ Y

x ⊗̃ y - (λx) ⊗̃ y.

Lemma B.1.6 Let X be a right Λ-lattice, let Y be a Λ-∆-bilattice over R, let Z be a left ∆-lattice. Then
there is an isomorphism

(X ⊗̃Λ Y ) ⊗̃∆ Z -∼ X ⊗̃Λ (Y ⊗̃∆ Z)
(x ⊗̃ y) ⊗̃ z - x ⊗̃ (y ⊗̃ z)
(x ⊗̃ y) ⊗̃ z � x ⊗̃ (y ⊗̃ z)

over R.

By (B.1.4, B.1.5), the first map is well defined. Dito the second.

Lemma B.1.7 Let X be a Λ-∆-bilattice over R. Then

Λ-lat -Λ(X,−)
∆-lat

has a left adjoint

∆-lat -X⊗̃∆−
Λ-lat.

In particular, we see that X⊗̃∆− is right exact.

For Y a left ∆-lattice and Z a left Λ-lattice we have the isomorphisms (B.1.2)

∆(Y, Λ(X,Z)) -∼
Λ(X ⊗∆ Y,Z) -∼

Λ(X⊗̃∆Y,Z).

Lemma B.1.8 Let X be a right Λ-lattice, let Y be a left Λ-lattice, let S ⊆ R be a multiplicative subset.
Then

S−1(X ⊗̃Λ Y ) -∼ S−1X ⊗̃S−1Λ S−1Y
(1/s)(x ⊗̃ y) - (x/s) ⊗̃ y

(1/(st))(x ⊗̃ y) � (x/s) ⊗̃ (y/t).

Lemma B.1.9 Let X be a right Λ-lattice, let Y - Z be a injective morphism of left Λ-lattices. Then

X⊗̃ΛY - X⊗̃ΛZ

is injective. It preserves monomorphisms, pure epimorphisms and cokernels (taken in Λ-lat).

We regard the commutative diagram with vertical and upper injections (B.1.8)
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X⊗̃ΛY - X⊗̃ΛZ

6 6

K(X⊗̃ΛY ) - K(X⊗̃ΛZ)

6

o

6

o

KX ⊗KΛ KY - KX ⊗KΛ KZ

Example B.1.10 (dangerous bend) In general, X⊗̃Λ− does not preserve short exact
sequences. In particular, it does not necessarily preserve pure monomorphisms.

Keep the notation of (B.1.1). The short exact sequence

0 - 2Z× 0 - Λ - 0× Z - 0

is mapped under Γ⊗̃Λ− to

2Z× 0 - Γ - 0× Z - 0.

Lemma B.1.11 Let X be a right Λ-sublattice of KΛ. Let Y be a left Λ-lattice. Let XY ⊆ KY be
additively generated by products of the form xy, x ∈ X, y ∈ Y . Then

X ⊗̃Λ Y -∼ XY
x ⊗̃ y - xy.

We have to show that the map is injective. Regard the diagram with vertical and upper injections

X⊗̃ΛY - XY

6 6

KX ⊗KΛ KY - KΛ⊗KΛ KY

Lemma B.1.12 Let Λ ⊆ ∆ be a full inclusion of R-orders, let X be a left Λ-lattice. Then

X - ∆⊗̃ΛX
x - 1⊗̃x

is a full inclusion of R-lattices.

Tensoring with K over R we may factor this map rationally as

K ⊗R X -∼ K ⊗R Λ⊗Λ X -∼ K ⊗R ∆⊗Λ X -∼ K ⊗R (∆⊗̃ΛX).

Remark B.1.13 Let Λ ⊆ Γ be a full inclusion of lattices, let e be an idempotent of Γ,
let X be a left lattice over Λ. Consider the R-linear submodule eX ⊆ ΓX. We obtain an
isomorphism

eΛ ⊗̃Λ X -∼ eX
ea ⊗̃ x - eax
e ⊗̃ x � ex,

which is in well defined in the direction � since ex = 0 implies πm(e⊗̃x) = 1⊗̃πmex = 0,
m chosen large enough for πme ∈ Λ.

B.2 The Higman ideal

Keep the assumptions from (S B.1).

Definition B.2.1 The Higman ideal of Λ, Higman(Λ) ⊆ R, is defined to be the annihilator in R of
the functor Ext1

Λ(−,=) from lattices over Λ to R-modules. In other words,

Higman(Λ) := {a ∈ R | aExt1
Λ(X,Y ) = 0 for all Λ-lattices X and Y }.
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Remark B.2.2 A Λ-lattice X is projective iff Xp is projective over Λp for all prime divisors p of
Higman(Λ). Any Λp-lattice is the localization at p of some Λ-lattice. In fact, choose a set of Rp-linear
generators of the Λp-lattice and consider its Λ-linear span inside, which is a lattice by (A.4.9, A.4.1 v).
Therefore, we obtain

Higman(Λ)p = Higman(Λp)

by (A.3.2), since, in general, for a finitely generated R-module M

(AnnRM)p = AnnRp
Mp

(A.4.9).

Lemma B.2.3 Higman(Λ) contains a. In particular, the Higman ideal does not vanish.

We may assume R to be a discrete valuation ring with maximal ideal (π), a = (πα) (B.2.2). Suppose
given an extension

0 - X - E -f Y - 0.

of Λ-lattices.

We claim that it is annihilated by πα as an element of Ext1, which can be expressed by saying that there

is a Λ-morphism Y -s E with sf = πα, as can be seen by taking the pullback of this sequence along πα.
Writing shorthand Λ(−) for the tautological Λ⊗̃Λ− and Γ(−) for Γ⊗̃Λ− (B.1.3, cf. B.1.11), we obtain a
commutative diagram of Λ-lattices

ΛE -Λf
ΛY

? ?

ΓE -Γf
ΓY

Note that Γf is a pure and thus split epimorphism (B.1.9). Choose a splitting t(Γf) = 1. Regard ΓY as
a subset of KΛY = KΓY and consider the inclusions

ΛY ⊆ ΓY ⊆ π−αΛY ⊆ KΛY.

Let s be the restriction of t to Y = ΛY . Since the inclusion ΛY ⊆ π−αΛY is isomorphic to the homothety

Y -π
α

Y , the result follows.

Example B.2.4
(a) Let G be a finite group, let R = Z. Higman(ZG) = (|G|), where ⊇ follows e.g. by (1.1.1,
B.2.3) and ⊆ follows by considering the augmentation sequence, noting that for the trivial
lattice Z we have HomZG(Z,ZG) ' Z.

(b) Let R be a discrete valuation ring with maximal ideal (π).

(i) The Higman ideal of Λ :=
(
R R
π R

)
⊆
(
R R
R R

)
=: Γ is zero since the simple lattices are

projective (6.1.12), although a = (π).

(ii) Let α > 1. We claim that the Higman ideal of Λ :=
(

R R
π2α R

)
⊆
(
R R
R R

)
=: Γ equals (πα),

whereas a = (π2α). Since Λ is isomorphic to
(
R πα

πα R

)
, (B.2.3) yields (πα) to be contained

in the Higman ideal. On the other hand, we have

Ext1
Λ

((
R
πα

)
,
(
R
πα

))
= R/πα,

as can be taken from the first step of the projetive resolution

0 -
(
R
πα

)
-(πα −1)
(

R
π2α

)
⊕
(
R
R

)
-

(
1
πα
) (

R
πα

)
- 0.



Appendix C

Krull-Schmidt

C.1 Historical remark

Remark C.1.1
The historical development of the Krull-Schmidt Theorem is roughly as follows.

G. Frobenius and L. Stickelberger published a result known today as the Main Theorem on Finite
Abelian Groups [J. Crelle 86, p. 217-262, espec. p. 236 II., p. 242 II., 1879].

R. Remak extended this result on unique decompositions to direct product decompositions of finite, but
not necessarily abelian groups. Uniqueness here means that given G =

∏
iGi =

∏
j G
′
j , there exists an

α ∈ Aut G such that α(Gi) = G′iσ, for a suitable bijection σ, and such that each g−1α(g) is central. [J.
Crelle 139, p. 293-308, 1911].

W. Krull proved the result known today as the Krull-Schmidt Theorem for modules which are both
noetherian and artinian over an arbitrary ring, i.e. he showed the decomposition of such a module into
indecomposables to be unique up to permutation and isomorphic substitution [Math. Z. 23, p. 161-196,
1925].

O. Schmidt found the smallest common generalization of the theorems of Remak and Krull [Math.
Z. 29, p. 34-41, 1929].

H. Fitting simplified in Schmidt’s treatment a lemma via the introduction of what is known today as
Fitting’s Lemma [Math. Z. 39, p. 16-30, espec. p. 19, Hilfssatz 3, 1935].

G. Azumaya established the Krull-Schmidt Theorem in the following form: in case the endomorphism
rings of the indecomposable modules over a ring are local, (under some finiteness conditions) the de-
composition of a module into indecomposable direct summands exists uniquely up to permutation and
isomorphic substitution [J. Jap. Math. 29, p. 525-547, 1947].

Now we restrict our attention to the further development concerning general results on Krull-Schmidt for
lattices over orders.

Z. Borevich - D. Faddeev, R. Swan, I. Reiner and G. Azumaya obtained independently the va-
lidity of the Krull-Schmidt theorem for lattices over an order over a complete discrete valuation ring [for
references cf. CR 62, Th. (76.26)]. This assertion results from the endomophism rings of the indecompos-
ables being local, which is the modular assertion lifted to the order via idempotents. J. M. Maranda
contributed the necessary preparational assertions [Can. J. Math. 5, p. 344-355, 1953; Can. J. Math. 7,
p. 516-526, 1955].

A. Heller proved that one can pull down Krull-Schmidt from the complete to the noncomplete case
provided the R-order Λ becomes a direct product of matrix rings over K when tensored with the field of
fractions K of R (i.e. KΛ split semisimple) [Proc. Nat. Acad. Sci. 47, p. 1194-1197, 1961].

We give an account of Heller’s variant (C.2.15) of Krull’s achievement (C.2.14), following
[CR 62, §76] rather closely.
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196 Krull-Schmidt

C.2 Krull-Schmidt, sub split semisimple, local, non-

complete

Let R be a discrete valuation ring with maximal ideal (π), field of fractions K and valuation
v. Let Λ be a sub split semisimple R-order, i.e. assume a full inclusion of R-orders of the form
Λ ⊆

∏
iR

mi×mi to exist. Let Higman(Λ) =: (πh) (B.2.1). By X, Y we denote left Λ-lattices.

Let R̂ = lim� R/πi denote the completion of R at π, the elements of which we denote as
matching tuples of representatives (ri), i ∈ N, subject to ri+j ≡πi ri for j > 0. Let K̂ be the

quotient field of R̂. Let X̂ := R̂⊗R X.

We deal with left modules, left noetherianity etc. without mentioning ‘left’.

Remark C.2.1 Let U be a finitely generated free R-module. We write an element of lim� U/πi as a
matching tuple of representatives (ui). The induced morphism

Û - lim� U/πi

(ri)⊗ u - (riu)

is an isomorphism.

By naturality and additivity, it suffices to see this for U = R.

Remark C.2.2 Suppose given a sequence of R-linear morphisms (X -fi Y )i∈N such that for i > 0

(λx)fi ≡πi λ(xfi)

for λ ∈ Λ and such that

fi+j ≡πi fi

for j > 0. We obtain a Λ̂-morphism

X̂ -f̂ Ŷ
(xi) - (xifi)

where the elements of X̂ and Ŷ are denoted as matching tuples of representatives (cf. C.2.1). This is a
well defined R̂-linear map as the inverse limit of a family of maps.

Λ̂ operates, say, on X̂ via

(λi)(xi) = (λixi),

so that f̂ becomes Λ̂-linear by the assumption made above.

Lemma C.2.3 Let k > h+ 1. Let

X -f Y

be a R-linear map with πk dividing λ(xf) − (λx)f for each λ ∈ Λ and each x ∈ X. There exists a
Λ-morphism

X -f
′

Y

such that f ′ ≡πk−h f .

We write Y X for the direct sum of X and Y as R-lattices, carrying the structure of a Λ-lattice given
by a certain extension of X by Y (to be constructed). Pulling back twice, we obtain, using πhExt1

Λ = 0
on lattices,
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0 - Y -(1 0)
Y ⊕X -

(
0
1

)
X - 0

?

(
1 0
∂ πh

)
?

πh

0 - Y -(1 0)
Y X -

(
0
1

)
X - 0

?

(
πk

ϕ

)
?

f

0 - Y -πk
Y - Y/πk - 0

We write left multiplication with λ on X as λX := λ(−) on the right. Etc. The operation of λ on X Y
is described by a matrix of the form (

λY 0
δ λX

)
since the horizontal maps are Λ-morphisms. The lower middle vertical map being a Λ-morphism means
that (

λY 0
δ λX

)(
πk

ϕ

)
=
(
πk

ϕ

)
λY ,

i.e. δπk + λXϕ = ϕλY . The upper middle vertical map being a Λ-morphism means that(
1 0
∂ πh

)(
λY 0
δ λX

)
=
(
λY 0
0 λX

)(
1 0
∂ πh

)
,

i.e. ∂λY + πhδ = λX∂, so that we obtain, denoting f ′ := ϕ+ πk−h∂,

λXf
′ − f ′λY = λX(ϕ+ πk−h∂)− (ϕ+ πk−h∂)λY

= −δπk + πk−hπhδ
= 0.

Moreover,
f ′ = ϕ+ πk−h∂ ≡πk−h ϕ ≡πk f.

Lemma C.2.4 (Maranda) Assume X/πh+1 and Y/πh+1 to be isomorphic as Λ-modules. Then X and
Y are isomorphic as Λ-lattices.

Let X -f Y be an R-linear map giving the isomorphism modulo πh+1. f satisfies the requirement of

(C.2.3) with k = h+ 1 whence we can find a Λ-morphism X -f
′

Y such that

X - X/π

?

f ′

?

o f

Y - Y/π

commutes. A first application of Nakayama’s Lemma yields surjectivity of f ′. Let C be a R-linear
complement to the kernel Kf ′ of f ′. A second application of Nakayama’s Lemma forces C = X.

Lemma C.2.5 Let S be a commutative ring. The canonical morphism

S[X]/(X2 −X)2 - S[X]/(X2 −X)

is a retraction in the category of S-algebras.

In other words, we claim that there exists an S-algebra endomorphism of S[X] which sends the ideal
(X2 −X) to (X2 −X)2 and which induces the identity on S[X]/(X2 −X).
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The following arguments use characteristic zero. However, the image polynomial of X exhibited this way
gives a coretraction in all characteristics - e.g. choose a surjective ring morphism S′ - S with S′ having
characteristic zero (use a large enough polynomial ring over Z) to pull the result down to S via S ⊗S′ −.

Note that (f(X)2 − f(X))′ = (2f(X)− 1)f ′(X). We have to find a polynomial f(X) ∈ S[X] such that

f(0)2 − f(0) = 0
f(1)2 − f(1) = 0

(2f(0)− 1)f ′(0) = 0
(2f(1)− 1)f ′(1) = 0

f(0)− 0 = 0
f(1)− 1 = 0,

i.e. we have to find a f(X) = X2g(X) such that

g(1) = 1
g′(1) + 2 = 0

For instance, take g(X) = −2X + 3, i.e. f(X) = 3X2 − 2X3.

Lemma C.2.6 Let ∆ be an R-order. Let e ∈ ∆ be such that e2 − e ∈ πk∆. Then there exists an e′ ∈ ∆
such that e′2 − e′ ∈ π2k∆ and such that e′ ≡πk e.

Using (C.2.5), we let f be a coretraction to

R[X]/(X2 −X)2 - R[X]/(X2 −X),

and we set e′ := f(e). Then
f(e)2 − f(e) = u(e)(e2 − e)2 ∈ π2k∆

for some u(X) ∈ R[X], and furthermore

f(e)− e = v(e)(e2 − e) ∈ πk∆

for some v(X) ∈ R[X].

Corollary C.2.7 Let ∆ be an R-order. ∆̂ does not contain nontrivial idempotents iff ∆/π does not
contain nontrivial idempotents.

Lemma C.2.8 X̂ is indecomposable iff X/πh+1 is indecomposable.

Assume X/πh+1 to be decomposable, i.e. assume given a nontrivial idempotent X/πh+1 -e X/πh+1.

(C.2.3) endows us with an Λ-endomorphism X -e
′

X such that e′ ≡π e. e modulo π remains nontrivial,
since summands do not vanish.

Hence we may apply (C.2.6) iteratedly to ∆ = EndΛX, starting with e′, to obtain a sequence of Λ-linear

endomorphisms X -e
′
i
X with e′1 = e′, ei+j ≡πi ei for j > 0 and such that e′i

2 ≡πi e′i.

This yields a nontrivial idempotent endomorphism of X̂ (C.2.2).

Lemma C.2.9 Let K ′/K be a field extension. Each K ′Λ-module M ′ arises from a KΛ-module M via
scalar extension

K ′ ⊗K M -∼ M ′.

In other words, we may find a K ′-basis of M ′ for which the matrices of the Λ-operation have entries in
K.

Since Λ is sub split semisimple, the assertion is true for an indecomposable K ′Λ-module. In fact, this
module is isomorphic to a column in a product of matrix rings over K ′, arising from a product of matrix
rings over K by entrywise scalar extension.
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Proposition C.2.10 (Heller’s Lemma, [H 61, 2.5]) Each Λ̂-lattice U allows an isomorphism X̂ -∼ U
for some Λ-lattice X.

By (C.2.9), we find a KΛ-module V such that K̂ ⊗R̂ U ' K̂ ⊗K V as K̂Λ-modules. Let {u1, . . . , un} be

a R̂-basis of U . Regard V as a KΛ-submodule of K̂ ⊗R̂ U . We choose a K-basis∑
j

aijuj ,

where A := (aij) ∈ K̂n×n is an invertible matrix. We claim that the Λ-submodule

X := V ∩ U.

contains a R-basis which is a R̂-basis of U , thus proving the proposition. Choose B = (bij) ∈ Kn×n with
B ≡πN A−1, where N is to be taken strictly larger than the negative of the minimal valuation of the
entries of A, so that BA ≡π A−1A = E. In particular, BA is contained in R̂n×n and is invertible there,
for its determinant is contained in 1 + πR̂. The elements

xi :=
∑
j,k

bijajkuk

thus form a K-basis of V and an R̂-basis of U . Since we can write each element of K̂ uniquely as a
product of a unit in R̂ and a power of π we have R̂ ∩K = R. Therefore the coefficients of an element of
X with respect to the basis {xi} lie in R.

Lemma C.2.11 X is indecomposable iff X/πh+1 is indecomposable.

If X/πh+1 is decomposable, so is X̂ by (C.2.8). Writing

X̂ = X̂1 ⊕ X̂2 = (X1 ⊕X2)̂ ,

with X1, X2 nonzero, which is possible by Heller’s Lemma (C.2.10), we conclude by (C.2.4) from

X/πh+1 = (X1 ⊕X2)/πh+1

that there is a decomposition
X ' X1 ⊕X2

into nonzero Λ-lattices. NB we may not assert equality here, for e.g. there is no reason why the Λ-
submodules X1 and X2 of X̂ should be contained in X.

Remark C.2.12 Substituting (C.2.7) for (C.2.8) in (C.2.11), we obtain that a sub split
semisimple R-order contains nontrivial idempotents iff this is the case modulo π. In other
words, primitive idempotents remain primitive modulo π.

Remark C.2.13 We’d like to stress that the assertion of (C.2.11) merely involves Λ,
whereas its proof needs the actual completion Λ̂, which apparently cannot be substituted
by ‘Λ/πN , N large’, since Heller’s Lemma hinges on the fact that K̂ is a field extension of
K.

(C.2.10) is the only place in which we needed the assumption on Λ to be sub split semisimple.

Problem. Assume a nontrivial idempotent endomorphism of X/πh to be known explicitely,
as an R-linear matrix, say. Construct a nontrivial idempotent endomorphism of X.

Lemma C.2.14 (Krull-Schmidt, artinian and noetherian) Let A be a noetherian and artinian ring.
Then the decomposition of a finitely generated A-module M into indecomposables is possible and unique
up to a permutation and isomorphic substitution of the summands.

Finitely generated A-modules are noetherian and artinian. Using this, we may apply the Circonference
Lemma to the composition fkfk = f2k, m large, to prove nilpotence of an endomorphism of an indecom-
posable module which is not an automorphism. Writing down a geometric series, we thus see that either
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f or 1− f is an automorphism. Via composition, this also holds with an automorphism instead of 1. We
conclude that the nonautomorphisms are closed under addition.

The compositions M1
-M ′j

-M1 arising from decompositions
⊕
Mi = M =

⊕
M ′j into indecom-

posables sum up over j to 1M1 . Hence there is an automorphism amongst them, yielding, say, M1
-∼ M ′1.

It remains to exhibit an automorphism of M which restricts to M1
-∼ M ′1 (17). Consider

ϑ := (M -M ′1
�∼ M1

-M -1−p′1
M),

where p′1 denotes the projection to M ′1. M -1−ϑ
M restricts to M1

-∼ M ′1. Moreover, 1 = (1−ϑ)(1 +ϑ).

Theorem C.2.15 (Krull-Schmidt, noncomplete) The decomposition of a Λ-lattice into indecompos-
ables is possible and unique, up to a permutation and isomorphic substitution of the summands.

Two decompositions into indecomposables remain decompositions into indecomposables modulo πh+1

(C.2.11), hence the summands modulo πh+1 are pairwise isomorphic after a permutation (C.2.14), hence
the summands themselves are pairwise isomorphic after a permutation (C.2.4).

Proposition C.2.16 (Krull-Schmidt, complete) Let ∆ be an R̂-order (not necessarily sub split semisim-
ple). The decomposition of a ∆-lattice into indecomposables is possible and unique, up to a permutation
and isomorphic substitution of the summands.

Two decompositions into indecomposables remain decompositions into indecomposables modulo πh+1

(C.2.8), hence the summands modulo πh+1 are pairwise isomorphic after a permutation (C.2.14), hence
the summands are pairwise isomorphic after a permutation (C.2.4).

C.3 Counterexamples

Out of interest, we also give an account of two well known examples which show the limi-
tations of Krull-Schmidt. We specialize [CR 81, 36.3] to a single counterexample to Krull-
Schmidt in case K is not a splitting field for the finite group G. Such a counterexample has
been found, but has not been written down in detail, by Berman and Gudikov [Integral
Representations of Finite Groups, Sov. Math. Dokl. 3, p. 1172-1174, 1962]. Moreover, we
recall Roggenkamp’s counterexample to Krull-Schmidt for projectives over orders over a
local ring [Rog 70, VI].

Example C.3.1 Let G := C7 × C2 = 〈a | a7 = 1〉 × 〈b | b2 = 1〉, let R := Z(2). Krull-Schmidt fails for
RG-lattices.

Denote by ζ a seventh primitive root of unity in C.

(2) ∈ R[ζ] decomposes according to the seventh cyclotomic polynomial in F2[X], viz.

Φ7(X) = X6 +X5 +X4 +X3 +X2 +X + 1 ≡2 (X3 +X + 1)(X3 +X2 + 1),

where the factors are coprime by

X(X3 +X + 1) + (X + 1)(X3 +X2 + 1) ≡2 1,

which gives a decomposition of the zero ideal in

F2[X]/Φ7(X) = F2[X]/(X3 +X + 1)× F2[X]/(X3 +X2 + 1) ' F8 × F8

into the prime ideals
0 = ( (X + 1)(X3 +X2 + 1) ) · ( X(X3 +X + 1) )

= ( X4 +X2 +X + 1 ) · ( X4 +X2 +X ).

17The following device is taken from [Be 91, 1.4.3].
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Taking inverse images, (2) decomposes in R[ζ] into the prime ideals

(2) = (2, ζ4 + ζ2 + ζ + 1︸ ︷︷ ︸
=:s

) · (2, ζ4 + ζ2 + ζ︸ ︷︷ ︸
=:t

).

Note that st = −2, hence even
(2) = (s)(t).

We obtain a ring morphism

R(C7 × C2) - R[ζ][X]/(X2 − 1) -∼ R[ζ]×R[ζ]
a - ζ - (ζ, ζ)
b - X - (1,−1),

the image of which is described by

A := {(x, y) ⊆ R[ζ]×R[ζ] | x ≡(2) y}.

We are reduced to find a counterexample to Krull-Schmidt for A-lattices. Consider the A-lattices

M := {(x, y) ∈ R[ζ]×R[ζ] | x ≡(s) y}
N := {(x, y) ∈ R[ζ]×R[ζ] | x ≡(t) y}
X := {(x, 0) ∈ R[ζ]×R[ζ]}

Since R[ζ] (but not R̂[ζ], cf. C.2.7) is an integral domain, we see via idempotents that M , N and X are
indecomposable. Let

X -σ M
(1, 0) - (s, 0)

X -τ N
(1, 0) - (t, 0)

M -ϕ X
(x, y) - (x, 0)

N -ψ X
(x, y) - (x, 0)

denote some A-morphisms and observe that (σ τ )
( ϕ
−ψ
)

= 1, so that X is a direct summand of M ⊕N .

Example C.3.2 Maintain the notation of (C.3.1). Let

Λ :=

[
R[ζ] R[ζ]
(2) R[ζ]

]
map to a sum of Λ-lattices as follows,

Λ -
[
R[ζ]
(s)

]
⊕
[
R[ζ]
(t)

]
1 -

[
1
s

]
⊕
[

1
t

]
,

surjectively (direct calculation, using s− t = 1, st = −2), hence injectively. An arbitrary Λ-linear map[
R[ζ]
R[ζ]

]
-
[
R[ζ]
(s)

]
,

is a scalar multiplication, since it is a scalar multiplication when tensored with Q. In particular, it
cannot be surjective. Dito for t instead of s. So Λ has two essentially different decompositions into
indecomposable projectives.
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Appendix D

p-orders

We collect a few basic facts on the genus question for orders as far as necessary in order
to make precise the meaning of the ‘absence of genus phenomena’ in the naive localizations
(D.2.10) of ZSn for n 6 6.

The attentive reader will surely recognize that we have chosen our assumptions in this
appendix in such a manner that no serious difficulties can arise. Moreover, we adhocisize
several statements, not because we do not appreciate the more general framework of maximal
orders, Whitehead groups etc., but because already as it is, this appendix is longer than
expected to be. Basically, we follow [CR 62, 81] and [Rog 70]. In (D.5.11) we give a criterion
for certain R-orders to be homogenus. Besides this, we do not claim originality.

All conventions we make in this appendix (A D) remain valid from the place we state them

on to the end of (A D), in particular, they are valid in the following sections. Exceptions

are explicitely stated. A list of conventions can be found at the end of (A D).

D.1 Homogenus rings

By a module over a ring we understand a left module, except stated otherwise. Finite pro-
jective stands for finitely generated projective module. A-proj denotes the category of finite
projectives over A. Indecomposable projective stands for finitely generated indecomposable
projective module. ip(A) denotes the set of isomorphism classes of indecomposable projec-
tives over A. We say that Krull-Schmidt holds in A-proj if the decomposition of P ∈ A-proj
into indecomposable projectives is unique up to permutation of the summands and up to
isomorphism. The unit group of a ring A is denoted by A∗.

Definition D.1.1 Let A be a ring.

The indecomposable projectives P and Q over A are said to lie in the same genus′ if P k ' Qk for
some k > 1. Cf. (D.2.13, D.2.21) below.

The ring A is called homogenus (‘of homogeneous genus’) if there exists an orthogonal decomposition
into primitive idempotents

1 =

s∑
i=1

ei

such that Aei and Aej are in the same genus′ iff they are isomorphic.

A Morita reduction of a ring A is the endomorphism ring B of the direct sum of a set of representatives
for the genus′-classes of the set of indecomposable projectives occurring in a decomposition of A into
indecomposable projectives.

203
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In case A is homogenus, we can reconstruct it from B, a decomposition of B into indecomposable projec-
tives and the Morita multiplicities, i.e. the cardinalities of the genus′ classes of the given decomposition
of A.

NB it may well happen that A is homogenus although there exists a decomposition that does not fulfill
the requirements (cf. D.1.4, D.5.6).

Remark D.1.2 We shall see that for an R-order Λ fully embedded into a product of matrix rings over
some Dedekind domain R, the notions of genus′ and of genus coincide (D.2.21), the latter being defined
in (D.2.13).

Example D.1.3 (the main example) We verify in (C 2) by direct calculation that there exists an
embedding into a direct product of integral matrix rings with respect to which the naive localization
(ZSn)[p] is homogenus for n 6 6 and for p a prime divisor of n!. (The naive localization (−)[p] with
respect to such an embedding will be defined in (D.2.10)). Moreover, for n = p prime, ZSp allows such
an embedding with respect to which (ZSp)[p] is homogenus (4.2.8). I do not know whether this is true in
general.

Example D.1.4 (the typical one) We refer to a result further down to verify the assertion made in
this example.

Let

A :=

{(
a b
c d

)
×
(
a′ b′

c′ d′

) ∣∣∣∣∣ (a 2b
c 2d

)
≡5

(
a′ b′

2c′ 2d′

)}
⊆ Z2×2 × Z2×2

B :=

{(a b c
d e f
g h i

)
×
(
a′ b′ c′

d′ e′ f ′

g′ h′ i′

) ∣∣∣∣∣ (a b 2c
d e 2f
g h 2i

)
≡5

(
a′ b′ c′

d′ e′ f ′

2g′ 2h′ 2i′

)}
⊆ Z3×3 × Z3×3.

A is not homogenus, but B is, as we shall see in (D.5.11); cf. (D.6.1, D.5.13, D.5.14). But localized at 5,
A becomes homogenus, too, see (D.1.6, C.2.15).

Though small, this is a quite typical example and might be kept in mind throughout (cf. D.2.11). A and
B are 5-orders in the sense of (D.2.8).

Remark D.1.5 The annihilator ideals of indecomposable projectives in the same genus′ coincide.

Remark D.1.6 If Krull-Schmidt holds in A-proj, A is homogenus.

Lemma D.1.7 Let A be a ring. If 1 ∈ A has an orthogonal decomposition 1 =
∑
i ei into primitive

idempotents such that eiAei is local - i.e. the nonunits form an ideal -, then Krull-Schmidt holds in
A-proj.

By Benson’s device (proof of C.2.14), the decomposition of a sum of projectives of the form Aei into
indecomposable projectives is unique up to permutation and isomorphism. A finite projective over A is
a summand of An, thus a sum of certain Aei’s. Hence this uniqueness also applies to a decomposition of
this finite projective into indecomposable projectives.

D.2 Naive Localization

Let R be a Dedekind domain with field of fractions K (to which we refer by ‘rational’) such
that R/p is finite as a set for each nonzero prime ideal p ⊆ R. By p, q we denote nonzero
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prime ideals of R. Assume K to have finite class number, i.e. assume the set of isomorphism
classes of ideals in R to be finite.

An R-order is an R-algebra which is finite projective as an R-module. Let Λ be a full (i.e.
rationally equal) R-suborder of a direct product of matrix rings over R, Λ ⊂ Γ :=

∏
iR

mi×mi

being strictly included. We fix this embedding throughout. Such an order Λ we call sub
split semisimple over R. Γ/Λ is a torsion R-module with annihilator a in R.

We abbreviate K ⊗R − by K(−). A lattice over Λ is a Λ-module that is finite projective
over R. A simple Λ-lattice is a Λ-lattice X with KX being a simple KΛ-module. A pure
monomorphism of Λ-lattices has a torsionfree quotient, a full monomorphism has a torsion
quotient, a pure epimorphism is surjective.

Remark D.2.1 Since KΛ is a product of matrix rings, Krull-Schmidt holds for Λp-lattices (C.2.15). So
in particular Krull-Schmidt holds for Λp-proj, whence Λp is homogenus (D.1.6).

Lemma D.2.2 Any K-algebra automorphism of Km×m, m > 1, is inner.

By Morita equivalence Km×m has only one simple module so that, given such an automorphism α, Km

and the twisted module αK
m are isomorphic via an invertible matrix A, giving back α via conjugation.

Lemma D.2.3 Any full embedding of R-orders Λ -
�� i Γ that sends the rational central primitive idem-

potents of Λ to the same central primitive idempotents of Γ as our chosen inclusion Λ -
�� Γ can be

substituted isomorphically by an inclusion Λ -
�� AΓ ⊆ KΓ, where A ∈ Γ is an invertible element of

KΓ, and where (Λ -
�� AΓ -
�� KΓ) = (Λ -
�� KΛ = KΓ) is canonically embedded.

More precisely, there is a commutative diagram

Λ -i
∼ iΛ - Γ.

6
A(−) o

6

o A(−)

Λ - AΓ

The condition on i to respect the rational matrix ring factors is merely a question of numbering the
factors in the target of i appropriately.

K(iΛ -i
−1

∼ Λ) is a K-algebra automorphism of KΓ, which is inner by (D.2.2).

Lemma D.2.4 Let Y ⊆ X be a full inclusion of simple lattices such that Y is not contained in bX for
any nontrivial ideal b ⊂ R. Then a2X ⊆ Y , i.e. a2 annihilates X/Y .

We may assume R to be a discrete valuation ring with maximal ideal (π), a = (πi), since an R-module
M vanishes iff Mp = 0 for all p. By simplicity of X we may assume Γ = Rm×m. We claim that
π2i(X/Y ) = 0.

We embed X into a column L of Γ in such a way that X is not contained in πL, which is possible since
KX ' KL. By the Elementary Divisor Theorem (A.1.1) we may assume after a choice of bases that
there exists a main diagonal matrix D ∈ Γ with main diagonal (πs1 , . . . , πsn), s1 = 0, such that X = DL.
Since X is a lattice over Λ, we obtain

Λ ⊆ {u ∈ Km×m | uX ⊆ X}
= {u ∈ Km×m | uDL ⊆ DL}
= {u ∈ Km×m | uD ∈ Γ}
= DΓ,

whence the diagram in which the Ci’s are the respective cokernels (cf. 1.1.6)



206 p-orders

Λ - Γ ∩ DΓ - C3

6

C
C
C
C
C
C
CO

�
�
�
�
�
�3

Γ
�
��
�*

C2

6 HH
HHY

C1

?

�
�
�
�
�
�
��

Q
Q
Q
Q
Q
Qs

DΓ HH
HHj

C4

?
��

���
C5.

C1 and C5 are both isomorphic to
⊕

i<j R/π
sj−si as modules over R. πiC2 = 0 implies πiC1 = 0 and

πiC3 = 0, thus π2iC4 = 0.

Note that X is a column of DΓ. Thus, replacing Γ by DΓ, we may assume X = L to be a simple Γ-lattice
at the cost of merely disposing of π2i(Γ/Λ) = 0.

We have ΓY = X, since the Γ-sublattices of X are given by πjX’s and since by assumption Y is not
contained in πX. Therefore,

π2iX = π2iΓY ⊆ ΛY = Y.

Example D.2.5 Let R be a discrete valuation ring with maximal ideal (π). For Λ =(
R π
π R

)
⊆
(
R R
R R

)
= Γ and Y =

(
π
π2

)
⊆
(
π
R

)
= X the annihilator of X/Y equals the square of

a.

Corollary D.2.6 The number of isomorphism classes of simple lattices over Λ is finite.

We claim that the set of isomorphism classes of simple Λ-lattices rationally isomorphic to the simple
Λ-lattice X is finite.

The number of nonisomorphic lattices of type bX, b ⊆ K a fractional ideal, is finite since the class
number of K is assumed to be finite and since b -∼ b′ over R is given by multiplication with an element
of K, and thus yields bX -∼ b′X over Λ.

Let Y be a Λ-lattice rationally isomorphic to X. We include Y ⊆ X and choose v ∈ K such that
Y ⊆ X ⊆ vY ⊆ KY = KX (A.4.5). Let c := {u ∈ K | uY ⊆ X}, being a fractional ideal since c ⊆ Rv.
Now, if Y ⊆ bc−1X for some ideal b ⊆ R, then b−1 ⊆ R, whence b = R. By (D.2.4), we obtain that
Y/a2c−1X is a submodule of c−1X/a2c−1X, which is finite as a set (A.4.9).

Corollary D.2.7 (Jordan-Zassenhaus in our particular situation) The number of isomorphism
classes of Λ-lattices X rationally isomorphic to a given KΛ-module U is finite. I.e. K(−) has finite fibers
on the isomorphism classes.

We use induction on the number of simple indecomposable direct summands of U , starting with (D.2.6)
in case U itself is simple. Otherwise, decompose U = V ⊕W nontrivially. By induction, there are only
finitely many lattices rationally isomorphic to V resp. to W . Intersecting the given Λ-lattice with V
and projecting it to W , it remains to be shown that there are only finitely many isomorphism classes of
extensions X of given full sublattices Y ⊆ V and Z ⊆ W . However, there are even only finitely many
elements in Ext1

Λ(Z, Y ) (A.3.3, A.4.9).
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Definition D.2.8 Λ is called a p-order if a = pi for some i > 1.

Consequently, the Higman ideal of a p-order is a power of p (B.2.3).

Note that by convention, Γ itself is not a p-order.

By comparison of Λ ⊆ Γ and Λ ⊆ AΓ (cf. D.2.3) via Γ ∩ AΓ just as in (D.2.4), the q-part of Γ/Λ has
a cardinality independent of the chosen embedding Λ -

�� Γ, so that the property of being a p-order is
independent from this choice.

Remark D.2.9 If Λ is a p-order, a Λ-lattice X is projective iff Xp is projective over Λp (B.2.2).

Definition D.2.10 Let p ⊆ R be a nonzero prime ideal. Let C be the cokernel of the inclusion of R-
modules Λ ⊆ Γ, and let Cp be its the p-part (A.4.10). Let the naive localization Λ[p] be defined as the
kernel of the composition of the canonical map Γ - C with the projection C - Cp, i.e.

Λ - Γ - C
���

Λ[p]

@@R

@@R
Cp.

?

Λ[p] is an R-order. By construction, we have

Λ =
⋂
p⊆R

Λ[p] ⊆ Γ.

NB Λ[p] depends on the chosen embedding Λ -
�� Γ, a dependence which we shall not denote by

abuse of notation (cf. D.2.11).

In case p = (p) is a principal prime ideal, we also denote

Λ[p] := Λ[(p)].

We have to show that Λ[p] is closed under multiplication in Γ. Let C = Cp ⊕ Cp′ be the decomposition

of C into its p and its p′-part (A.4.10), let (Γ - C) =: (Γ -(f g )
Cp⊕Cp′). Suppose given x, y ∈ Λ[p], i.e.

suppose that xf = yf = 0. There exists an s ∈ R\p such that sCp′ = 0 (A.4.5). Thus (sxf sxg ) = 0, i.e.
sx ∈ Λ, as well as (syf syg ) = 0, i.e. sy ∈ Λ. Hence s2xy is contained in Λ, in particular (s2xy)f = 0,
whence (xy)f = 0, i.e. xy ∈ Λ[p].

Alternatively, we may describe Λ[p] as the pullback - as abelian groups as well as as rings - of Λp
- Γp

and Γ - Γp, which also shows Λ[p] to be closed under multiplication in Γ.

Note that Λp
-∼ (Λ[p])p.

Morally, Λ[p] arises from Λ by dropping the p′-ties without changing the ground ring R, since of the
cokernel C we think as a list of ties, grouped in sublists Cq of q-ties.

Example D.2.11 (dangerous bend) It may happen that with respect to the embedding
Λ -
�� Γ, the naive localization of Λ at p is homogenus, whereas with respect to an em-

bedding Λ -
�� AΓ for some A ∈ (KΓ)∗, it is not homogenus. In particular, these naive

localizations are nonisomorphic.

We refer to a result further down to verify the assertion made in this example.

We may as well regard the isomorphic substitution ΛA - Γ of Λ - AΓ. Let

Λ :=

{(
a b
c d

)
×
(
a′ b′

c′ d′

) ∣∣∣∣∣ (a bc d) ≡5

(
a′ b′

c′ d′

)
, b ≡2 0

}
⊆ Z2×2 × Z2×2 =: Γ,
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let

A =
(

2 0
0 1

)
×
(

1 0
0 1

)
.

We obtain

Λ[5] :=

{(
a b
c d

)
×
(
a′ b′

c′ d′

) ∣∣∣∣∣ (a bc d) ≡5

(
a′ b′

c′ d′

)}

ΛA[5] :=

{(
a b
c d

)
×
(
a′ b′

c′ d′

) ∣∣∣∣∣ (a 2b
c 2d

)
≡5

(
a′ b′

2c′ 2d′

)}
.

Λ[5] is homogenus, whereas by (D.5.11), ΛA[5] is not.

Lemma D.2.12 Retaining the notation of (D.2.10) we obtain

Higman(Λ)p ∩R = Higman(Λp) ∩R = Higman(Λ[p]).

Cf. (B.2.2).

For Λ[p]-lattices X and Y , we use the formula

(Ext1
Λ[p]

(X,Y ))p -∼ Ext1
Λp

(Xp, Yp)

which ensues from Λp
-∼ (Λ[p])p (A.3.2). Since any Λp-lattice arises from a Λ[p]-lattice via localization

at p, the element s ∈ R lies in Higman(Λp) iff it annihilates the p-part of Ext1
Λ[p]

(X,Y ) for all Λ[p]-lattices

X and Y .

A power of p annihilates Ext1
Λ[p]

(X,Y ) by (B.2.3).

Alternatively, let q 6= p be a nonzero prime ideal in R. We use (A.3.2) to obtain

Ext1
Λ[p]

(X,Y )q = Ext1
(Λ[p])q

(Xq, Yq)

= Ext1
Γq

(Xq, Yq)

= 0.

Definition D.2.13 The Λ-lattices X and Y are said to lie in the same genus, written X ∨ Y , if Xp

and Yp are isomorphic for all nonzero prime ideals p of R.

By Krull-Schmidt locally (C.2.15), two projective indecomposable lattices over Λ that lie in the same
genus′ lie in the same genus. For the converse, see (D.2.21).

Lemma D.2.14 The Λ-lattices X and Y lie in the same genus iff Xp and Yp are isomorphic for all
prime divisors p of a.

In particular, in case Λ is a p-order, X and Y lie in the same genus iff Xp ' Yp.

A rational isomorphism ensues which gives the remaining required local isomorphisms by counting com-
ponents, since for q + a = R we have Λq = Γq, the lattices of which being direct sums of its columns.

Lemma D.2.15 (globalization of morphism families) Let S be a finite set of nonzero prime ideals
of R. Suppose given lattices X and Y over Λ together with morphisms

Xp
-f
p

∼ Yp

of Λp-lattices for p ∈ S. Then there is a Λ-morphism

X -f Y

such that fp ≡p f
p for all p ∈ S.
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Using ( Λ(X,Y ))p -∼
Λp

(Xp, Yp) (A.3.2), we choose a Λ-morphism X -u
p

Y for each p ∈ S such that
(up)p ≡p f

p. This is possible for our Hom-module as well as for any R-module M , since given m/s ∈Mp,
the condition n− (m/s) = (ns−m)/s ∈ pMp reads ns ≡p m, solvable by invertibility of s in R/p.

We apply the Chinese Remainder Theorem to obtain elements aq ∈ R for q ∈ S with aq ≡p ∂p,q for
p, q ∈ S, and let

f :=
∑
q∈S

aquq.

Then
fp =

∑
q∈S a

q(uq)p
≡p

∑
q∈S ∂p,q(uq)p

= (up)p
≡p fp.

Corollary D.2.16 Retain the notation of (D.2.15). If some fp is an epimorphism, so is fp by Nakayama’s
Lemma (cf. E.1.5).

Thus, if some fp is an isomorphism, so is fp.

Suppose some fp is a split epimorphism with coretraction gpfp = 1. Globalization of gp to g with respect
to S = {p} yields gpfp ≡p 1. Hence gpfp is an automorphism by Nakayama’s Lemma, so that fp is a
split epimorphism.

NB in case of S being, say, the set of prime divisors of a, for X and Y nonisomorphic but in the same
genus, a globalization f of the corresponding local isomorphisms at p ∈ S must not be an epimorphism,
although it is an isomorphism (‘semi’)localized at

⋂
p∈S(R\p), since the cokernel of f has torsion away

from S.

Moreover, for R semilocal we see that X ∨ Y implies X ' Y .

Lemma D.2.17 (Roiter) For X and Y lattices over Λ lying in the same genus, there exists a short
exact sequence

0 - X - Y - T - 0,

where T is a torsion module with annihilator coprime to Higman(Λ), decomposing into a direct sum of
simple Λ-modules with different annihilators in R. The finite set of primes p for which Tp 6= 0 can be
chosen away from any given finite set of primes S.

Let R(X) be a set of representatives of isomorphism classes of lattices rationally isomorphic to X, so
that in particular X,Y ∈ R(X). The set R(X) is finite by Jordan-Zassenhaus (D.2.7). For U, V ∈ R(X),
let Spec(U, V ) ⊆ SpecR be the (possibly empty) set of primes p for which an exact sequence

0 - U - V - T - 0

exists such that T is a simple torsion Λ-module with annihilator p. Let S′ be the union over U, V ∈ R(X)
of those sets Spec(U, V ) which are finite, joined moreover with the set of prime divisors of Higman(Λ) and
with S. Note that S′ is a finite set. Globalizing local isomorphisms at primes in S′ (D.2.15), we obtain
an embedding of X into Y with annihilator in R of the cokernel away from S′. We filter this embedding

X = Xs ⊆ Xs−1 ⊆ · · · ⊆ X1 ⊆ X0 = Y

with simple quotients Xi/Xi+1, having annihilator away from S′. By construction, Spec(Xi+1, Xi) is
infinite. Replacing embeddings, we may assume the annihilators of the quotients to be coprime. However,
the p-part decomposition of Y/X (A.4.10) is respected by the operation of Λ, whence the quotient fulfills
our requirements.

Lemma D.2.18 Suppose given a full embedding X ⊆ Y of Λ-lattices such that the annihilator of the

quotient T := X/Y is coprime to Higman(Λ). Let V be a Λ-lattice, let V -f T be a morphism of
Λ-modules.
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Then the pullback short exact sequence of

0 - X - Y - T - 0

along V -f T vanishes in Ext1.

By (A.4.5), there is an element h ∈ Higman(Λ) that is not contained in a prime ideal factor of the
annihilator of T , thus it annihilates Ext1(V,X) and its multiplication on T is invertible. The factorization

(V -f T ) = (V -h V -f T -h
−1

∼ T )

can be used to pull back the short exact sequence (X,Y, T ) stepwise and to show that the result is zero.

Lemma D.2.19 Suppose given Λ-lattices X and Y lying in the same genus, X ∨ Y , and suppose given
a Λ-lattice V whose set of rational simple components contains that of X. Then there exists a Λ-lattice
U in the same genus as V such that

Y ⊕ U ' X ⊕ V.

By (D.2.17), we may choose an exact sequence

0 - X - Y - T - 0

in which the annihilator of T is coprime to a, thus in particular coprime to Higman(Λ) (B.2.3), and
where Tp is zero or a simple torsion module over Λp. If it is simple, since for such a prime ideal p we
have Λ/p = Γ/p, Tp is a isomorphic to a column in Γ/p and V/p is isomorphic to a direct sum of such
columns, by assumption containing an isomorphic copy of Tp as a summand. Collecting the resulting
epimorphisms V - Tp furnishes a short exact sequence

0 - U - V - T - 0

whose right exactness we see locally. (D.2.14) yields U ∨ V . Two applications of (D.2.18) yield the
assertion.

Remark D.2.20 For Λ = R, X = R, Y = b ⊆ R a nonzero ideal of R and V = R we
recover the fact that b is generated by two elements.

Lemma D.2.21 The Λ-lattices X and Y lie in the same genus iff there exists an integer s > 1 such that
Xs ' Y s. In particular, indecomposable projectives over Λ are in the same genus iff they are in the same
genus′ (cf. D.1.1).

Krull-Schmidt locally (C.2.15) allows to conclude that Xs ' Y s for an integer s > 1 implies X ∨ Y .

Conversely, by (D.2.19) we see that for each k > 1 there is a Λ-lattice Zk ∨X such that

Xk+1 ' Y k ⊕ Zk.

Choose i + 1 6 j such that Zi ' Z2j =: Z, which is possible by Jordan-Zassenhaus (D.2.7). In fact,
assuming the contrary, we let i run over a finite interval comprising all occurring isomorphism classes,
and come thus to a contradiction for j sufficiently large. We conclude that

X2j−i ⊕Xi+1 ' Y 2j ⊕ Z
' Y 2j−i ⊕ Y i ⊕ Z
' Y 2j−i ⊕Xi+1.

Adding X2j−2i−1, we obtain that there is a k > 1 such that

X2k ' Y k ⊕Xk.

Replacing X by Y k and Y by Xk the argument just given yields an l > 1 such that

Y 2kl ' Xkl ⊕ Y kl ' X2kl.
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D.3 Jacobinski’s Cancellation Theorem

We give an account of the proof of Jacobinski’s Cancellation Theorem in our particular case
of a sub split semisimple R-order Λ, following, according to [Rog 70], an unpublished proof
of Swan.

As a precursor, we mention the following result.

Proposition D.3.1 (I. Schur, [Sch 12, §3, II]) Let a and b be nonzero ideals in R and
let m > 1. If Rm ⊕ a ' Rm ⊕ b, then a ' b.

In view of (A.4.9) this assertion in fact is a precursor of (D.3.6).

Let X ⊆ Rn be a full R-sublattice. We write the elements of Rn as rows. Define its
determinant ideal to be

det(X ⊆ Rm) := (det(ξij)ij | (ξij)j ∈ X ⊆ Rn for all i) ⊆ R.

Using suitable main diagonal matrices, we see that

det(Rm−1⊕a ⊆ Rm) = a.

We claim that the determinant ideal transforms composition into the product of ideals, i.e.
that

det(X ⊆ Rm -
��(−)A

Rm) = det(X ⊆ Rm)(detA)

for A ∈ Rm×m, detA 6= 0.

The inclusion ⊆ follows from (ηij)j ∈ XA for all i implying det((ηij)ijA
−1) ∈ det(X ⊆ Rm).

The inclusion ⊇ follows from (ξij)j ∈ X for all i implying det((ξij)ijA) ∈ det(X ⊆

Rm -
��(−)A

Rm).

We tensor the isomorphism Rm−1⊕a -f
∼ Rm−1⊕b with K⊗R−. Restricting the resulting

map Km -Kf
∼ Km to Rm, and restricting also its image to x−1Rm, x ∈ R\0, we obtain a

map Rm -f
′

x−1Rm which restricts to f and which yields

a(det f ′) = det(Rm−1⊕a ⊆ Rm -f
′

x−1Rm)

= det(Rm−1⊕a -f
∼ Rm−1 ⊕ b ⊆ x−1Rm)

= det(Rm−1⊕b ⊆ Rm ⊆ x−1Rm)
= det(Rm−1⊕b ⊆ Rm)(xm)
= b(xm).

Lemma D.3.2 (Eichler, Swan, in our particular situation) Suppose given a simple Λ-module U
with annihilator p in R coprime to a, a nonzero ideal b of R coprime to p, a lattice X over Λ and two
epimorphisms

X -f U

X -g U

Then there exists an automorphism X -u
∼ X such that u ≡b 1X , and which restricts to an isomorphism

on the kernels Kf
-u
∼ Kg. NB we do not require ug = f .

We remark that neither this lemma nor (D.3.6) hold for a general R-order, semisimple when tensored
with K, but only under the extra assumption of the so called Eichler condition which we won’t explain
here. The proof in the general situation is much harder.

We shall not need the assertion u ≡b 1 except in a reduction step of the proof itself.

We reduce to the case Λ = Γ (which we do not exclude for our present purpose). So suppose the assertion
to hold for Γ and apply it in the situation of the simple Γ-module U - note that Λp = Γp -, the Γ-lattice
ΓX = Γ⊗̃ΛX (B.1.3), the ideal ab coprime to p and the epimorphisms

ΓX -f
′

U

ΓX -g
′

U
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obtained by lifting f and g, using Xp
-∼ (ΓX)p and the factorization (X - U) = (X - Xp

- U).

We obtain an automorphism ΓX -u
′

∼ ΓX such that the restriction of u′ to the kernels of f ′ resp. of g′

induces an isomorphism and such that u′ ≡ab 1. This implies that given x ∈ X, we have xu′ − x ∈

abΓX ⊆ bX. Taking for X -u X the restriction of u′ to X, this shows its well definedness as well as
u ≡b 1. Moreover, u′−1 ≡ab 1 restricts to an inverse of u. The kernel of f is the intersection of X with
the kernel of f ′ by the Circonference Lemma applied to (X,ΓX,U). Dito for g. Thus, via pullback, u
induces an isomorphism on the kernels.

Furthermore, we reduce to the case Λ = R. The validity of our assertion is invariant under Morita
equivalences F which are compatible with R-module structure in the sense that for r ∈ R we have

F (M -rh N) = FM -rFh FN , for the annihilator of a module remains invariant under F , by regarding
r · 1M , and for congruences of morphisms modulo c ⊆ R are preserved, since we may write cM as∑
c∈c Im (M -c M) which gives F cM = cFM . Thus we are reduced to the case of Λ being a direct

product of copies of R. Now since U is a simple module over one of the factors of Λ and since the category
Λ-mod splits accordingly into a direct product of copies of R-mod, we are reduced to the case of Λ = R.

Let U = R/p and let X =
⊕m

i=1 ci, the ci’s being nonzero ideals in R (A.4.9).

Case m = 1. This is the case in which we cannot achieve ug = f in general. Note that c1/c1p ' R/p,
whence R(c1, R/p) ' R/p so that we may choose u = 1.

Case m > 2. We achieve ug = f in the following manner. Suppose the epimorphism f resp. g to be
given by nonzero matrices F resp. G with entries in R/p written as m× 1-columns. There is an element
U ∈ SLm(R/p) such that UG = F - let (F ∗) ∈ SLm(R/p) have F as first column, let (G ∗) ∈ SLm(R/p)
and choose U = (F ∗)(G ∗)−1 ∈ SLm(R/p).

We modify the argument of (A.2.1). Note that R(ci, cj) = c−1
i cj ⊆ K. Choose entrywise an inverse

image of U ∈ SLm(R/p) in Aut Xp ' GLm(Rp), which, by the Elemtary Divisor Theorem (A.1.1) may
be assumed to be a product of elementary matrices after replacement of the remaining diagonal matrix
factor by the identity without changing its image in SLm(R/p). Modifying the non main diagonal entries
of these elementary matrices without changing their image in SLm(R/p), we may assume that our inverse
image lies in AutX ⊆ (c−1

i cj)ij ⊆ Km×m and that it maps, reducing modulo b, to the identity of X/bX.
In fact, letting f := c−1

i cj , there is an epimorphism

f - f/pf× f/bf ' R/p× f/bf.

Lemma D.3.3 (Bass) Let A be a ring such that A/rad A is finite as a set. Let m > 3. GLm(A) is
defined to be the automorphism group of Am as a left A-module, which can be written in matrices, Am

viewed as a row. Suppose given a surjective group morphism

GLm(A) -f M,

M being an abelian group. Then the restriction of f to GL1(A), sitting in the top left corner of GLm(A),
the rest of the main diagonal being of constant value 1, is surjective.

In other words, we have to show that each element of GLm(A) can be represented by an element of
GL1(A) modulo the commutator subgroup [GLm(A),GLm(A)]. Note that the assumption on A yields
A/radA to be a product of matrix rings over finite fields.

We claim that each elementary matrix E + xEij , having non main diagonal entry x ∈ A at position ij,
i 6= j, is in [GLm(A),GLm(A)]. In fact, choose k 6= i, k 6= j, which is possible since m > 3. We calculate

(E − Eik)(E − xEkj)(E + Eik)(E + xEkj) = (E − Eik − xEkj + xEij)(E + Eik)(E + xEkj)
= (E − xEkj + xEij)(E + xEkj)
= E + xEij .

Therefore it suffices to show that each element of GLm(A) can be represented by an element of GL1(A)
modulo the normal subgroup generated by the elementary matrices.

Suppose given (aij)ij ∈ GLm(A). We claim that we may diagonalize by multiplication with elementary
matrices from both sides to obtain a main diagonal matrix with units on the diagonal, reminiscent of
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the Elementary Divisor Theorem. Consider the column (a11, . . . , am1). By left invertibility of (aij)ij , the
sum of the left ideals Aa11 and L := A〈a21, . . . , am1〉 is A. We need to find elements s2, . . . , sm such that
a11 +

∑
i∈[2,m] siai1 is a unit - i.e. it is left and right invertible, equivalently, its right multiplication is

bijective -, for then left multiplication with E +
∑
i∈[2,m] siE1i yields this unit in the upper left corner,

which then can be used to clean the upper row and the left column from nonzero entries. Whence the
claim by induction.

In order to find such an element of L we may assume A to equal A/rad A, since u ∈ A is a unit iff
u ∈ A/rad A is a unit - use Nakayama’s Lemma to show that (−)u is surjective, then split off its kernel
and use Nakayama again. Now since A is semisimple, we may assume A = Aa11 ⊕ L, if necessary by
passing from L to a smaller left ideal. This decomposition can be written as an isomorphism of left
A-modules

Aa11 ⊕ L -∼ A
x⊕ y - x+ y.

Moreover, multiplication with a11 yields a split exact sequence

0 - L′ -
i
A -(−)a11

Aa11
- 0

whose kernel L′ is isomorphic to L by Krull-Schmidt, say, via L′ -
w

∼ L. Let A -v L′ be a retraction of
i, so that we obtain another isomorphism

A -( (−)a11 vw )

∼ Aa11 ⊕ L.

The composition of these isomorphisms is the right multiplication with an element of A, therefore, it
sends 1A to a unit in A, viz. to a11 + (1)vw. By construction, (1)vw is in L.

It remains to be remarked that a diagonal matrix (dij) with d11 = d−1
ii being a unit, i 6= 1, and with

djj = 1 for j 6∈ {1, i}, is a product of elementary matrices (cf. the calculation in A.1) in order to reduce
to a matrix in GL1(A).

Definition D.3.4 Let Gtors,a
0 (Λ) be the free abelian group on the isomorphism classes of the simple

Λ-modules with annihilator in R coprime to a.

Note that a torsion Λ-module T with annihilator coprime to a has an image [T ] in Gtors,a
0 (Λ), letting [T ]

be the (formal) sum of its composition factors, which is well defined by Jordan-Hölder.

Lemma D.3.5 Let S :=
⋂

p⊇a(R\p). For an R-module M , denote by MS the localization of M at S.
Let X be a lattice over Λ. There is a group morphism

GLm(EndΛSXS) -c Gtors,a
0 (Λ)

(Xm
S
-ξ/s
∼ Xm

S ) - [Cξ]− [Cs]

where Xm -ξ Xm is a monomorphism, s ∈ S and where C denotes the cokernel, in particular, where

Cs denotes the cokernel of Xm -s Xm.

By (D.3.3), an element in the image of this morphism can be written as the image of some element in
GL1, i.e. as difference of the G0-images of the cokernels of ξ and s ∈ S for some automorphism

XS
-ξ/s
∼ XS

in case m > 3.

c is well defined since for t ∈ S the Circonference Lemma shows

[Cξt]− [Cst] = ([Cξ] + [Ct])− ([Cs] + [Ct]).

c is a group morphism since by the Circonference Lemma the image of (ξ/s)(η/t) is

[Cξη]− [Cst] = ([Cξ] + [Cη])− ([Cs] + [Ct]).

EndΛS (XS)/rad EndΛS (XS) is finite as a set since rad EndΛS (XS) contains aEndΛS (XS), the latter
annihilating all simple modules of EndΛS (XS). Hence (D.3.3) may be applied.
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Theorem D.3.6 (Jacobinski’s cancellation theorem, in our particular situation)
Let X and Y be lattices over Λ in the genus of Λ such that X ⊕ Λi ' Y ⊕ Λi for some i > 1. Then
X ' Y .

NB in general this is false for Λ not sub split semisimple, see [Sw 62].

Using Krull-Schmidt (C.2.15) and globalizing morphisms (D.2.15), we choose a short exact sequence

0 - Y -η X - T1
- 0

with T1 a torsion Λ-module with annihilator coprime to a.

By (D.2.19) we know Λi to be a summand of Xi+1 so that Xi+2 ' Y ⊕Xi+1. This yields a short exact
sequence

0 - Xi+2 - Xi+2 - T1
- 0.

So by (D.3.5) we obtain exact sequences

0 - X -ξ X - T - 0

and

0 - X -s X - T2
- 0

with s ∈ S :=
⋂

p⊇a(R\p) and [T ] − [T2] = [T1] ∈ Gtors,a
0 (Λ) so that, by the Circonference Lemma, the

Gtors,a
0 (Λ)-images of the cokernels of

0 - Y -ηs X - T ′ - 0

and of

0 - X -ξ X - T - 0

coincide. Since Λp = Γp for p coprime to a and since therefore T =
⊕

p Tp and T ′ =
⊕

p T
′
p decompose

further into the components belonging to the matrix factors of Γp and since these are Morita equivalent
to Rp, we may choose filtrations

Y ηs = Y0 ⊆ Y1 ⊆ . . . ⊆ Yk−1 ⊆ Yk = X
Xξ = X0 ⊆ X1 ⊆ . . . ⊆ Xk−1 ⊆ Xk = X

with Xi/Xi−1 ' Yi/Yi−1 for i ∈ [1, k] by pulling back such filtrations of T resp. of T ′, using [T ] = [T ′].

Assuming Yi ' Xi, we conclude that Yi−1 ' Xi−1 by Eichler-Swan (D.3.2).

D.4 Basics on p-orders

Suppose Λ to be a p-order (D.2.8).

Proposition D.4.1 (globalizing decompositions) Let X and Y be lattices over Λ. A split epimor-

phism Xp
-f
p

Yp is, up to isomorphic substitution, the localization at p of a split epimorphism X -f Y ′.

First, we note that this does not follow from a globalization of fp as in (D.2.15), cf. (D.2.16), and that
we do not claim that Y ' Y ′.

Inserting the image Y ′ of the composition X - Xp
-f
p

Yp, we obtain

0 - Zp
- Xp

-f
p

Yp - 0

6 6 6

0 - Z ′ - X -f Y ′ - 0.
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Localizing this diagram at p, the vertical morphisms become isomorphisms. Since the morphism

Ext1
Λ(Y ′, Z ′) -∼ Ext1

Λp
(Y ′p, Z

′
p)

induced by localization is an isomorphism (B.2.3, A.3.2, A.3.3, A.4.10), we conclude that f is a split
epimorphism.

Corollary D.4.2 A Λ-lattice X is indecomposable iff Xp is indecomposable over Λp (D.4.1).

Remark D.4.3 (dangerous bend) The argument of (D.4.1) fails when localization is
replaced by completion (18).

First we note that the argument has to fail, since Heller’s Lemma (C.2.10), needed in order
to pull Krull-Schmidt down from the complete to the noncomplete local case, is used only
to see that a summand of the completion is the completion of some lattice, which also
would ensue from the modified version of the argument of (D.4.1). And Krull-Schmidt is
known to fail in the noncomplete local case, provided of course the requirements of Heller’s
Lemma are not met. But here we are interested in an analysis of the argument, not in a
counterexample (cf. A C.3).

Let S be a noncomplete discrete valuation ring with maximal ideal (π). We wish to see
that on not necessarily finitely generated modules, completion and Ŝ ⊗S − are
nonisomorphic functors in general and that both are not suited as a replacement
of localization in the argument of (D.4.1).

Recall that a general element of the completion M̂ := lim�
i

M/πi of an S-module M is

represented by a sequence (mi)i = (m1,m2, . . .) of elements mi ∈ M such that mi ≡πi−1

mi−1. (mi)i represents zero iff mi ∈ πiM for all i > 1. In this case we simply write
(mi)i = 0.

Let us describe the submodule πjM̂ ⊆ M̂ . A sequence (πjmi)i has its i-th entry in πiM for
i 6 j and in πjM for i > j. Any sequence representing the same element as (πjmi)i also
enjoys this property. Conversely, if (mi)i is a sequence satisfying these conditions, we shift
it by j positions to the left without changing the element in M̂ it represents. Thus we may
assume that (mi)i is such that mi ∈ πjM and such that mi+1 ≡πi+j mi. Let mi = πjm′i.
Write πj(m′i+1 −m′i) = πj+ivi for some vi for each i > 1. Letting ui := m′i+1 −m′i − πivi
we obtain πjui = 0. Hence πj(m′1,m

′
2 − u1,m

′
3 − u2 − u1, . . .) = (mi)i yields (mi)i ∈ πjM̂ .

Define M to be complete if the natural transformation

X -εX X̂
x - (x)i

is an isomorphism εM at M . Let ι be the inclusion functor of the full subcategory of
complete S-modules to the category of all S-modules. We claim that the completion
functor factors over ι, i.e. that the completion of a module is complete. Again, let M be an
S-module. We have to consider the map

M̂ -εM̂ (M̂ )̂
(mi)i - ((mi)i)j

Suppose ((mi)i)j = 0, i.e. suppose (mi)i ∈ πjM̂ for all j. We conclude that mi ∈ πiM for

all i, hence that (mi)i = 0, and that therefore εM̂ is injective.

Suppose given ((mji)i)j ∈ (M̂ )̂ . We claim that it equals its diagonal, i.e. that

((mji −mii)i)j = 0 ∈ (M̂ )̂ ,

thus proving surjectivity, since mi+1,i+1 ≡πi mi,i+1 ≡πi mii. We have to show that (mji −
mii)i is in πjM̂ , i.e. that for i 6 j the congruence mji ≡πi mii holds - which is true since

18This remark consists of slightly extended notes taken from a discussion with S. König. It is hoped
that this discussion of a wrong argument is sufficiently justified by its ‘correct looks’ at first sight.
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(mjk)k ≡πi (mik)k -, and that for i > j the congruence mji ≡πj mii holds - which is also
satisfied since (mik)k ≡πj (mjk)k.

Let c denote the completion functor with target being the full subcategory of complete S-

modules, i.e. M̂ = ιcM . M is in the image of ι iff the unit M -εM ιcM is an isomorphism.

Let the counit cιX -ηX X be defined by

(ιcιX -ιηX ιX) := (ιX -ειX ιcιX)−1.

Note that thus η is an isomorphism at all objects at which it is defined.

In order to obtain
c a ι

it remains to be seen that the composition

cM -cεM cιcM -ηcM cM

is the identity. An application of ι yields

(ιcM -ιcεM ιcιcM -ιηcM ιcM) = (ιcM -ιcεM ιcιcM �
ειcM

ιcM).

Thus we are reduced to verify that ιcεM = ειcM . The map ιcεM sends (mi)i to ((mj)i)j ,
whereas ειcM sends (mi)i to ((mi)i)j . But by the claim above on the diagonalization,
((mi −mj)i)j equals its diagonal ((mi −mi)i)j .

In particular, c commutes with cokernels and ι commutes with kernels.

We would like to see that the subcategory of complete S-modules has kernels. Con-

sider a morphism M -f N of complete S-modules. Let Kιf
-v ιM be the kernel of

ιM -ιf ιN in the category of all S-modules. Since ι is full, faithful and left exact, in
order to show that (cv)(ηM) is the kernel of f , it suffices to prove that (ιcv)(ιηM) iso-
morphic to v over M , i.e. that εKιf is an isomorphism, i.e. that Kιf is complete. Since v

is a monomorphism, an application of the universal property of Kιf
-v ιM shows that

εKιf is a coretraction. Let L be its cokernel. Since the functor ιc is exact on split
short exact sequences, and since ιcεKιf = (ιηcKιf )−1 is an isomorphism, we conclude that
ιcL = 0. Choosing a coretraction L - ιcKιf and noticing that we have a factorization

(L - ιcK) = (L -εL ιcL - ιcKιf ) by adjunction, we obtain L = 0 (19).

Consider the short exact sequence of S-modules

0 - S -εS ιcS - ιcS/S - 0,

where εS is injective since
⋂
i π

iS = 0, which becomes

cS -cεS
∼ cιcS - c(ιcS/S) - 0

under c, right exact in the subcategory of complete S-modules, from which we conclude
c(ιcS/S) = (Ŝ/S)̂ to be zero. Note that c annihilates no finitely generated S-module,
neither S nor S/πi. Since S is not complete, we may choose a finitely generated nonzero
submodule M -
�� Ŝ/S. An application of c to this inclusion shows c and ιc = (−)̂ not to

be left exact, for the result is a morphism with nonzero source and zero target.

Thus in the argument of (D.4.1), transcribed to completions, we may not conclude that the
completion of Y ′ - Ŷ is a monomorphism, so that we may not continue and conclude
that it is an isomorphism.

Note that on finitely generated S-modules, such as S and S/πi, c and Ŝ ⊗S − are
isomorphic and c is an exact functor [AM 69, 10.12]. Therefore Ŝ ⊗S − is exact on all S-
modules. In fact, an arbitrary module can be written as the direct limit of finitely generated

19This argument I’ve learnt from H. Reimann.
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submodules so that in calculating TorS1 (Ŝ,X), we may resolve Ŝ by S-projectives Pj , write
X as direct limit of finitely generated Xα’s and use that

lim-
α

(Pj ⊗S Xα)�∼ Pj ⊗S lim-
α

Xα

as well as the exactness of the direct limit to conclude that in fact TorS1 (Ŝ,X) vanishes. In
particular, completion and tensor product with Ŝ over S are nonisomorphic functors on the
category of all S-modules.

But if one wishes to repair the transport of the argument of (D.4.1) by a replacement of
completion by this tensor product, one is confronted with the sequence

0 - Ŝ ⊗S S -Ŝ⊗SεS
Ŝ ⊗S Ŝ - Ŝ ⊗S (Ŝ/S) - 0,

for which flatness of Ŝ over S together with nonvanishing of Ŝ ⊗S − on finitely generated
modules this time shows that the cokernel is nonzero so that Ŝ⊗S ε is not an isomorphism
in general. In particular, we may not conclude that the middle vertical morphism in the
diagram of the transcribed argument becomes an isomorphism under Ŝ ⊗S −.

Finally, we try to apply this reasoning which destroys the transcribed argument to our
original argument. Let S be a commutative ring, let p be a prime ideal of S. But now Sp/S
is a torsion S-module that has no finitely generated submodule isomorphic to some S/pi,
and thus may well be annihilated when localized at p.

Lemma D.4.4 An indecomposable projective Λ-module P is a summand of Λ2.

Pp is a direct summand of Λp by its indecomposability (D.4.2) and by Krull-Schmidt (C.2.15). Lifting the
corresponding split epimorphism by (D.4.1) we obtain P to be in the same genus as an indecomposable
summand Λe of Λ, e being a primitive idempotent of Λ (D.2.14). Therefore, P is a summand of (Λe)2

(D.2.19), which itself is a summand of Λ2.

Lemma D.4.5 A finite projective P over Λ is a progenerator - i.e. Λ is a direct summand of some Pm

- iff Pp is a progenerator.

If Λ is a direct summand of Pm, Λp is a direct summand of Pmp .

Conversely, suppose Λp to be a summand of Pmp . Hence there is a summand L of Pm in the genus of Λ
by a lift of decompositions (D.4.1, D.2.14). Now Λ is a summand of L2 (D.2.19), thus of P 2m.

Lemma D.4.6 The localization map

ip(Λ) -loc
ip(Λp)

P - Pp

is well defined (D.4.2) and surjective (D.2.9 applied to a chosen Λ-lattice inside).

Remark D.4.7 Krull-Schmidt holds in Λ-proj iff loc is bijective.

Suppose loc to be bijective. Suppose given two decompositions of a finite projective over Λ into indecom-
posables. The bijection and the isomorphisms between the respective summands given locally are also
given globally, for loc is bijective.

The converse follows from (D.2.14) and (D.2.19 or D.2.21).

Lemma D.4.8 (fibration of loc) Let 1Λ =
∑
i ei be an orthogonal decomposition into primitive idem-

potents. Then we have the set theoretical pullback

ip(eiΛei) -loci ip(eiΛpei) = ∗

?

Λei⊗eiΛei−

?

Λpei⊗eiΛpei
−

ip(Λ) -loc
ip(Λp),
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i.e. ‘ loc is fibered by primitive idempotents’. In other words, to investigate loc we can restrict ourselves
to investigate loc for the local endomorphism rings of the indecomposable projectives over Λp.

Note that the left vertical map is well defined since the image of an indecomposable projective over eiΛei
is sent by localization to the indecomposable projective Λpei, hence this image itself is indecomposable
(D.4.2). The left vertical map is injective since it is inverted by ei(−).

It suffices see that each indecomposable projective P over Λ in the genus of Λei is in the image of the
left vertical map. But eiP is in fact an indecomposable projective over eiΛei, since it lies in the genus of
eiΛei. The evaluation of the natural transformation

Λei ⊗eiΛei eiX - X
aei ⊗ eix - aeix

at X = P is an isomorphism, since it is an isomorphism localized at any prime q, for we may substitute
isomorphically Pq by Λqei on both sides of the transformation, and at the latter object it is in fact locally
an isomorphism, yielding the result by naturality.

We shall make use of idèle class groups, following [CR 81, §31 B].

Definition D.4.9 Recall that any Λ-lattice in the genus of Λ can be realized as a full sublattice of Λ.

Suppose P to be a Λ-lattice in the genus of Λ inside KΛ such that KP = KΛ.

P and Λ are isomorphic as lattices over Λ iff there is a unit x ∈ (KΛ)∗ (the image of 1 ∈ Λ under this
isomorphism, note KΛx = KΛ) such that P = Λx. Mutatis mutandis localized at q.

We recover P =
⋂

q Pq ⊆ KΛ. Hence, writing Pq = Λqaq, aq ∈ Λ∗q for all but finitely many q (multiply
P into Λ via b ∈ R and regard the cokernel of the resulting inclusion), we obtain

P =
⋂
q

Λqaq.

Conversely, such a tuple of elements aq yields a Λ-lattice in KΛ that lies in the genus of Λ via this
formula.

Therefore, we define the idèle group of Λ to be

I(Λ) := {a = (aq)q ∈
∏
q

(KΛ)∗ | aq ∈ Λ∗q almost everywhere }.

For an idèle a ∈ I(Λ) we write

Λa :=
⋂
q

Λqaq,

so that (Λa)q = Λqaq.

Lemma D.4.10 Let G(Λ) ⊆ I(Λ) be the image of the embedding of ‘rational but global’ units

(KΛ)∗ - I(Λ)
x - (x)q.

Note that Λx := {λx | λ ∈ Λ} =
⋂

q Λqx = Λ(x)q, since the localizations conincide.

Let U(Λ) :=
∏

q Λ∗q ⊆ I(Λ).

Given idèles a, b ∈ I(Λ), Λa is isomorphic to Λb iff the double cosets U(Λ)aG(Λ) and U(Λ)bG(Λ) coincide.

Consequently, if Λ is a p-order such that Λp is local, the map ip(Λ) -loc
ip(Λp) (D.4.6) is bijective iff

U(Λ)G(Λ) = I(Λ).

We also write I = I(Λ), U = U(Λ), G = G(Λ).
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Suppose Λa ' Λb, i.e. there exists x ∈ (KΛ)∗ such that Λa = Λbx. Localizing at q we obtain Λqaq =
Λqbqxq, whence uq ∈ Λq with aq = uqbqxq exists, as well as vq ∈ Λq with vqaq = bqxq. From aq = uqvqaq
we deduce 1 = uqvq. Altogether we obtain a ∈ UbG.

Conversely, let u ∈ U , x ∈ G, a ∈ I. Then, since the localizations coincide, Λuax = Λax ' Λa.

If Λp is local, then, given an indecomposable projective Λ-lattice P , we have Pp ' Λp by (D.4.2), whence
KP ' KΛ = KΓ, and thus also Pq ' Γq for q 6= p, so P ∨ Λ.

Writing an idèle a as a matrix (aq,i)q,i, aq,i ∈ (K)mi , with, in general, infinitely many rows,
the operation of G from the right on I can be thought of as columnwise, the operation of
U from the left on I can be thought of as rowwise.

D.5 Endomorphism rings of projectives over commu-

tative p-orders

We give a criterion for when two endomorphism rings of projectives over a commutative
sub split semisimple p-order Λ are isomorphic via an isomorphism fixing the rational central
primitive idempotents in case R is a principal ideal domain and Λp is local (D.5.11).

Let R be a principal ideal domain, let p = (p). Let Λ be commutative, i.e. let Λ be a full
suborder of

∏s
i=1R =: Γ. Assume Λ 6= Γ. Assume Λp to be local. Let a =: pξ for some ξ > 1

be the annihilator of Γ/Λ.

Remark D.5.1 It turns out that for n 6 6 quite often the endomorphism ring of an indecomposable
projective over Z(p)Sn is commutative - the only exceptions are the projective covers of the trivial module

F2 in the cases n = 5, 6, p = 2, whose endomorphism rings have a rational factor Q2×2 (S 2.2.4, S 2.3.5).
In particular, we are not able to calculate the class groups of those two examples. Plesken [P 80/1,
(I.26)] gives an obstruction to this commutativity in terms of decomposition numbers.

The restriction on R is made in order not to have algebraic number theory involved, being as important
as difficult. The technical reason is (D.5.3).

Definition D.5.2 In the notation of (D.4.10), the class group of Λ is defined to be

Cl(Λ) := I/UG.

By Jordan-Zassenhaus (D.2.7) and by (D.4.10), Cl(Λ) is finite.

Lemma D.5.3 Each coset aUG can be represented by a normalized idèle a = (ap, 1, 1, . . .), where
ap ∈ Γ∗p =

∏s
i=1R

∗
p. We write, for α ∈ Γ∗p, the corresponding normalized idèle as

(α) := (α, 1, 1, . . .).

The normalized idèles (α) and (β) coincide modulo UG iff there exists ε = (εi)i∈[1,s] ∈ Γ∗ and a unit
u = (ui)i∈[1,s] ∈ Λ∗p ⊆ Γ∗p such that

βi = αiuiεi.

for each i ∈ [1, s].

In other words, the class group of Λ admits the description

Cl(Λ) -∼ Γ∗p/Λ
∗
pΓ∗.

a - ap
(α) � α.

In particular, Cl(Λ) is a quotient of (Γ/pξΓ)∗.
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Moreover, for a normalized idèle (α) we have

Λ(α) = Λp ∩ Λpα = Γp ∩ Λpα = Γ ∩ Λpα

where (−)p denotes the localisation at {1, p, p2, . . .}. In other words,

Λ(α) = {x ∈ Γ | xα−1 ∈ Λp} = {(xi)i ∈ Γ | (xiα−1
i )i ∈ Λp}.

Suppose given a ∈ I. Via U we may assume that only a finite number of entries aq is not equal to 1.

Since Λ is a p-order, Λq =
∏s
i=1Rq ⊆ KΛ =

∏s
i=1K if q 6= p. Since R is a principal ideal domain,

we may choose in each factor K of KΛ an element xi, independent of q, with vq(xi) = −vq(aq,i) for all q
(including p). Finally, via U we may assume aq = 1 for q 6= p and vp(ap,i) = 0 for i ∈ [1, s], i.e. we may
assume a to be normalized.

Suppose given a ∈ I, u ∈ U and x = (xi)i∈[1,s] ∈ G such that both a and aux are normalized idèles.
Then 0 = vq(xi) for all q, hence xi is a unit in R, and so x ∈ Γ∗.

Now, Cl(Λ) is a quotient of (Γ/pξΓ)∗ since Γ∗p
- Γ∗p/Λ

∗
pΓ∗ sends 1+pξΓp to 1. In fact, pξΓp is contained

in the radical of Λp, for (pξΓp + pΛp)/pΛp is nilpotent in Λp/pΛp. Whence 1 + pξΓp is contained in Λ∗p.

The equation for Λ(α) follows from
⋂

q6=pRq = Rp and from vp(αi) = 0 for the entries of a normalized
idèle (α).

Proposition D.5.4 Let a, b be idèles of Λ. Then

Λa⊕ Λb ' Λ⊕ Λab.

We claim that we may assume that aq ∈ Γq for q belonging to a finite set Q of primes with p 6∈ Q, that
aq = 1 for q 6∈ Q∪{p} and that ap ∈ Λp. Use G to achieve ap ∈ Λp via global multiplication with a large
enough power of p, if necessary. Similarly, use G to achieve aq ∈ Γq by multiplication with a large enough
power of the generator of q, if necessary (at most at a finite number of primes). Now, let Q be the set
of primes q different from p with aq 6∈ Γ∗q. Outside Q ∪ {p}, use U to achieve the claim. In particular,
Λa ⊆ Λ, as is to be seen locally.

We claim that we may assume bq = 1 for q ∈ Q, bp ∈ 1 + pξΓp and bq ∈ Γq for q 6∈ Q ∪ {p}. Use G to
divide globally by bp so that we achieve bp = 1. Use G and the Chinese Remainder Theorem to multiply
globally with an element in R which achieves bq ∈ Γq for q 6= p, but which is congruent to 1 modulo pξ,
whence bp ∈ 1 + pξΓp remains valid. Use G and the Chinese Remainder Theorem to divide globally by
an element in R which achieves bq ∈ Γ∗q for q ∈ Q, but which is congruent to 1 modulo pξ. Again, use G
and the Chinese Remainder Theorem to multiply globally with an element in R which achieves bq ∈ Γq

for q 6∈ Q ∪ {p}, but which is congruent to 1 modulo pξ as well as modulo q for q ∈ Q. Use U at the
primes in Q to achieve the claim. In particular, Λb ⊆ Λ.

Now Λa+ Λb = Λ is to be seen locally, since at q, at least one of the summands equals Λq.

Therefore it suffices to show that Λa ∩ Λb = Λab, for then the split diagonal short exact sequence of
the exact square (Λab,Λa,Λb,Λ) proves the assertion. The required equality is to be seen locally, using
1 + pξΓp ⊆ Λ∗p, cf. the proof of (D.5.3).

Remark D.5.5 The group structure on the class group Cl(Λ) may be described in terms
of operations on isomorphism classes of lattices. For a, b ∈ I the isomorphism class of Λab
is determined by Λa⊕ Λb ' Λ⊕ Λab, using Jacobinksi’s Cancellation Theorem (D.3.6). In
other words, if K0(Λ) denotes the free abelian group on the isomorphism classes of projective
Λ-lattices modulo the relation that the formal sum equals the direct sum, we obtain a group
isomorphism

K0(Λ) -∼ Z ⊕ Cl(Λ)
Λa - 1 ⊕ a.

Corollary D.5.6 Given k > 0 and idèles aσ , bσ ∈ I for σ ∈ [1, k], then
⊕

σ Λaσ '
⊕

σ Λbσ iff
∏
σ aσ

equals
∏
σ bσ in Cl(Λ).
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In terms of normalized idèles (D.5.3) this means that
⊕

σ Λ(ασ) '
⊕

σ Λ(βσ) iff there exists a unit u in
Λp and a tuple (εi)i of units in R such that∏

σ

ασ,iβ
−1
σ,i = uiεi

for all i.

This tells us to what extent Krull-Schmidt fails in Λ-proj.

The assertion follows from (D.5.4, D.4.10) and Jacobinski’s Cancellation Theorem (D.3.6).

Lemma D.5.7 The Λ-lattice of morphisms over Λ between Λ(α) and Λ(β) is given by

Λ(β/α) -∼
Λ(Λ(α),Λ(β))

x - (−)x

where (α) and (β) are normalized idèles. In particular, the endomorphism ring of a direct sum of inde-
composable projectives, acting on the right, has the following form

EndΛ(Λ(α(1))⊕ · · · ⊕ Λ(α(m))) =


Λ(α(1)/α(1)) Λ(α(2)/α(1)) . . . Λ(α(m)/α(1))
Λ(α(1)/α(2)) Λ(α(2)/α(2)) . . . Λ(α(m)/α(2))
...

...
...

Λ(α(1)/α(m)) Λ(α(2)/α(m)) . . . Λ(α(m)/α(m))

 .

We use the description of Λ(α) given in (D.5.3).

We’d like to see that the map is well defined. Suppose given y ∈ Λ(α). First,

β−1yx = (β−1αx)(α−1y) ∈ Λp.

Second, yx ∈ Γ.

By a rank consideration, it remains to be shown that the map is surjective. An application of K(−)
shows that any morphism is given by multiplication with an element x ∈ KΓ, and we claim that such
an x is already contained in Λ(β/α).

Let q 6= p. Γq
-(−)x

Γq yields x ∈ Γq. Then Λpα -(−)x
Λpβ yields β−1αx ∈ Λp, whence in particular x ∈ Γp.

Lemma D.5.8

Λ(α) ⊗Λ Λ(β) -∼ Λ(αβ)
x ⊗ y - xy

We use the description of Λ(α) given in (D.5.3). Note that for projective Λ-lattices ⊗Λ and ⊗̃Λ coincide.

The map is well defined, since (αβ)−1xy = (α−1x)(β−1y) ∈ Λp (cf. D.5.3). By a rank consideration, it
remains to be shown that the map is surjective. This in turn is seen locally, using (B.1.8), since localized
at p in fact αβ lies in the image.

Lemma D.5.9 Let Ξ′ -
ϕ

Ξ be a morphism of orders over Λ, let X be a Ξ-lattice, let Y be a Λ-lattice.
For a left Ξ-lattice, we denote by a left lower index ϕ its restriction (or ‘twist’) via ϕ to a Ξ′-module. We
have

ϕ(X ⊗̃Λ Y ) -∼ ( ϕX) ⊗̃Λ Y
x ⊗̃ y - x ⊗̃ y

as left Ξ′-lattices.

Note, again, that for projective Λ-lattices ⊗Λ and ⊗̃Λ coincide.
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Example D.5.10 (dangerous bend) Let Λ = R×R, let Ξ′ = R×R, let Ξ = R×R. Let

Ξ′ -
ϕ

Ξ be the isomorphism which interchanges the factors. Then ϕ is not a morphism of
orders over Λ, but merely over R.

For X = R× 0 and Y = 0×R we obtain on the one hand

ϕ(X ⊗Λ Y ) = 0

and on the other hand
( ϕX)⊗Λ Y ' Y.

Theorem D.5.11 Let (α(i)) and (β(i)), i ∈ [1, u], be normalized idèles.

The endomorphism rings of
⊕

i∈[1,u] Λ(α(i)) and of
⊕

i∈[1,u] Λ(β(i)) over Λ are isomorphic as orders over
Λ if and only if

(
∏

i∈[1,u]

α(i)

β(i)
) ∈ Cl(Λ)u.

In this formula, only the upper index u is to be read as an exponent.

In particular, the endomorphism ring of
⊕

i∈[1,u] Λ(α(i)) is homogenus iff

(
∏

i∈[1,u]

α(i)) ∈ Cl(Λ)u.

Assume this product of idèle quotients to be an u-th power. By (D.5.6) we rewrite this assumption as⊕
i∈[1,u]

Λ(β(i)) '
⊕
i∈[1,u]

Λ(α(i)γ)

for some normalized idèle (γ) so that we are done by (D.5.7).

Now assume the endomorphism rings to be isomorphic via an isomorphism ϕ of orders over Λ.

By (D.5.4) we may assume that α(i) = 1 and β(i) = 1 for i ∈ [1, u − 1], i.e. that only α(u) =: α and
β(u) =: β are nontrivial. We claim that (α/β) ∈ Cl(Λ)u.

By (D.5.7) we obtain

Ξα := EndΛ(Λ⊕ · · · ⊕ Λ⊕ Λ(α)) =


Λ Λ . . . Λ(α)
Λ Λ . . . Λ(α)
...

...
...

Λ(1/α) Λ(1/α) . . . Λ

 ,
accordingly Ξβ .

Via restriction along the assumed isomorphism Ξα -ϕ
∼ Ξβ we obtain two decompositions of Ξα into

indecomposable projectives which we wish to compare.

Let Q1 :=


Λ
...
Λ
Λ(1/β)

 be the first and let Qu :=


Λ(β)
...
Λ(β)
Λ

 be the last column of Ξβ . We obtain

Q1 ⊗Λ Λ(β) =


Λ
...
Λ
Λ(1/β)

⊗Λ Λ(β) '


Λ ⊗Λ Λ(β)

...
Λ ⊗Λ Λ(β)
Λ(1/β) ⊗Λ Λ(β)

 (D.5.8)
'


Λ(β)
...
Λ(β)
Λ

 = Qu

as left Ξβ-lattices (D.5.8). Since the first column P :=


Λ
...
Λ
Λ(1/α)

 of Ξα is a progenerator with endomor-

phism ring Λ (use the Morita equivalence given by the definition of Ξα), the projective indecomposables
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of Ξα and of Λ correspond to each other via P ⊗Λ−. So the lattice Q1 restricts to some lattice of the form

ϕQ1 ' P ⊗Λ Λ(γ) along Ξα -ϕ
∼ Ξβ , (γ) being a normalized idèle. By the calculation just performed, we

obtain
ϕQu ' ϕ(Q1 ⊗Λ Λ(β))

(D.5.9)
' ( ϕQ1)⊗Λ Λ(β)

' (P ⊗Λ Λ(γ))⊗Λ Λ(β)
(D.5.8)
' P ⊗Λ Λ(γβ)

as left Ξα-lattices. Note that Ξα -ϕ
∼ ϕΞβ as Ξα-lattices, for ϕ(x · y) = ϕ(x) · ϕ(y) = x ·ϕ ϕ(y) for

x, y ∈ Ξα . So as Ξα-lattices, we obtain

P ⊗Λ (Λu−1 ⊕ Λ(α)) ' P ⊗Λ Λu−1 ⊕ P ⊗Λ Λ(α))

' Pu−1 ⊕ P ⊗Λ Λ(α))

' Ξα

' ϕΞβ

' ϕQ
u−1
1 ⊕ ϕQu

' P ⊗Λ Λ(γ)⊕ P ⊗Λ Λ(γβ)

' P ⊗Λ (Λ(γ)⊕ Λ(γβ)) .

Passing to Λ-lattices via Morita equivalence backwards (i.e. cancelling P ⊗Λ −), we obtain

Λu−1 ⊕ Λ(α) ' Λ(γ)u−1 ⊕ Λ(γβ),

whence the assertion by (D.5.6).

Remark D.5.12
(a). In the course of the the direct calculation of the ties of (ZSn)[p], n = 5, 6, endomorphism
rings as in (D.5.11) occurred. We had to conjugate them by hand to obtain a homogenus
endomorphism ring in order to be able to employ the language of Morita multiplicities.

(b). Note that Jacobinski’s Cancellation Theorem enters the proof of (D.5.11) via (D.5.6).

(c). We observe already by (D.5.7) that a ring Morita equivalent and locally isomorphic
to Λ is isomorphic to Λ. This is false in general for the larger R-orders Morita equivalent
to Λ, viz. for the Ξα’s in the language of (D.5.11). I don’t know of an example of two
nonisomorphic Morita equivalent p-orders which yield isomorphic basic local orders when
localized at p - dropping, of course, our assumptions of this section. For short, is the genus
effect for orders merely due to the genus effect for indecomposable projectives?

Remark D.5.13 In case Γ = R × R we shall give a direct calculational proof of (D.5.11)
which avoids usage of Jacobinksi’s Cancellation Theorem (D.3.6). This seems to be difficult
in bigger cases.

Let Λ = {x × y | x ≡pt y} ⊆ R × R for some t > 1. Any normalized idèle can be written
as (α) = (1, α2) via Λ∗p. By abuse of notation, we identify α with α2, i.e. we regard α as
an element of R∗p. (α) is trivial in Cl(Λ) iff α ≡pt ε for some ε ∈ R∗. In particular, we may
assume α ∈ R, for if the difference is in (pt), the quotient is trivial in Cl(Λ).

Note that by (D.5.3), we have

Λ(α) = {x× y | xα ≡pt y} ⊆ R×R.

Let Mα be the main diagonal matrix with entries Mα,ii = 1 for i ∈ [1, u−1] and Mα,uu = α,
and keep the notation of the proof of (D.5.11). We obtain

Ξα = {X × Y ∈ Γu×u | XMα ≡pt MαY }.

Now assume given an Ξα -∼ Ξβ as orders over Λ, realized by right conjugation with U×V ∈
GLu(KΓ) (D.2.2). In other words, assume that

ΞU×Vα = Ξβ .
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Since the projection of Ξα to each of the ring direct factors of Γu×u is surjective, we may
assume U × V ∈ GLu(Γ). In fact, by the Elementary Divisor Theorem (A.1.1) we may
write U = U ′DU ′′ with U ′, U ′′ in SLu(R), D being a main diagonal matrix with entries in
K, which we may assume to have 1 as its upper left entry. Let Eij be the matrix having
entry 1 at the position ij and zero elsewhere. By E1iD = DX for each i ∈ [1, u] and for
some X ∈ Ru×u, we conclude D ∈ Ru×u. By Ei1D = DX for each i ∈ [1, u] and for some
X ∈ Ru×u, it follows that D ∈ GLu(R).

Since for X,Y ∈ Ru×u, XMα ≡pt MαY implies XUMβV
−1 ≡pt UMβV

−1Y , it follows that

Mα ≡ UMβV
−1 ∈ PGLu(R/pt).

Taking determinants, we obtain
α ≡pt βγuε

for some γ ∈ R\(p) and some ε ∈ R∗.
Conversely, suppose given Ξα and Ξβ such that such a γ and such an ε exist. Let V = 1. It
is possible to find a U ∈ SLu(R) such that U ≡pt γ−1Mα/β since SLu(R) - SLu(R/pt) =
SLu(R(p)/p

t) is surjective (A.2.1).

Example D.5.14 Keep the notation of (D.5.13). Let R = Z, p = 5, u = 2, t = 1, yielding
Λ = {a× b | a ≡5 b} ⊆ Z× Z and, in the notation of the proof of (D.5.11)

Ξ2 = {X × Y | X
(

1 0
0 2

)
≡5

(
1 0
0 2

)
Y } ⊆ (Γ)2 = (Z)2 × (Z)2.

Note that Ξ2 is not isomorphic to Ξ1, since 2 is not ± a square in Z/5 (cf. D.5.13).

Using (D.5.11), we may also argue as follows. We have Cl(Λ) ' C2 by (D.6.1) below, the
nontrivial element of Cl(Λ) being represented by 2 × 1 ∈ Γ∗(5). This nontrivial element is

not contained in Cl(Λ)2 = 1, so Ξ2 6' Ξ1 as Λ-algebras.

Since Cl(Λ)3 = Cl(Λ), however, all R-orders Morita equivalent to Λ of rank 9 over R are
mutually isomorphic as Λ-algebras by (D.5.11).

Let us discuss the Morita equivalence between Ξ2 and Λ by hand. For short, denote Ξ := Ξ2.
We choose the following Z-linear basis of Ξ.

e :=
(

1 0
0 0

)
×
(

1 0
0 0

)
g :=

(
0 0
0 0

)
×
(

5 0
0 0

)
h :=

(
0 1
0 0

)
×
(

0 2
0 0

)
i :=

(
0 0
0 0

)
×
(

0 5
0 0

)
j :=

(
0 0
2 0

)
×
(

0 0
1 0

)
k :=

(
0 0
5 0

)
×
(

0 0
0 0

)
f :=

(
0 0
0 1

)
×
(

0 0
0 1

)
l :=

(
0 0
0 5

)
×
(

0 0
0 0

)
.

Ξe is a progenerator, since we have a coretraction

Ξe -(h i )
Ξf ⊕ Ξf

retracted by

Ξe�

(−2j+k
j

)
Ξf ⊕ Ξf,

cf. (D.2.19). Thus Λ = eΞe = {x × y | x ≡5 y} ⊆ Z × Z is Morita equivalent to Ξ. Note
that Ξe is not isomorphic to Ξf since

(ah+ bi)(cj + dk) = (
(

0 a
0 0

)
×
(

0 2a+5b
0 0

)
)(
(

0 0
2c+5d 0

)
×
(

0 0
c 0

)
)

= e

required 2c+ 5d = ±1 and c = ±1, hence ±2 ≡5 ±1, which is impossible.

Also note that Λ = eΞe ' Z[X]/(X2 − 5X) is not a local ring since the nonunit 2 is not
contained in the maximal ideal (5, X). However, it becomes local when tensored with Z(5)

since now the maximal ideal (5, X) contains all nonunits.
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NB it may happen that there exist finitely generated projectives X, Y over Λ such that

EndX 6' EndY
End(X ⊕ Λ) ' End(Y ⊕ Λ)

End(X ⊕ Λ2) 6' End(Y ⊕ Λ2).

For example, let X = Λ ⊕ Λ(2) and Y = Λ ⊕ Λ: 2 is neither ± a square nor ± a fourth
power in Z/5, but it is a third power.

D.6 Examples

We calculate some nontrivial and also some trivial class groups of endomorphism rings of
indecomposable projectives of (ZSn)[p] for n 6 6 in order to ensure that the reason for
(ZSn)[p] being homogenus for n 6 6 with respect to some embedding into a direct product
of integral matrix rings is not just an overall triviality of the class groups (cf. D.5.11, D.4.8).

Let R = Z.

Example D.6.1 Let 2 6= p ∈ Z be a prime, let

Λt := {x× y ∈ Z× Z | x ≡pt y} ⊆ Z× Z =: Γ.

An endomorphism ring of an indecomposable projective of (ZSp)[p] is either isomorphic to Λ1 or to Z. The

Morita multiplicities of the indecomposable projectives in the first case are given by
(
p−2
i

)
, i ∈ [0, p− 2]

(4.2.8).

We obtain an isomorphism

(Z/pt)∗/{±1} -∼ Γ∗(p)/Λ
∗
(p)Γ

∗ = Cl(Λ)

x - x× 1.

In general, Cl(Λ1) ' C(p−1)/2 has Cl(Λ1)

(
p
i

)
as a proper subgroup, e.g. if p = 5 and i = 2.

Moreover, if p > 3, we have Cl(Λ1) 6= 1, whence Krull-Schmidt does not hold in (ZSp)[p]-proj ; cf. (D.4.10,
D.5.2).

Example D.6.2 Let p := 2, let

Λ := {x× y × z | y ≡4 z, 2x ≡8 y + z} ⊆ Z× Z× Z =: Γ.

Λ is isomorphic to the endomorphism ring of an indecomposable projective of (ZS4)[2], occurring with
Morita multiplicity 2 (S 2.1) and to the endomorphism ring of an indecomposable projective of (ZS5)[2],
occurring with Morita multiplicity 4 (S 2.2.4).

We claim that Cl(Λ) is trivial, i.e. that Γ∗(2) = Λ∗(2)Γ
∗. But

3× 1× 1 = (3×−1×−1)(1×−1×−1)
1× 3× 1 = (1× 3×−1)(1× 1×−1).

Example D.6.3 Let p := 2, let

Λ := {x× y × z × w | x− y ≡8 z − w ≡4 0, x ≡2 z}.

Λ is isomorphic to the endomorphism ring of an indecomposable projective of (ZS4)[2], occurring with
Morita multiplicity 1 (2.1).

We have an isomorphism
(Z/8)∗/{±1} -∼ Γ∗(p)/Λ

∗
(p)Γ

∗ = Cl(Λ)

x - x× 1× 1× 1,

whence Cl(Λ) ' C2.
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Surjectivity follows using the elements

3 × 3 × 1 × 1
3 × −1 × 3 × −1

of Λ. For to see injectivity, assume that x × 1 × 1 × 1 represents the trivial element. Writing it as a
product in Λ∗(p) and Γ∗, the latter factor has to be of the form ∗×∗×1×1 or of the form ∗×∗×−1×−1.
Therefore we may conclude that x ≡8 1 or x ≡8 −1.

Example D.6.4 Let p := 2, let

Λ :=

a× b× c× d× e× f
∣∣∣∣∣ a ≡2 e,
a+ d− 2f ≡16 b+ c− 2e ≡8 0,

e− f ≡4 c− d ≡2 0

 ⊆ Z× Z× Z× Z× Z× Z =: Γ.

Λ is isomorphic to two of the endomorphism rings of the indecomposable projectives of (ZS6)[2], both
occurring with Morita multiplicity 4 (fAf and gAg in the notation of S 2.3.5).

Note that (Z/16)∗/{±1} is isomorphic to C4, with generator 3. We claim to have an isomorphism

(Z/16)∗/{±1} -∼ Γ∗(2)/Λ
∗
(2)Γ

∗ = Cl(Λ)

x - x× 1× 1× 1× 1× 1,

whence Cl(Λ) ' C4, so that 1 = Cl(Λ)4 < Cl(Λ) (cf. D.5.11, D.4.8).

Surjectivity follows using the elements

3 × −1 × 3 × −1 × 1 × 1
3 × 3 × −1 × −1 × 1 × 1
−1 × −1 × 3 × 3 × 1 × 1
−1 × 3 × 3 × −1 × 3 × −1

of Λ. For to see injectivity we regard the following matrix, whose rows generate Λ over Z,
1 1 1 1 1 1

−2 0 4 2 2 0

−2 −2 2 2 0 0

0 −4 4 0 0 0

8 8 0 0 0 0

16 0 0 0 0 0


as well as 16 times its inverse, 

0 0 0 0 0 1

0 0 0 0 2 −1

0 0 0 4 2 −1

0 0 8 −4 0 1

0 8 −8 −4 −4 2

16 −8 0 4 0 −2

 .

An element of Γ, regarded as a row vector, is contained in Λ iff the product with the latter matrix is
divisible by 16. So we simply have rewritten our ties. In particular, an element of Γ of type 2y × b× c×
d× e× f with b, c, d, e, f ∈ {−2, 0} in Λ is necessarily of one of the following forms

2y × −2 × −2 × −2 × −2 × −2
2y × −2 × −2 × 0 × −2 × 0
2y × 0 × 0 × −2 × 0 × −2
2y × 0 × 0 × 0 × 0 × 0,

i.e. y ≡8 −1, 0,−1, 0, respectively. Hence, inserting 2y = ±x − 1, the element x × 1 × 1 × 1 × 1 × 1 is
trivial if and only if ±x = ±1.

Example D.6.5 Let p := 3, let

Λ := {a× b× c× d | a− d ≡9 c− b, a ≡3 b ≡3 c ≡3 d} ⊆ Z× Z× Z× Z =: Γ.
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Λ is isomorphic to four of the endomorphism rings of indecomposable projectives of (ZS6)[3], occurring
either with Morita multiplicity 1 or 4 (S 2.3.3).

We claim to have an isomorphism

(Z/9)∗/{±1} -∼ Γ∗(3)/Λ
∗
(3)Γ

∗ = Cl(Λ)

x - x× 1× 1× 1,

whence Cl(Λ) ' C3.

Surjectivity follows using the elements

1 × 4 × 4 × 1
4 × 1 × 4 × 1

of Λ. Injectivity follows by remarking that y× b× c×d in Λ with b, c, d ∈ {0,−2} implies y ≡9 b = c = d.

Example D.6.6 Let p := 3, let

Λ := {a× b× c | a+ c ≡9 2b, a ≡3 b ≡3 c} ⊆ Z× Z× Z =: Γ.

Λ is isomorphic to the endomorphism ring of an indecomposable projective of (ZS6)[3], occurring with
Morita multiplicity 6 (S 2.3.3).

We claim to have an isomorphism

(Z/9)∗/{±1} -∼ Γ∗(3)/Λ
∗
(3)Γ

∗ = Cl(Λ)

x - x× 1× 1,

whence Cl(Λ) ' C3, whence 1 = Cl(Λ)6 < Cl(Λ) (cf. D.5.11, D.4.8).

Surjectivity follows using the element
−2× 4× 1

of Λ. Injectivity follows by remarking that y × b× c in Λ with b, c ∈ {0,−2} implies y ≡9 b = c.
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The list of conventions.

We remind the reader that all conventions we make in (A D) remain valid from the place we
state them on to the end of the chapter (A D), in particular, they are valid in the subsequent
sections.

(S D.1). By a module over a ring we understand a left module. Finite projective stands for
finitely generated projective module. A-proj denotes the category of finite projectives over
A. Indecomposable projective stands for finitely generated indecomposable projective mod-
ule. ip(A) denotes the set of isomorphism classes of indecomposable projectives over A. We
say that Krull-Schmidt holds in A-proj if the decomposition of P ∈ A-proj into indecom-
posable projectives is unique up to permutation of the summands and up to isomorphism.
The unit group of a ring A is denoted by A∗.

(S D.2). Let R be a Dedekind domain with field of fractions K (to which we refer by
‘rational’) such that R/p is finite as a set for each nonzero prime ideal p ⊆ R. By p, q we
denote nonzero prime ideals of R. Assume K to have finite class number, i.e. assume the
set of isomorphism classes of ideals in R to be finite.

An R-order is an R-algebra which is finite projective as an R-module. Let Λ be a full (i.e.
rationally equal)R-suborder of a direct product of matrix rings overR, Λ ⊂ Γ :=

∏
iR

mi×mi

being strictly included. We fix this embedding throughout. Such an order Λ we call sub
split semisimple over R. Γ/Λ is a torsion R-module with annihilator a in R.

We abbreviate K ⊗R − by K(−). A lattice over Λ is a Λ-module that is finite projective
over R. A simple Λ-lattice is a Λ-lattice X with KX being a simple KΛ-module. A pure
monomorphism of Λ-lattices has a torsionfree quotient, a full monomorphism has a torsion
quotient, a pure epimorphism is surjective.

(S D.3). No further conventions.

(S D.4). Suppose Λ to be a p-order.

(S D.5). Let R be a principal ideal domain, let p = (p). Let Λ be commutative, i.e. let Λ
be a full suborder of

∏s
i=1R =: Γ. Assume Λ 6= Γ. Assume Λp to be local. Let a =: pξ for

some ξ > 1 be the annihilator of Γ/Λ.

(S D.6). Let R = Z.



Appendix E

Radical layers

This is a tentative appendix on the behaviour of the radical of the local orders which occur as

endomorphism rings of the indecomposable projectives in a Peirce decomposition of Z(p)Sn,

p a prime dividing n!. Suppose given a projective indecomposable lattice P over such a local

order surjecting on simple lattices X and Y . The isomorphisms X/rX �∼ P/rP -∼ Y/rY

imply certain p-ties (E.1.24) between X and Y - intuitively, ‘they tie the main diagonal

in order not to allow idempotent decompositions’. In searching for a generalization of this

assertion we didn’t succeed at all, but nevertheless we stumbled over some properties worth

recording.

E.1 Recalling some basics

To begin with, we have collected some well-known basic facts from [Row 91] and [Be 91].

(20).

E.1.1 Rings

Let A be a left noetherian ring. The Jacobson radical of A, i.e. the intersection of the
annihilators of the simple left modules of A, is denoted by rA, its i-th power is denoted by
riA := (rA)i. For a left A-module X we denote riX := (riA)X. rX is called the radical of X.

Remark E.1.1 Each orthogonal decomposition of 1A into idempotents of A can be refined to an orthog-
onal decomposition of 1A into primitive idempotents.

Use direct sum decompositions of the corresponding projective left ideals and left noetherianicity of A.
Note that a ‘family tree’ of decompositions of a single idempotent with infinitely many ‘generations’
would contain an infinite chain, which would yield a properly ascending infinite chain of submodules.

Remark E.1.2 rA is the intersection of the maximal left ideals of A. A ring is called local if it is the
disjoint union of its radical with its unit group. A local ring A has, up to isomorphism, only one simple
module, viz. A/rA, since there is only one maximal left ideal in A.

20A better readable account of this section can be found in App. C of F. Müller, Some local presen-
tations for tensor products of simple modules of the symmetric group, diploma thesis, Stuttgart, 2013.
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Lemma E.1.3 An element x ∈ A is called left quasiinvertible if 1 − x is left invertible. An ideal
in A is called left quasiinvertible iff each of its elements is left quasiinvertible. We impose the same
definition dropping ‘left’. rA is the unique maximal quasiinvertible ideal.

rA is left quasiinvertible since no maximal left ideal may contain 1− x, x ∈ rA, for it does not contain 1.

Any left quasiinvertible ideal L ⊆ A is quasiinvertible. In fact, let x ∈ L and suppose y(1 − x) = 1 for
some y ∈ A. Since 1− y ∈ L, we obtain zy = 1 for some z ∈ A. But z = zy(1− x) = (1− x).

Let Q ⊆ A be a quasiinvertible ideal. If there were a maximal left ideal M ⊆ A not containing Q, then
there would be elements q ∈ Q, m ∈M such that q +m = 1.

Lemma E.1.4 Let A be a ring, let e be an idempotent in A. We have

e(rA)e = r(eAe).

In particular, eAe/r(eAe) = e(A/rA)e.

To see that e(rA)e ⊆ r(eAe), we show that the left hand side is quasiinvertible (E.1.3). Consider x ∈ rA
and note that y(1− ex) = 1 implies eye(e− exe) = e.

To see that rA ⊇ r(eAe), we show that r(eAe) annihilates each simple left A-module M . But eM is either
a simple eAe-module or zero, since for em 6= 0 we have eAe(em) = e(A(em)) = eM .

Note that the kernel of the surjection from eAe to e(A/rA)e is e(rA)e.

Proposition E.1.5 (Nakayama’s Lemma, proof taken from [Be 91, 1.2.3])
Let A be a ring, let M be a finitely generated left A-module, let X ⊆M be a submodule. Then rM+X = M
implies X = M .

Passing to M/X, it suffices to show that rM = M implies M = 0. Write M = A〈m1, . . . ,ms〉 in a
minimal number s of generators. Assume s > 1 and write ms =

∑
i∈[1,s] aimi, ai ∈ rA. This contradicts

the invertibility of 1− as (E.1.3).

Corollary E.1.6 Let A -ϕ B be a left finite ring morphism, i.e. assume B to be finitely generated as
a left module over A via ϕ, such that in addition ϕ(rA)B is a left ideal in B. Then

ϕ(rA) ⊆ rB.

In particular, let M be a finitely generated B-module. Its radical with respect to A via ϕ is contained in
its radical with respect to B.

We have to show that ϕ(rA) is contained in each maximal left ideal M of B. But otherwise

M + ϕ(rA)B = B

holds, since ϕ(rA)B is a left ideal in B, which yields M = B (E.1.5).

Remark E.1.7 (dangerous bend) In general, for a finite ring morphism A -ϕ B we
may have

ϕ(rA) 6⊆ rB.

Let

A = {
(
a b
c d

)
| b ≡2 0, a ≡2 d} -

�� ϕ Z2×2
(2) =: B.

We claim to have

rA = I := {
(
a b
c d

)
| b ≡2 0, a ≡2 0, d ≡2 0},

rB = 2Z2×2
(2) .

rB is calculated to be the inverse image of r(B/2) = 0. A is the disjoint union of its unit
group and I.
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E.1.2 Algebras

Let k be a field, let A be a finite dimensional k-algebra, let 1A =
∑
ei be an orthogonal

decomposition into primitive idempotents. By a module we understand a finitely generated
left A-module.

Corollary E.1.8 (to Nakayama’s Lemma) rA is the unique maximal nilpotent ideal of A.

Multiplying A iteratedly with rA yields a strictly decreasing sequence (E.1.5), whence rA is nilpotent.
There exists a unique maximal nilpotent ideal N , since the sum of nilpotent ideals is nilpotent, as one
sees elementwise. For a simple module S, equality NS = S is impossible, so that rA = N .

Proposition E.1.9 (Fitting’s Lemma) The endomorphism ring of an indecomposable module X is
local.

We repeat the argument of (C.2.14).

Apply the Circonference Lemma to the composition fnfn = f2n, n large, to prove nilpotence of an
endomorphism of X which is not an automorphism. Writing down a geometric series, we thus see that
either f or 1 − f is an automorphism. Via composition, this also holds with an automorphism instead
of 1. We conclude that the nonautomorphisms are closed under addition. We are done by (E.1.8)
since composition of a nilpotent morphism with an arbitrary morphism cannot be an automorphism, for
nilpotent morphisms are neither injective nor surjective.

Corollary E.1.10 Given a simple module S, there is an indecomposable projective module P , unique up
to isomorphism, mapping onto it.

There is such a P by dropping summands of A. Given P and Q indecomposable projective, mapping

surjectively onto S, we may lift to P -f Q, as well as to Q -g P . Neither fg nor gf may be nilpotent,
so (E.1.9) applies.

Corollary E.1.11 If Aei is not isomorphic to Aej, then eiAej ⊆ rA.

Let S be a simple module. The existence of an epimorphism from Ael onto S is equivalent to the
existence of a nonzero element els, s ∈ S. Therefore, in case both ei and ej do not annihilate S, we
derive Aei ' Aej by means of (E.1.10).

Corollary E.1.12 Assume in addition that A is basic, i.e. that Aei ' Aej implies i = j. Then

rA = (
⊕
i

r(eiAei))⊕ (
⊕
i6=j

eiAej).

Informally, rA arises from A by passing to the radicals on the Peirce main diagonal.

This ensues from (E.1.4, E.1.11)

Corollary E.1.13 ei(A/rA)ei is a skewfield.

As a quotient of a local k-algebra (E.1.9, E.1.4), it remains local (E.1.2, E.1.8). Its radical is calculated
to be zero by (E.1.4), since r(A/rA) = 0 by correspondence of the maximal left ideals (E.1.2).

Lemma E.1.14 rA is the minimal ideal I in A with respect to the property of having a semisimple
quotient, i.e. to A/I being a direct sum of simple modules. Aei/rAei is simple.

Let I ⊆ A be an ideal with semisimple quotient. Then A/I is annihilated by rA, i.e. rA ⊆ I.

It remains to be shown that A/rA is semisimple. We use bars to denote images modulo rA. It suffices to
show that a morphism from Aei to Āēj is an epimorphism or zero, for then Āēi is shown to be simple.
Therefore, it suffices to show that a morphism from Āēi to Āēj is an isomorphism or zero. Since ējĀēj
is a skew field (E.1.13), the case Aei ' Aej is done by isomorphic substitution of Āēi by Āēj . The
remaining case is covered by (E.1.11).
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Lemma E.1.15 A module X is said to be semisimple if it is the direct sum of certain simple submod-
ules. An epimorphic image of a semisimple module is semisimple.

This ensues from the characterization of a semisimple module as being the sum of all of its simple
submodules. In fact, let X have this property and let Y be a maximal semisimple submodule. If Y
were properly contained in X, there would be a simple module not entirely contained in Y , whence its
intersection with Y would be zero, contradicting the assumed maximality.

Corollary E.1.16 Given a module X, the radical quotient X/rX is semisimple.

A/rA being semisimple (E.1.14), the same is true for X/rX, writing X as quotient of a finite sum of
copies of A (E.1.15).

Corollary E.1.17 Let P be an indecomposable projective module. P/rP is simple.

Hence, (E.1.10) taken into account, we have a bijective correspondence between the isomorphism classes
of indecomposable projective modules and the isomorphism classes of simple modules, given by factoring
out the radical.

This ensues from (E.1.14) in view of Krull-Schmidt (C.2.14). Alternatively, P/rP is semisimple by
(E.1.16), so that it remains to remark that the local endomorphism ring of P surjects onto the endomor-
phism ring of P/rP .

E.1.3 Orders

Let R be a discrete valuation ring with maximal ideal (π), residue field k := R/π and field
of fractions K := fracR. Let Λ be a sub split semisimple R-order, i.e. assume Λ to be fully
included into a product of matrix rings Γ :=

∏
λR

nλ×nλ over R (cf. S D.2). Let Λ̄ := Λ/π.
Let 1Λ =

∑
i ei be an orthogonal decomposition into primitive idempotents. By a module

we understand a finitely generated left Λ-module. A lattice is a module which is projective
over R.

Lemma E.1.18 We have

(rΛ)/(πΛ) = r(Λ/πΛ).

From (E.1.6) we take that πΛ ⊆ rΛ. The result follows by intersection of maximal left ideals.

Lemma E.1.19 Primitive idempotents of Λ remain primitive modulo π.

This follows from (C.2.12).

Lemma E.1.20

(i) eiΛei is local for any i.

(ii) We have a bijective correspondence between the isomorphism classes of indecomposable projective
left Λ-lattices and the isomorphism classes of simple Λ-modules, given by factoring out the radical.

(iii) Assume for simplicity that Λ is basic, i.e. that Λei ' Λej implies i = j. Then

rΛ = (
⊕
i

r(eiΛei))⊕ (
⊕
i 6=j

eiΛej).

(iv) rΛ is the unique maximal ideal with respect to the property of having a positive power of it contained
in πΛ.

(v) Given a module X, the radical quotient X/rX is semisimple.
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(i). By (E.1.19, E.1.9), ei(Λ/π)ei is local, whence also eiΛei has a unique maximal left ideal.

(ii). By (E.1.17, E.1.18) it suffices to remark that there is also a bijective correspondence between the
indecomposable projectives over Λ and the indecomposable projectives over Λ/π by factoring out π. This
map is well defined by (C.2.15, E.1.19) (here sub split semisimplicity enters). It is surjective by (C.2.14,
E.1.19). It is injective by Nakayama’s Lemma (E.1.5), applied to show that an isomorphism lifts to an
isomorphism.

(iii). By (E.1.18), the radical of Λ is the inverse image under Λ - Λ/π of the radical of Λ/π. By
assumption, by (E.1.19) and by the correspondence of projectives remarked in the proof of (ii), Λ/π is
basic. Thus (E.1.12) applies.

(iv). Using (E.1.18), this follows from the transcription of the characterization given in (E.1.8).

(v). Using (E.1.18), this follows from (E.1.16).

Corollary E.1.21 For each Λ-module X there exists a projective Λ-module P surjecting onto it, P -f X,

such that the kernel of f is contained in rP . Given a second such surjection P ′ -
f ′

X, there is an iso-

morphism P -u
∼ P ′ with uf ′ = f . P is called the projective cover of X. The induced morphism

P/rP - X/rX

is an isomorphism.

X/rX is semisimple (E.1.20 v), so that we obtain a surjection from the direct sum of indecomposable
projectives belonging to its summands, with kernel equal to the radical (E.1.20 ii). This surjection lifts to
a surjection onto X by Nakayama’s Lemma (E.1.5). Given a second such surjection, we obtain morphisms

P -u P ′ with uf ′ = f and P ′ -
v

P with vf = f ′. uv induces an automorphism on P/rP = X/rX,
whence it is itself an automorphism by Nakayama’s Lemma (E.1.5).

Definition E.1.22 Let S be a simple module. A module T is said to belong to S if, for each i > 0,
riT/ri+1T is a finite direct sum of copies of S. A module is called neat if it belongs to some simple
module.

If T belongs to S, then so does each subquotient of T .

The problem is that one has to cut down a bit to the artinian case in order to apply the Jordan-Hölder
Theorem. We know that T/riT is of finite length since π ∈ rΛ (E.1.5), thus the composition factors of
its subquotients are isomorphic to S.

Suppose given a submodule T ′ of T . Let i > 0. We claim that for j large we have riT ′ ⊇ T ′ ∩ rjT .
Since rΛ is nipotent modulo π (E.1.8), we may substitute πjT for rjT and, of course, πiT ′ for riT ′ in the
assertion, so that a problem on finitely generated R-modules remains. Denoting the torsion resp. torsion
free part of T by tT resp. fT , similarly for T ′, we write the inclusion T ′ -

�� T as

tT ′ ⊕ fT ′ -
(
α 0
β γ

)
tT ⊕ fT.

Choose j large enough to ensure πjtT = 0. Let x ∈ tT ′, y ∈ fT ′ be given such that xα + yβ = 0 and
yγ ∈ πjfT . Since γ is injective, we may choose j large enough to obtain y ∈ πifT ′ as well as yβ = 0
(A.1.1). α being injective, this implies x = 0. It follows by this claim that T ′/riT ′ is a quotient of
T ′/(T ′ ∩ rjT ) = (T ′ + rjT )/rjT , which in turn is included in T/rjT .

Suppose given a quotient T/T ′ of T . Let i > 0. We obtain (T/T ′)/ri(T/T ′) = T/(riT + T ′).

We attempted to obtain larger modules than the simple ones by considering a smaller ideal than the
radical.

Remark E.1.23 (usage unclear) Assume Λ to be basic (cf. E.1.20 iii). Let

prΛ := (
⊕
i

eiΛ(1− ei)Λei)⊕ (
⊕
i 6=j

eiΛej).
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be the preradical of Λ. It is characterized as the minimal ideal inside rΛ with quotient being a direct
product of local rings.

prΛ is the intersection of the annihilators of the neat modules. Thus the local direct factors of the
preradical quotient describe the ‘intersections of Λ-mod and eiΛei-mod’ in the following sense. The full
subcategory of Λ-mod consisting of the modules belonging to (Λ/rΛ)ei is just eiΛei/eiΛ(1− ei)Λei-mod.

Since eiΛei is local (E.1.20 i) and since eiΛ(1− ei)Λei ⊆ r(eiΛei) (E.1.20 iii), we obtain the quotient∏
i

eiΛei/eiΛ(1− ei)Λei

to be in fact a product of local rings and that prΛ ⊆ rΛ.

Conversely, let I be an ideal of Λ, contained in rΛ and having a product of local rings as its quotient Λ/I.
1 =

∑
ei remains a decomposition into primitive idempotents of Λ/I since ei even remains primitive

modulo rΛ (E.1.19). Moreover, the indecomposable projectives (Λ/I)ei are pairwise nonisomorphic since
they are even nonisomorphic modulo the radical.

Over the local ring direct factors of Λ/I, given by assumption, Krull-Schmidt holds since it holds for
Λ/I as it holds for Λ (C.2.15). Moreover, each such factor is indecomposable as left module over itself,
since an orthogonal decomposition 1 = e+ f into nonzero idempotents e and f would imply e and f to
be nonunits, for xe = 1 would give 0 = xef = f . We conclude that there are no nonzero Λ-morphisms
beween nonisomorphic indecomposable projective left Λ/I-modules.

We have to show that eixej ∈ I for i 6= j, x ∈ Λ. But the morphism

(Λ/I)ei -(−)eixej
(Λ/I)ej

is forced to be zero.

Let T be a neat module belonging to the simple module S := (Λ/rΛ)ei. We claim that (prΛ)T = 0, thus
showing that prΛ is contained in the intersection of the annihilators of the neat modules. More precisely,
we have to show that ejxel, j 6= l, x ∈ Λ, annihilates T . It therefore suffices to show that ej annihilates
T for j 6= i.

Assume though that ejt 6= 0 for some t ∈ T . The submodule 〈ejt〉 of T generated by ejt belongs
to S (E.1.22) so that there is an epimorphism (Λei)

α - 〈ejt〉 for some α > 0 (E.1.5). There is, by
construction, also an epimorphism from Λej to 〈ejt〉, sending ej to ejt. We obtain two factorizations

Λei -
f

(Λej)
α and (Λej)

α -g Λei. Since 〈ejt〉 6= 0 we know that Λei -
fg

Λei is not nilpotent modulo
π, contradicting (E.1.9, E.1.8) by Krull-Schmidt (C.2.15).

Conversely, in order to show that prΛ contains the intersection of the annihilators of the neat modules
we need to construct a neat module T which is not annihilated by a given element of Λ which is not
contained in prΛ. In other words, it suffices to show that Ai := eiΛei/eiΛ(1− ei)Λei is neat. But Ai is
a local quotient ring of Λ so that it is neat as a left module over itself. Since the radical of Ai as a ring
and as a module over Λ coincide, it is neat also as a module over Λ.

Finally, by (prΛ)T = 0 we conclude that a module that belongs to (Λ/rΛ)ei is a module over eiΛei/eiΛ(1−
ei)Λei, and also conversely, since this ring is neat as a Λ-module and belongs to (Λ/rΛ)ei (cf. E.1.22).

Lemma E.1.24 (ties caused by radical; cf. [P 80/1, (I.27)]) Let f be a primitive idempotent of Λ,
let f =

∑
i fi an orthogonal decomposition into nonzero idempotents of Γ. There is an isomorphism

Λf/rΛf -∼ Λfj/rΛfj

so that there is also an isomorphism

Λfi/rΛfi -
∼ Λfj/rΛfj

for all i, j.

Choose a k-linear basis of Λf/rΛf . Map it to a k-linear basis of Λfi/rΛfi under this isomorphism.
Complement this k-linear basis of Λfi/rΛfi to a k-linear basis of Λfi/πΛfi and lift it to an R-linear basis
of Λfi (E.1.5).
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Consider y ∈ Λ. Write yfi in the basis just constructed, dito yfj. The coefficients of yfi at those basis
elements occurring in the image of the k-linear basis of Λf/rΛf in Λfi/rΛfi are congruent modulo π to
those of yfj at the image in Λfj/rΛfj, for the diagram

Λfi/rΛfi -
∼

Λfj/rΛfj

Λ

��	 @@R

commutes by construction. These are the ties caused by radical.

The surjection

Λf -(−)fi
Λfi

induces an isomorphism

Λf/rΛf -∼ Λfi/rΛfi

since the left hand side is simple (E.1.20 ii), the morphism is surjective and the right hand side is nonzero
(E.1.5).

Example E.1.25
Let R = Z(2), let

Λ := {x× y × z | 2x ≡8 y + z, y ≡4 z} ⊆ R×R×R =: Γ,

Λ being the endomorphism ring of an indecomposable projective Z(2)S4-module (S 2.1.1).
The radical quotients, as R-modules isomorphic to R/2 with Λ-action given by x × y × z
acting as x, as y resp. as z are isomorphic, yielding x ≡2 y ≡2 z.

Lemma E.1.26 Let ε be a central idempotent of Γ. Then

(rΛ)ε = r(Λε),

Λε on the right hand side viewed as a ring, not as a Λ-lattice.

⊆. Let M ⊆ Λε be a maximal left ideal, so that Λε/M is simple over Λε, hence over Λ. Thus it is
annihilated by rΛ, i.e. (rΛ)ε ⊆M .

⊇. Let e be a primitive idempotent of Λ. The epimorphism Λe/(rΛ)e - Λeε/(rΛ)eε shows the latter
to be zero or simple over Λ (E.1.20 ii), hence over Λε. Therefore r(Λε)e ⊆ (rΛ)εe.

Corollary E.1.27 Let ε be a central idempotent of Γ, let P and Q be indecomposable projective Λ-lattices.
Then

0 6' εP ' εQ =⇒ P ' Q.

Calculating the radical both in Λ and in εΛ (E.1.26) we obtain

P/rP -∼ εP/rεP ' εQ/rεQ�∼ Q/rQ.

The assertion follows by (E.1.20 ii) or directly by Nakayama’s Lemma (E.1.5). This might be considered

as the ‘reason’ for the quasiblock Q
(3,2,1)
(3) not to be the Gram order induced by the invariant bilinear form

(cf. 6.1.29, 6.1.7), namely that its columns ‘have to distinguish projectives’.

Lemma E.1.28 (the radical quasiblockwise) Let 1Λ =
∑
εi be an orthogonal decomposition into

rational central idempotents, which thus lie in Γ. Then

rΛ = Λ ∩
∏
i

r(Λεi)(⊆
∏
i

Λεi).



236 Radical layers

The inclusion ⊆ follows by (E.1.26) or by (E.1.6). It remains to be shown that a positive power of the
right hand side is contained in πΛ (E.1.20 iv). Choose N > 1 such that πNεi ∈ πΛ for all i, choose
M > 1 such that (r(Λεi))

M ⊆ πΛεi for all i. Then

(Λ ∩
∏
i

r(Λεi))
MN ⊆ (

∏
i

π(Λεi))
N ⊆ πΛ.

Alternative proof in case Λ is local. It suffices to claim that for a central idempotent ε of
Γ the radical turns the pullback diagram

Λ - Λε

? ?

Λ(1− ε) - Λ̄,

where Λ̄ = Λε/Λ ∩ Λε, into the pullback diagram

rΛ - r(Λε)

? ?

r(Λ(1− ε)) - rΛ̄.

We may assume Λ̄ 6= 0. Let S be the simple Λ-module and regard the diagram

rΛ - r(Λε)

? ?

r(Λ(1− ε)) - rΛ̄.

�
��*

��
�*

��
�*

�
��*

Λ - Λε

? ?

Λ(1− ε) - Λ̄

��
�*

��
�*

��* �
��*

S -∼
S

o

? ?

o

S -∼
S

Example E.1.29 (dangerous bend) In general, the inclusion

r2Λ ⊆ Λ ∩
∏
i

r2(Λεi),

which holds by (E.1.26 or E.1.6), is a strict inclusion.

Let R := Z(2), π := 2, and consider

Λ := {x× y | x ≡4 y} ⊆ R×R.

By (E.1.28) we obtain

rΛ = {2x× 2y | 2x ≡4 2y} ⊆ R×R
= R〈2× 2, 0× 4〉,

whence

r2Λ = R〈4× 4, 0× 8〉 63 0× 4.
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Lemma E.1.30 (the radical of local quasiblocks in easy cases) Assume in addition Λ to be local
and to have a single quasiblock, i.e. assume given a full inclusion of R-orders

Λ ⊆ Rm×m =: Γ.

Let 1Λ =
∑
i fi be an orthogonal decomposition into primitive idempotents of Γ and assume moreover

that fi 6∈ fiΛfjΛfi for i 6= j. Using main diagonal primitive idempotents of Γ, this assumption is satisfied
provided there is a single tie either at position ij or at position ji for i 6= j. Then

rΛ = Λ ∩

(
⊕
i

πfiΛfi)⊕ (
⊕
i 6=j

fiΛfj)

 ⊆ Γ.

Moreover, we could have dropped all but one factor π in this formula without changing the right hand
side.

In addition, we obtain
k -∼ Λ/rΛ.

Note that fiΛfi = fiΓfi ' R by primitivity of fi, because theR-linear generator fi of the right hand side is
contained in the left hand side. In particular, fiΛfi is a ring with multiplication given by (fixfi)(fiyfi) =
fixfiyfi, since the right hand side of this equation in fact is contained in fiΛfi = fiΓfi (cf. E.1.33).

We claim that the right hand side of the equation above is an ideal in Λ. It suffices to show that fixfjyfi
is in πfiΛfi for i 6= j, x and y in Λ. We are reduced to show that fixfjyfi is a nonunit in fiΛfi. But
otherwise we multiply with its inverse to obtain fi ∈ fiΛfjΛfi, contrary to our assumption.

We claim that the surjection
Λ/rΛ - fiΛfi/firΛfi

x - fixfi

is an isomorphism of rings for all i. Consider the relation

fixyfi − fixfiyfi = fix(1− fi)yfi ∈ fiπΛfi ⊆ firΛfi.

For x ∈ rΛ and y ∈ Λ (resp. vice versa) it shows firΛfi ⊆ fiΛfi to be an ideal. For x, y ∈ Λ it shows the
map to be a ring morphism. Since Λ/rΛ is a skew field, it is injective.

We derive
firΛfi = r(fiΛfi) = πfiΛfi,

since fiΛfi is a local ring in which firΛfi is an ideal that has a skew field as its quotient. It ensues in
particular that Λ/rΛ = k (cf. E.1.32).

Now we can set out to prove

rΛ = Λ ∩

(
⊕
i

πfiΛfi)⊕ (
⊕
i 6=j

fiΛfj)

 .
We claim that rΛ is contained in the right hand side. But this follows from firΛfi ⊆ πfiΛfi for all i.

We claim that the right hand side, with all but one factor π dropped, is contained in rΛ. So suppose
given x ∈ Λ such that fixfi ∈ πfiΛfi ⊆ firΛfi for some i. By Λ/rΛ -∼ fiΛfi/firΛfi we conclude that
x ∈ rΛ.

Remark E.1.31 Let Λ be local. Then

dimk Λ/rΛ 6 min{nλ | λ parametrizing the factors of Γ}.

In particular, in case Λ is commutative, we obtain

k -∼ Λ/rΛ.

This follows from the remark that the column of (R/π)nλ×nλ , regarded as a Λ-module, maps epimorphi-
cally onto the simple Λ-module Λ/rΛ. Cf. (E.1.32).
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Remark E.1.32 The assumption in (E.1.30) that fi 6∈ fiΛfjΛfi for i 6= j cannot be
dropped.

For u ∈ R, let

Λu := {
(
a b
c d

)
| a ≡π d, bu ≡π c} ⊆ R2×2 =: Γ,

which is in fact a suborder, as becomes visible on the set of R-linear generators{(
1 0
0 1

)
,
(

0 1
u 0

)
,
(

0 0
0 π

)
,
(

0 0
π 0

)}
.

Note that the ideal πΓ ⊆ Λu is contained in rΛu since it is nilpotent modulo π (E.1.20 iv).
The ring epimorphism

k[T ] - Λu/πΓ
T -

(
0 1
u 0

)
has kernel (T 2 − u). Thus there are several cases to be distinguished.

In case u is a square in k∗ and char k 6= 2, rΛu coincides with πΓ. Λu/rΛu ' k× k is not a
local ring, so neither is Λu, for there are two nonisomorphic simple modules (E.1.2).

In case u is a square in k∗ and char k = 2, we obtain r(k[T ]/(T −
√
u)2) = (T −

√
u), whence

rΛu is the ideal generated by πΓ and
(√

u 1
u
√
u

)
,
√
u denoting an inverse image in R of the

square root of u in k. Therefore Λu/rΛu ' k is simple, whence Λu is local (E.1.20 ii, E.1.9).
But the subset described in (E.1.30) applied to 1Γ = f1 + f2 with f1 =

(
1 0
0 0

)
and f2 =

(
0 0
0 1

)
does not give the radical. It is not even an ideal of Λ, since it contains

(
0 1
u 0

)
but not

(
0 1
u 0

)2
.

In case u is not a square in k∗, we obtain k[T ]/(T 2−u) to be a quadratic field extension of k,
denoted by k[

√
u] (cf. E.1.31). Thus Λu is local with radical rΛu = πΓ, which is likewise not

in coincidence with the formula given in (E.1.30). Moreover, note that rΛu/r
2Λu ' S⊕S,

where S = Λu/rΛu is a column in Γ/πΓ.

In case u = 0 ∈ R, the radical is in fact calculable by the formula of (E.1.30) to be

rΛ0 = {
(
a b
c d

)
| a, c, d ≡π 0} ⊆ R2×2.

Example E.1.33 (dangerous bend) (21) Consider

Λ := {
(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
| a11 ≡π a22 ≡π a33, a12 ≡π a23 ≡π a31, a13 ≡π a21 ≡π a32} ⊆ R3×3 =: Γ.

We claim that Λ is a subring of Γ. Since πΓ is contained in Λ it suffices, by an extension
of the following two elements to an R-linear basis of Λ by 1Λ and by elements in πΓ, to
consider their four products. But (

0 1 0
0 0 1
1 0 0

)
,
(

0 0 1
1 0 0
0 1 0

)
are even permutation matrices. Let e :=

(
1 0 0
0 1 0
0 0 0

)
. We obtain

eΛe = {
(
a11 a12
a21 a22

)
| a11 ≡π a22} ⊆ R2×2 = eΓe,

which is not a subring, since
(

0 1
0 0

) (
0 0
1 0

)
=
(

1 0
0 0

)
.

Remark E.1.34 Assume Λ to be local. Let f 6= 1 be an idempotent of Γ. Then

Λ ∩ Λf ⊆ rΛ.

The quadrangle

21S. König pointed out that such an example should exist, contrary to what I had believed. It is
modelled on an example H. Weber has shown me.
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rΛ - rΛ(1− f)

? ?

Λ - Λ(1− f)

is an exact square, as to be seen on the vertical cokernels. The assertion follows by equality
of the horizontal kernels.

E.2 Homological inequalities

We derive some inequalities concerning the size of the radical layers in the local case,
resulting from a long exact Ext-sequence. To begin with, however, we shall present some
elementary facts which give rise to doubts whether the outcome of these considerations will
be overly useful.

Keep the conventions from (S E.1.3). Let Λ ⊆
∏
λR

nλ×nλ =: Γ be a local sub split semisimple
R-order with simple module S and projective module P (' Λ). Let D := EndΛS. Let X be a
left Λ-lattice. Consider the minimal projective resolution

· · · -
di3

Pαi2 -di2 Pαi1 -di1 Pαi0 -di0 X/riX,

i.e. the projective resolution constructed via projective covers (E.1.21). Let ωXij := Kerndi,j−1 =
Im dij. For a Λ-module M we denote by tM the number defined by

M/rM ' StM .

Note that by construction we have αij = tωXij as well as ωXij ⊆ rPαi,j−1 . If N is a finitely

generated torsion R-module, we denote by lN its length in the sense of Jordan-Hölder, i.e.
lN =

∑
i>0 dimk π

iN/πi+1N .

For an example in which the inclusion k ⊆ D is strict we refer to (E.1.32).

Remark E.2.1 The series of isomorphism classes riX becomes eventually periodic.

This is a consequence of Jordan-Zassenhaus (D.2.7), using the fact that the inclusion of riX into X is
full. Cf. (6.1.16).

Remark E.2.2 For i > 0 we have the upper bound

triX 6 rkRX/ dimk S.

Note that
l(riX/ri+1X) 6 l(riX/πriX) = rkRr

iX = rkRX.

Lemma E.2.3 (stability at the rank) Assume in addition Λ to be commutative, i.e. assume nλ = 1
for each λ. There is an I > 0 such that for i > I we have

triX = rkRX.

Cf. (E.2.2, E.2.5 c).

Denote ΓX := Γ⊗̃ΛX and note that rkRΓX = rkRX (B.1.3, B.1.12). The radical of a Γ-lattice Y as a Γ-
module, viz. πY , contains the radical of Y as a Λ-lattice by (E.1.6) since Λ is assumed to be commutative.
In particular, for i > 0 we have

riX ⊆ πiΓX.
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Note that
di+1 := l(πi+1ΓX/ri+1X) 6 l(πi+1ΓX/πriX) = l(πiΓX/riX) =: di

so that there exists an I > 0 such that

l(πiΓ/riΛ) = l(πIΓ/rIΛ) =: d

for i > I.

The equation
l(ΓX/X) + l(X/riX) = l(ΓX/πiΓX) + l(πiΓX/riX)

= i · rkRX + d

for i > I shows that

rkRX = lim
i

1

i

i∑
j=1

l(rj−1X/rjX).

Subtracting the equations

l(πiΓX/riX) + l(riX/ri+1X) = l(πiΓX/πi+1ΓX) + l(πi+1ΓX/ri+1X)
l(πi+1ΓX/ri+1X) + l(ri+1X/ri+2X) = l(πi+1ΓX/πi+2ΓX) + l(πi+2ΓX/ri+2X)

yields
l(ri+1X/ri+2X)− l(riX/ri+1X) = di+2 − 2di+1 + di

which becomes
triX = l(riX/ri+1X) = l(ri+1X/ri+2X) = rkRX

for i > I, where the left hand side equality holds by (E.1.31).

Corollary E.2.4 Keep the assumptions and the notation of (E.2.3). For i > I we have

ri+1X = πriX.

Cf. (E.2.1). For a maybe somewhat surprising r∞Λ, cf. (E.1.29). The assertion does not hold in case Λ
is not commutative, cf. (E.3.4).

Remark E.2.5

(a) I do not know whether the sequence triX is ascending. If this was known, the peri-
odicity of (E.2.1) would imply stability of triX for large X. Let 1Γ =

∑
λ ελ be the

decomposition into central primitive idempotents of Γ. I do not know whether triX
and

∑
λ triελX become equal in the limit.

(b) For Λ commutative local sub split semisimple, we obtain some information on the
Hilbert-Samuel polynomial f of Λ, which gives the length of Λ/riΛ as Λ-modules for
i large [AM 69, 11]. Plugging in X = Λ in (E.2.3) we see that f is linear and has
leading coefficient rkRΛ. Note that Λπ is a rΛ-primary ideal (E.1.20 iv), thus the
degree of f equals the Krull dimension of Λ equals the minimal number of generators
over Λ of an rΛ-primary ideal equals 1, in accordance with [AM 69, 11.14].

(c) We repeat the argument of (E.2.3) in the noncommutative case under an extra as-
sumption. Suppose given an element π̃ ∈ Z(Λ) such that there exists a m > 1 with

π̃Λ ⊆ rmΛ ⊆ π̃Γ.

For instance, in case Λ is commutative we may take π̃ = π by (E.1.6). See (E.3.4,
E.3.6) for noncommutative examples which fulfill this assumption, and, moreover, for
which the assertion of (E.2.3) does not hold.

Denote the valuation of the projection of π̃ to Z(Rnλ×nλ) = R by σλ. Denote by ξλ
the rank of the projection of ΓX to Rnλ×nλX. So we obtain e.g. for X = P that ξλ
equals n2

λ. Note that for i > 0 we have

rkπ̃X := l(ΓX/π̃ΓX) = l(π̃iΓX/π̃i+1ΓX) =
∑
λ

ξλσλ.
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The inequality

di+1 := l(π̃i+1ΓX/r(i+1)mX) 6 l(π̃i+1ΓX/π̃rimX) 6 l(π̃iΓX/rimX) =: di

supplies us with an I > 0 such that

l(π̃iΓ/rimΛ) = l(π̃IΓ/rImΛ) =: d

for i > I.

The equation

l(ΓX/X) + l(X/rimX) = l(ΓX/π̃iΓX) + l(π̃iΓX/rimX)
= i · rkπ̃X + d

for i > I shows that

rkπ̃X = lim
i

1

i

i∑
j=1

l(r(j−1)mX/rjmX).

Subtracting the equations

l(π̃iΓX/rimX) + l(rimX/r(i+1)mX) = l(π̃iΓX/π̃i+1ΓX) + l(π̃i+1ΓX/r(i+1)mX)
l(π̃i+1ΓX/r(i+1)mX) + l(r(i+1)mX/r(i+2)mX) = l(π̃i+1ΓX/π̃i+2ΓX) + l(π̃i+2ΓX/r(i+2)mX)

yields

l(rimX/r(i+1)mX) = rkπ̃X

for i > I. Moreover, we read off that

rkπ̃X > l(rimX/r(i+1)mX)

holds for all i > 0.

Lemma E.2.6 Let i, j > 1. We have

dimD ExtjΛ(X/riX,S) = tωXij
dimD ExtjΛ(riX/ri+1X,S) = triX · tωP1j

In fact,

ExtjΛ(X/riX,S) = Cokern

(
HomΛ(Pαi,j−1 , S) -0 HomΛ(ωXij , S)

)
= HomΛ(ωXij , S)

has dimension tωXij over D, the zero morphism resulting from ωXij ⊆ rPi,j−1. In particular,

ExtjΛ(S, S) = tωP1j ,

yielding the second equation.

Definition E.2.7 A sequence of integers s1, s2, . . . is called of Euler characteristic type if∑
i∈[1,m]

(−1)m−isi > 0

for all m > 0.
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Proposition E.2.8 (Euler inequalities) Let i > 2. The sequence of integers

tri−1X ,
tωXi−1,1

, tωXi,1 , tri−1X · tωP11
,

tωXi−1,2
, tωXi,2 , tri−1X · tωP12

,

tωXi−1,3
, tωXi,3 , tri−1X · tωP13

,

. . .

is of Euler characteristic type (E.2.7).

The short exact sequence

0 - ri−1X/riX - X/riX - X/ri−1X - 0

induces the long exact sequence

0�HomΛ(X/ri−1X,S)� ∼
HomΛ(X/riX,S)� 0

HomΛ(ri−1X/riX,S)

�Ext1
Λ(X/ri−1X,S)�Ext1

Λ(X/riX,S)�Ext1
Λ(ri−1X/riX,S)

�Ext2
Λ(X/ri−1X,S)�Ext2

Λ(X/riX,S)�Ext2
Λ(ri−1X/riX,S)

�. . .

The inequalities follow by (E.2.6) and by the remark that cutting off this long exact sequence and inserting
an image instead, the Euler characteristic of the resulting exact sequence is zero.

Corollary E.2.9 (exponential bound) For i > 2 and X = P we obtain

triP 6 (trP )(tri−1P ),

thus, in particular,

triP 6 (trP )i.

In view of (E.2.3) in case Λ commutative and of (E.2.1) in the general case, this inequality merely says
that the rate of growth is exponentially bounded ‘in the start region’.

Remark E.2.10 If dimk S = 1, e.g. if Λ is commutative (cf. E.1.31), this already follows
from the surjection

rΛ/r2Λ⊗k ri−1Λ/riΛ - riΛ/ri+1Λ

induced by multiplication.

Corollary E.2.11 (regularity is exceptional) If Λ is commutative, then trP = 1 implies rkRP = 1.

This follows from (E.2.3, E.2.9). Cf. [AM 69, 11.22].
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Remark E.2.12 (growth of ω1,j) For j > 1, we have

(∗) (rkR ω
P
1,j+1 + rkR ω

P
1,j)/rkR P = tωP1,j 6 rkR ω

P
1,j/dimk S,

whence

(∗∗)
rkR ω

P
1,j+1

rkR ωP1,j
6

rkR P

dimk S
− 1.

Moreover, we remark that in case rkR P = 2 dimk S, we either get rkR ω
P
1,j = rkR P for all j, or S has a

finite projective resolution.

The equality in (∗) is given by construction of the minimal resolution. The inequality in (∗) is asserted
in (E.2.2). We note that the consequence rkRP > dimk S already follows from l(P/πP ) > l(P/rP ).

E.3 Examples

We calculate some example for sake of illustration of (S E.1.3, S E.2) as well as in order to
examinate some modular morphisms, not necessarily between simple lattices. In particular,
we will record the behaviour of such morphisms with respect to the radical layers. The
hope was to discover well behaved and predictable morphisms that way, in the spirit of
(E.1.24), however, there are none in sight. We restrict our attention to the ‘principal
building blocks’ of Z(p)Sn, p prime, viz. to the endomorphism rings of the indecomposable
projectives. Moreover, we pick some relevant Hom-groups, however, without giving a precise
meaning to this attribute. So the following treatment remains tentative, yielding a bunch
of experimental material. The first example (E.3.2) is presented rather detailed.

We keep the notation of (S E.1.3, S E.2).

Lemma E.3.1 Let ε be a central idempotent of Γ, let I := Λ ∩ Λ(1− ε). The evaluation

HomΛ(Λε, I/πα) - {x ∈ I/πα | Ix = 0}
f - εf

is an isomorphism.

The map going from the Hom group to the whole I/πα is injective. An element x ∈ I/πα qualifies as an

image of ε under a morphism Λε -f I/πα iff the product of I = AnnΛε with x vanishes.

Example E.3.2
Let R := Z(2), k := F2, let

Λ := {x× y × z | 2x ≡8 y + z, y ≡4 z} ⊆ R1 ×R2 ×R3 =: Γ,

the indices denoting merely an ordering. Λ is the endomorphism ring of an indecomposable projective
lattice over Z(2)S4 (S 2.1.1) as well as over Z(2)S5 (S 2.2.4).

By (E.1.28) we obtain
Λ = R〈1× 1× 1, 0× 2×−2, 0× 0× 8〉
rΛ = R〈2× 2× 2, 0× 2×−2, 0× 0× 8〉
r2Λ = R〈4× 0× 0, 0× 4× 4, 0× 0× 8〉
r3Λ = R〈8× 0× 0, 0× 8× 8, 0× 0× 16〉

= 2r2Λ,

whence
Λ/rΛ = k〈1× 1× 1〉

rΛ/r2Λ = k〈2× 2× 2, 0× 2×−2〉
r2Λ/r3Λ = k〈4× 0× 0, 0× 4× 4, 0× 0× 8〉.

We calculate the minimal projective resolution of the simple Λ-module Λ/rΛ (cf. S E.2). The short exact
sequence

0 - ωP12
- Λ ⊕ Λ - ωP11

- 0
1 ⊕ 0 - 2× 2× 2
0 ⊕ 1 - 0× 2×−2
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yields
ωP12 = {a× b× c⊕ d× e× f ∈ Λ⊕ Λ | 2a× 2b× 2c = 0d×−2e× 2f}

' {d× e× f ∈ Λ | 0×−e× f ∈ Λ}
= {d× e× f ∈ Λ | e ≡8 f, −e ≡4 f}
= R〈2× 2× 2, 0× 4×−4, 0× 0× 8〉,

whence
ωP12/rω

P
12 = k〈2× 2× 2, 0× 0× 8〉.

The short exact sequence

0 - ωP13
- Λ ⊕ Λ - ωP12

- 0
1 ⊕ 0 - 2× 2× 2
0 ⊕ 1 - 0× 0× 8,

yields
ωP13 = {a× b× c⊕ d× e× f ∈ Λ⊕ Λ | 2a× 2b× 2c = 0d× 0e×−8f}

' {d× e× f ∈ Λ | 0× 0×−4f ∈ Λ}
= {d× e× f ∈ Λ | f ≡2 0}
= R〈2× 2× 2, 0× 2×−2, 0× 0× 8〉
= ωP11,

respecting the bound (∗∗) of (E.2.12), 1 6 2.

Let X := R1, let Y := {y × z | y ≡4 z} ⊆ R2 ×R3. We want to calculate

HomΛ(X,Y/2∞) := lim-
i

HomΛ(X,Y/2i)

where the injective transition morphisms are induced by

Y/2i -
2(−)

Y/2i+1

so that we may as well view this direct limit as a union over this chain of subgroups. A priori we know
by the commutative diagram

HomΛ(X,Y/2i) - HomΛ(X,Y/2i+1)

? ?

Ext1
Λ(X,Y ) Ext1

Λ(X,Y )

in which the vertical maps are connectors of long exact Ext-sequences, that this chain stabilizes for
i > v2(#Ext1

Λ(X,Y )), since in this range the injective connectors are also surjective.

Note that the existence of an element

f ∈ Hom(X,Y/2i)\Hom(X,Y/2i−1)

has the following consequence. Let y × z ∈ Y be a representative of 1f ∈ Y/2i, let a × b × c ∈ Λ. We
have y × z 6∈ 2Y and, moreover,

(ay × az)− (by × cz) = (a− b)y × (a− c)z ∈ 2iY

Let α > 0 be minimal such that 2α × 0× 0 lies in Λ, i.e. α = 2. Plugging in a× b× c = 2α × 0× 0, we
obtain for i > α

y × z ∈ 2i−αY,

whence i = α. We conclude that the chain of subgroups stabilizes at i = α. Therefore, actually we have
to calculate

Y/4 ⊇ HomΛ(X,Y/4) = HomΛ(X,Y/2∞).

The element y × z alluded to above determines such a morphism. It yields such a morphism iff

(a− b)y × (a− c)z ∈ 4Y
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for all a× b× c in a set of R-linear generators of Λ (cf. E.3.1). We obtain the conditions

−2y × 2z ∈ 4Y
0y × 8z ∈ 4Y

so that
HomΛ(X,Y/4) -∼ R〈2×−2, 0× 8〉 ⊆ Y/8.

An element a× b× c of Γ acts on Y and commutes with f iff it satisfies the following ties.

a ≡2 c
2a ≡8 b+ c.

An element a× b× c of Γ commutes with g iff it satisfies

a ≡2 c,

which is implied by those ties caused by f since g is the composition of f with an endomorphism of Y/4.

Consider the morphisms induced by

X̄ := X/4 -f Y/4 =: Ȳ

on the radical layers. The radical layers of Ȳ are given by

Ȳ /rȲ = k〈1× 1〉
rȲ /r2Ȳ = k〈2×−2, 0× 4〉
r2Ȳ /r3Ȳ = k〈4×−4〉

so that X̄/rX̄ injects into rȲ /r2Ȳ and rX̄/r2X̄ injects into r2Ȳ /r3Ȳ . Intuitively, S = Λ/rΛ being the
simple module, we obtain

X̄

S

S
-

f

Ȳ

S

S S

S.

Example E.3.3
Let R := Z(2), k := F2, let

Λ := {x× y × z × w | x ≡4 y, z ≡4 w, x ≡2 z, x− y ≡8 z − w} ⊆ R1 ×R2 ×R3 ×R4 =: Γ,

the indices denoting merely an ordering. Λ is the endomorphism ring of an indecomposable projective
lattice over Z(2)S4 (S 2.1.1).

By (E.1.28) we obtain

Λ = R〈1× 1× 1× 1, 0× 4× 0× 4, 0× 0× 2× 2, 0× 0× 0× 8〉
rΛ = R〈2× 2× 0× 0, 0× 4× 0× 4, 0× 0× 2× 2, 0× 0× 0× 8〉
r2Λ = R〈4× 4× 0× 0, 0× 8× 0× 0, 0× 0× 4× 4, 0× 0× 0× 8〉
r3Λ = R〈8× 8× 0× 0, 0× 16× 0× 0, 0× 0× 8× 8, 0× 0× 0× 16〉

= 2r2Λ,

whence
Λ/rΛ = k〈1× 1× 1× 1〉

rΛ/r2Λ = k〈2× 2× 0× 0, 0× 4× 0× 4, 0× 0× 2× 2〉
r2Λ/r3Λ = k〈4× 4× 0× 0, 0× 8× 0× 0, 0× 0× 4× 4, 0× 0× 0× 8〉

In particular, both kernel and cokernel of rΛ/r2Λ - rΓ/r2Γ have dimension 1.

We calculate the minimal projective resolution of the simple Λ-module. The short exact sequence

0 - ωP12
- Λ⊕ Λ⊕ Λ - ωP11

- 0
1⊕ 0⊕ 0 - 2× 2× 2× 2
0⊕ 1⊕ 0 - 0× 4× 0× 4
0⊕ 0⊕ 1 - 0× 0× 2× 2
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yields

ωP12 = {a1 × b1 × c1 × d1 ⊕ a2 × b2 × c2 × d2 ⊕ a3 × b3 × c3 × d3 ∈ Λ⊕ Λ⊕ Λ |
2a1 × 2b1 × 2c1 × 2d1 = 0×−4b2 ×−2c3 ×−4d2 − 2d3}

' {a2 × b2 × c2 × d2 ⊕ a3 × b3 × c3 × d3 ∈ rΛ⊕ rΛ | 0× 2b2 × c3 × 2d2 + d3 ∈ Λ}
= R〈 2× 2× 2× 2 ⊕ 0× 0× 0× 0,

0× 4× 0× 4 ⊕ 0× 0× 0× 0,
0× 0× 2× 2 ⊕ 0× 4× 0× 4,
0× 0× 0× 8 ⊕ 0× 0× 0× 0,
0× 0× 0× 0 ⊕ 2× 2× 0× 0,
0× 0× 0× 0 ⊕ 0× 8× 0× 0,
0× 0× 0× 0 ⊕ 0× 0× 2× 2,
0× 0× 0× 0 ⊕ 0× 0× 0× 8〉,

whence
rωP12 = R〈 4× 4× 0× 0 ⊕ 0× 0× 0× 0,

0× 8× 0× 0 ⊕ 0× 0× 0× 0,
0× 0× 4× 4 ⊕ 0× 0× 0× 0,
0× 0× 0× 8 ⊕ 0× 0× 0× 0,
0× 0× 0× 0 ⊕ 4× 4× 0× 0,
0× 0× 0× 0 ⊕ 0× 8× 0× 0,
0× 0× 0× 0 ⊕ 0× 0× 4× 4,
0× 0× 0× 0 ⊕ 0× 0× 0× 8〉,

so that
ωP12/rω

P
12 = k〈 2× 2× 2× 2 ⊕ 0× 0× 0× 0,

0× 4× 0× 4 ⊕ 0× 0× 0× 0,
0× 0× 2× 2 ⊕ 0× 4× 0× 4,
0× 0× 0× 0 ⊕ 2× 2× 2× 2,
0× 0× 0× 0 ⊕ 0× 0× 2× 2〉.

Therefore,

ωP13 = {a2 × b2 × c2 × d2 ⊕ a3 × b3 × c3 × d3 ⊕ a5 × b5 × c5 × d5 ∈ rΛ⊕ rΛ⊕ rΛ |
2(b2 − d2) + (c3 − d3) ≡8 0, 2(b3 − d3) + (c5 − d5) ≡8 0}

= R〈 2× 2× 2× 2 ⊕ 0× 0× 0× 0 ⊕ 0× 0× 0× 0,
0× 4× 0× 4 ⊕ 0× 0× 0× 0 ⊕ 0× 0× 0× 0,
0× 0× 2× 2 ⊕ 0× 4× 0× 4 ⊕ 0× 0× 0× 0,
0× 0× 0× 8 ⊕ 0× 0× 0× 0 ⊕ 0× 0× 0× 0,
0× 0× 0× 0 ⊕ 2× 2× 2× 2 ⊕ 0× 0× 0× 0,
0× 0× 0× 0 ⊕ 0× 8× 0× 0 ⊕ 0× 0× 0× 0,
0× 0× 0× 0 ⊕ 0× 0× 2× 2 ⊕ 0× 4× 0× 4,
0× 0× 0× 0 ⊕ 0× 0× 0× 8 ⊕ 0× 0× 0× 0,
0× 0× 0× 0 ⊕ 0× 0× 0× 0 ⊕ 2× 2× 2× 2,
0× 0× 0× 0 ⊕ 0× 0× 0× 0 ⊕ 0× 8× 0× 0,
0× 0× 0× 0 ⊕ 0× 0× 0× 0 ⊕ 0× 0× 2× 2,
0× 0× 0× 0 ⊕ 0× 0× 0× 0 ⊕ 0× 0× 0× 8〉

and

rωP13 = R〈 4× 4× 0× 0 ⊕ 0× 0× 0× 0 ⊕ 0× 0× 0× 0,
0× 8× 0× 0 ⊕ 0× 0× 0× 0 ⊕ 0× 0× 0× 0,
0× 0× 4× 4 ⊕ 0× 0× 0× 0 ⊕ 0× 0× 0× 0,
0× 0× 0× 8 ⊕ 0× 0× 0× 0 ⊕ 0× 0× 0× 0,
0× 0× 0× 0 ⊕ 4× 4× 0× 0 ⊕ 0× 0× 0× 0,
0× 0× 0× 0 ⊕ 0× 8× 0× 0 ⊕ 0× 0× 0× 0,
0× 0× 0× 0 ⊕ 0× 0× 4× 4 ⊕ 0× 0× 0× 0,
0× 0× 0× 0 ⊕ 0× 0× 0× 8 ⊕ 0× 0× 0× 0,
0× 0× 0× 0 ⊕ 0× 0× 0× 0 ⊕ 4× 4× 0× 0,
0× 0× 0× 0 ⊕ 0× 0× 0× 0 ⊕ 0× 8× 0× 0,
0× 0× 0× 0 ⊕ 0× 0× 0× 0 ⊕ 0× 0× 4× 4,
0× 0× 0× 0 ⊕ 0× 0× 0× 0 ⊕ 0× 0× 0× 8〉,
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so that

ωP13/rω
P
13 = k〈 2× 2× 2× 2 ⊕ 0× 0× 0× 0 ⊕ 0× 0× 0× 0,

0× 4× 0× 4 ⊕ 0× 0× 0× 0 ⊕ 0× 0× 0× 0,
0× 0× 2× 2 ⊕ 0× 4× 0× 4 ⊕ 0× 0× 0× 0,
0× 0× 0× 0 ⊕ 2× 2× 2× 2 ⊕ 0× 0× 0× 0,
0× 0× 0× 0 ⊕ 0× 0× 2× 2 ⊕ 0× 4× 0× 4,
0× 0× 0× 0 ⊕ 0× 0× 0× 0 ⊕ 2× 2× 2× 2,
0× 0× 0× 0 ⊕ 0× 0× 0× 0 ⊕ 0× 0× 2× 2〉.

Therefore,

ωP14 = {a2 × b2 × c2 × d2 ⊕ a3 × b3 × c3 × d3 ⊕ a5 × b5 × c5 × d5 ⊕ a7 × b7 × c7 × d7 ∈ rΛ⊕ rΛ⊕ rΛ⊕ rΛ |
2(b2 − d2) + (c3 − d3) ≡8 0, 2(b3 − d3) + (c5 − d5) ≡8 0, 2(b5 − d5) + (c7 − d7) ≡8 0}.

And so on. We obtain, for j > 1,

tωP1j = 2j + 1

rkRω
P
1j/rkRP = j,

respecting the bound (∗∗) of (E.2.12), (j + 1)/j 6 3 for j > 1.

Let X := {x× y | x ≡4 y} ⊆ R1 ×R2, let Y := {z × w | z ≡4 w} ⊆ R3 ×R4. We want to calculate

HomΛ(X,Y/2∞) = HomΛ(X,Y/2)

(cf. E.3.2). Let z × w denote the image of 1× 1 under such a morphism, determining it. z × w qualifies
as such an image iff for any a× b× c× d in the annihilator of 1× 1 ∈ X we have cz × dw ∈ 8Y (E.3.1).
Since this annihilator is generated by 0× 0× 2× 2 and 0× 0× 0× 8 over R, this condition translates into

2z × 2w ∈ 2Y
0z × 8w ∈ 2Y

so that

HomΛ(X,Y/2) -∼ R〈1× 1, 0× 4〉 ⊆ Y/2.

Let 1× 1 -f 1× 1. An element a× b× c× d of Γ acts on X and on Y iff

a ≡4 b
c ≡4 d.

In addition, this element commutes with f iff it satisfies the following ties.

a ≡2 c
b ≡2 d

a− c ≡8 b− d.

Note that X/2 -f
∼ Y/2 is an isomorphism, and so are the induced morphisms on the radical layers.

Example E.3.4
Let R := Z(2), k := F2, let

Λ :=

x× y × z × w ×
(
s t
u v

) ∣∣∣∣∣
x ≡2 y, t ≡2 0, z ≡2 v,
z − w ≡4 t,
y − w ≡4 2u,
x+ y + z + w ≡8 2s+ 2v ≡4 0}


⊆ R1 ×R2 ×R3 ×R4 ×

(
R R
R R

)
5

=: Γ,

the indices denoting merely an ordering. Λ is the endomorphism ring of an indecomposable projective
lattice over Z(2)S5 (S 2.2.4).
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By (E.1.28) we obtain

Λ = R〈 1× 1× 1× 1×
(

1 0
0 1

)
,

0× 2× 0× 2×
(

2 2
0 0

)
,

0× 0× 2× 2×
(

2 0
−1 0

)
,

0× 0× 0× 4×
(

2 0
0 0

)
,

0× 0× 0× 0×
(

2 0
0 2

)
,

0× 0× 0× 0×
(

0 0
0 4

)
,

0× 0× 0× 0×
(

0 4
0 0

)
,

0× 0× 0× 0×
(

0 0
2 0

)
〉

rΛ = R〈 2× 2× 2× 2×
(

0 0
0 0

)
,

0× 2× 0× 2×
(

2 2
0 0

)
,

0× 0× 2× 2×
(

2 0
−1 0

)
,

0× 0× 0× 4×
(

2 0
0 0

)
,

0× 0× 0× 0×
(

2 0
0 2

)
,

0× 0× 0× 0×
(

0 0
0 4

)
,

0× 0× 0× 0×
(

0 4
0 0

)
,

0× 0× 0× 0×
(

0 0
2 0

)
〉

r2Λ = R〈 4× 0× 4× 0×
(

0 0
0 0

)
,

0× 4× 0× 4×
(

0 0
0 0

)
,

0× 0× 4× 4×
(

0 0
0 0

)
,

0× 0× 0× 4×
(

2 0
0 0

)
,

0× 0× 0× 0×
(

2 0
0 2

)
,

0× 0× 0× 0×
(

0 0
0 4

)
,

0× 0× 0× 0×
(

0 4
0 0

)
,

0× 0× 0× 0×
(

0 0
2 0

)
〉

r3Λ = R〈 8× 0× 0× 0×
(

0 0
0 0

)
,

0× 8× 0× 0×
(

0 0
0 0

)
,

0× 0× 8× 0×
(

0 0
0 0

)
,

0× 0× 0× 8×
(

0 0
0 0

)
,

0× 0× 0× 0×
(

4 0
0 0

)
,

0× 0× 0× 0×
(

0 0
0 4

)
,

0× 0× 0× 0×
(

0 4
0 0

)
,

0× 0× 0× 0×
(

0 0
2 0

)
〉

r4Λ = R〈 16× 0× 0× 0×
(

0 0
0 0

)
,

0× 16× 0× 0×
(

0 0
0 0

)
,

0× 0× 16× 0×
(

0 0
0 0

)
,

0× 0× 0× 16×
(

0 0
0 0

)
,

0× 0× 0× 0×
(

4 0
0 0

)
,

0× 0× 0× 0×
(

0 0
0 4

)
,

0× 0× 0× 0×
(

0 8
0 0

)
,

0× 0× 0× 0×
(

0 0
4 0

)
〉

r5Λ = R〈 32× 0× 0× 0×
(

0 0
0 0

)
,

0× 32× 0× 0×
(

0 0
0 0

)
,

0× 0× 32× 0×
(

0 0
0 0

)
,

0× 0× 0× 32×
(

0 0
0 0

)
,

0× 0× 0× 0×
(

8 0
0 0

)
,

0× 0× 0× 0×
(

0 0
0 8

)
,

0× 0× 0× 0×
(

0 8
0 0

)
,

0× 0× 0× 0×
(

0 0
4 0

)
〉

' r3Λ,

whence

Λ/rΛ = k〈 1× 1× 1× 1×
(

1 0
0 1

)
〉

rΛ/r2Λ = k〈 2× 2× 2× 2×
(

0 0
0 0

)
,

0× 2× 0× 2×
(

2 2
0 0

)
,

0× 0× 2× 2×
(

2 0
−1 0

)
〉
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r2Λ/r3Λ = k〈 4× 0× 4× 0×
(

0 0
0 0

)
,

0× 4× 0× 4×
(

0 0
0 0

)
,

0× 0× 4× 4×
(

0 0
0 0

)
,

0× 0× 0× 4×
(

2 0
0 0

)
,

0× 0× 0× 0×
(

2 0
0 2

)
〉

r3Λ/r4Λ = k〈 8× 0× 0× 0×
(

0 0
0 0

)
,

0× 8× 0× 0×
(

0 0
0 0

)
,

0× 0× 8× 0×
(

0 0
0 0

)
,

0× 0× 0× 8×
(

0 0
0 0

)
,

0× 0× 0× 0×
(

0 4
0 0

)
,

0× 0× 0× 0×
(

0 0
2 0

)
〉

r4Λ/r5Λ = k〈 16× 0× 0× 0×
(

0 0
0 0

)
,

0× 16× 0× 0×
(

0 0
0 0

)
,

0× 0× 16× 0×
(

0 0
0 0

)
,

0× 0× 0× 16×
(

0 0
0 0

)
,

0× 0× 0× 0×
(

4 0
0 0

)
,

0× 0× 0× 0×
(

0 0
0 4

)
〉.

Note that

π̃ := 4× 4× 4× 4×
(

2 0
0 2

)
∈ Z(Λ)

is an element that satisfies the requirements of (E.2.5 c) with m = 2, viz.

π̃Λ ⊆ r2Λ ⊆ π̃Γ.

The formula for rkπ̃P = 1 · 2 + 1 · 2 + 1 · 2 + 1 · 2 + 4 · 1 = 12 is in accordance with the observation that
l(riP/ri+1P ) = 6 for i large enough.

Let
X := {

(
s t
u v

)
| s ≡2 v, t ≡2 0} ⊆

(
R R
R R

)
5

Y := {x× y × z × w | x ≡2 y ≡2 z ≡2 w, x+ y + z + w ≡4 0} ⊆ R1 ×R2 ×R3 ×R4

We want to calculate

Hom(X,Y/2∞) = Hom(X,Y/2) ⊆ Y/2

(cf. E.3.2). The annihilator of
(

1 0
0 1

)
∈ X is generated over Λ by 2× 2× 2× 2×

(
0 0
0 0

)
, so that any element

of Y/2 qualifies as an image of
(

1 0
0 1

)
under a Λ-morphism X - Y/2 (E.3.1).

Note that
(

1 0
0 1

)
-f 1× 1× 1× 1 has the property that each element in HomΛ(X,Y/2) can be written as

composition of f with an endomorphism of Y/2. As we take from the R-linear basis of Λ, f is given by

X -f Y/2(
1 0
0 1

)
- 1× 1× 1× 1(

2 0
0 0

)
- 0× 0× 0× 4(

0 2
0 0

)
- 0× 2× 0×−2(

0 0
1 0

)
- 0× 0×−2× 2.

An element x×y×z×w×
(
s t
u v

)
of Γ acts on X iff it

(
s t
u v

)
is contained in X, it acts on Y iff x×y×z×w

is contained in Y . Note that f sends

(
s t
u v

)
-f v · (1× 1× 1× 1)

+ (s− v) · (0× 0× 0× 2)
+ t · (0× 1× 0×−1)
+ u · (0× 0×−2× 2).

Therefore, in addition, this element commutes with f iff it satisfies the following ties.

x− y ≡4 t
x− z ≡4 2u

x+ y + z + w ≡8 2s+ 2v.
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k-linear bases for the radical layers of X̄ = X/2 are given by

X̄/rX̄ = k〈
(

1 0
0 1

)
〉

rX̄/r2X̄ = k〈
(

0 2
0 0

)
,
(

0 0
1 0

)
〉

r2X̄/r3X̄ = k〈
(

2 0
0 0

)
〉,

k-linear bases for the radical layers of Ȳ = Y/2 are given by

Ȳ /rȲ = k〈1× 1× 1× 1〉
rȲ /r2Ȳ = k〈2× 0× 0×−2, 0× 2× 0×−2, 0× 0×−2× 2〉
r2Ȳ /r3Ȳ = k〈0× 0× 0× 4〉.

Thus, by the description of X -f Ȳ on an R-linear basis given above, we obtain the following intuitive
picture. X̄

S

S S

S

-
f

Ȳ

S

S S S

S

Example E.3.5
Let R := Z(2), k := F2, let

Λ :=

a× b× c× d× e× f
∣∣∣∣∣ c ≡2 e,
b+ c− 2f ≡16 a+ d− 2e ≡8 0,

e− f ≡4 a− b ≡2 0

 ⊆ R1 ×R2 ×R3 ×R4 ×R5 ×R6 =: Γ.

the indices denoting merely an ordering. Λ is the endomorphism ring of an indecomposable projective
lattice over Z(2)S6 (S 2.3.5).

By (E.1.28) we obtain
Λ = R〈 1× 1× 1× 1× 1× 1,

0× 2× 2× 0× 0× 2,
0× 0× 4× 4× 2× 2,
0× 0× 0× 8× 0× 4,
0× 0× 0× 0× 4× 4,
0× 0× 0× 0× 0× 8〉

rΛ = R〈 2× 0× 0× 2× 0× 2,
0× 2× 2× 0× 0× 2,
0× 0× 4× 4× 2× 2,
0× 0× 0× 8× 0× 4,
0× 0× 0× 0× 4× 4,
0× 0× 0× 0× 0× 8〉

r2Λ = R〈 4× 0× 0× 4× 0× 4,
0× 4× 4× 0× 0× 4,
0× 0× 8× 8× 0× 0,
0× 0× 0× 8× 0× 4,
0× 0× 0× 0× 4× 4,
0× 0× 0× 0× 0× 8〉

r3Λ = R〈 8× 0× 0× 8× 0× 0,
0× 8× 8× 0× 0× 0,
0× 0× 16× 0× 0× 0,
0× 0× 0× 16× 0× 0,
0× 0× 0× 0× 8× 0,
0× 0× 0× 0× 0× 8〉

r4Λ = 2r3Λ,

whence
Λ/rΛ = k〈 1× 1× 1× 1× 1× 1〉

rΛ/r2Λ = k〈 2× 0× 0× 2× 0× 2,
0× 2× 2× 0× 0× 2,
0× 0× 4× 4× 2× 2〉
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r2Λ/r3Λ = k〈 4× 0× 0× 4× 0× 4,
0× 4× 4× 0× 0× 4,
0× 0× 8× 8× 0× 0,
0× 0× 0× 8× 0× 4,
0× 0× 0× 0× 4× 4〉

r3Λ/r4Λ = k〈 8× 0× 0× 8× 0× 0,
0× 8× 8× 0× 0× 0,
0× 0× 16× 0× 0× 0,
0× 0× 0× 16× 0× 0,
0× 0× 0× 0× 8× 0,
0× 0× 0× 0× 0× 8〉,

in accordance with (E.2.3) and respecting the bound of (E.2.9).

Let
{e× f | e ≡2 f} =: X ⊆ R5 ×R6

{a× b× c× d | a+ d ≡8 b+ c ≡4 0, c ≡2 d} =: Y ⊆ R1 ×R2 ×R3 ×R4

{a× b | a ≡2 b} =: Z ⊆ R1 ×R2

{c× d | c ≡2 d} =: W ⊆ R3 ×R4

We want to calculate
HomΛ(W,Z/2∞) = HomΛ(W,Z/4)

(cf. E.3.2). The annihilator of 1× 1 ∈W is generated over Λ by 4× 4× 0× 0× 2× 2, so that any element
a × b of Z/4 qualifies as an image of 1 × 1 under a Λ-morphism W - Z/4 (E.3.1). Thus, any such
morphism factors over

W -h Z/4
1× 1 - 1× 1
0× 2 - 2× 0

An element a × b × c × d × e × f of Γ acts on Z iff a × b is contained in Z, it acts on W iff c × d is
contained in W .

In addition, this element commutes with h iff it satisfies the following ties.

a− d ≡8 b− c ≡4 0.

Note that there is a pullback diagram

Y - W c×d

? ?

−h

?

Z - Z/4 −d×−c

k-linear bases for the radical layers of W̄ := W/4 are given by

W̄/rW̄ = k〈1× 1〉
rW̄/r2W̄ = k〈2× 0, 0× 2〉
r2W̄/r3W̄ = k〈4× 0〉,

similarly Z̄ := Z/4. Moreover, Z̄ -h
∼ W̄ .

We want to calculate
Hom(X,Y/2∞) = Hom(X,Y/4)

(cf. E.3.2). The annihilator of 1 × 1 ∈ X is generated over Λ by 2 × −2 × 2 × −2 × 0 × 0, so that an
element a× b× c× d of Y/4 qualifies as an image of 1× 1 under a Λ-morphism X - Y/4 iff

a×−b× c×−d ∈ 2(Y/4).

(E.3.1). The condition on a× b× c× d is equivalent to the requirement that

a× b× c× d ∈ 〈2× 2× 2× 2〉Λ ⊆ Y/4,
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so that any such morphism factors over

X -g Y/4
1× 1 - 2× 2× 2× 2
0× 2 - 0× 4× 4× 0.

An element a× b× c× d× e× f of Γ acts on Y iff a× b×−c×−d ∈ Y , it acts on X iff e× f ∈ X.

In addition, this element commutes with g iff it satisfies the following ties.

b+ c− 2f ≡16 a+ d− 2e ≡8 0,
e− f ≡4 d− c.

k-linear bases for the radical layers of X̄ := X/4 are given by

X̄/rX̄ = k〈1× 1〉
rX̄/r2X̄ = k〈2× 0, 0× 2〉
r2X̄/r3X̄ = k〈0× 4〉,

k-linear bases for the radical layers of Ȳ := Y/4 are given by

Ȳ /rȲ = k〈1×−1× 1×−1〉
rȲ /r2Ȳ = k〈2× 2× 2× 2, 0× 2×−2× 0, 0× 0× 4×−4〉
r2Ȳ /r3Ȳ = k〈4× 0× 0× 4, 0× 4× 4× 0, 0× 0× 8× 0〉
r2Ȳ /r3Ȳ = k〈0× 8× 8× 0〉.

Thus, by the description of X -g Ȳ on an R-linear basis given above, we obtain the following intuitive
picture.

X̄

S

S S

S

-
g

Ȳ

S

S S S

S S S

S

Example E.3.6
Let R := Z(2), k := F2, let

Λ :=

{
a× a′ × b× b′ × c× c′ × d× d′ ×

(
e f
g h

)
×
(
e′ f ′

g′ h′

) ∣∣∣∣∣
d′ − c′ ≡4 b′ − a′ ≡2 0,

c′ ≡2 e′,
f ′ ≡4 f ′,

e− h ≡4 e′ − h′ ≡2 0,
c+ d+ f ≡8 c′ + d′ + f ′,

e+ e′ ≡4 f ′ + b′ + a′ ≡2 0,
2f ′ ≡4 c′ − b′,
d ≡4 c′ − f ′,

b− 3d− f + 2g ≡8 b′ − 3d′ − f ′ + 2g′

−3a+ b− c− d+ 2e− 2f − 2g + 2h+ 2g′ ≡16 −3a′ + b′ − c′ − d′ + 2e′ − 2f ′ − 2g′ + 2h′ + 2g ≡8 0


⊆ R1 ×R2 ×R3 ×R4 ×R5 ×R6 ×R7 ×R8 ×

(
R R
R R

)
9
×
(
R R
R R

)
10

=: Γ.

the indices denoting merely an ordering. Λ is the endomorphism ring of an indecomposable projective
lattice over Z(2)S6 (S 2.3.5). I am not quite content with this system of ties, nevertheless, it is possible
to handle it.

By (E.1.28), we obtain

Λ = R〈 1× 1× 1× 1× 1× 1× 1× 1×
(

1 0
0 1

)
×
(

1 0
0 1

)
,

0× 2× 2× 0× 0× 2× 2× 0×
(

2 0
0 2

)
×
(

0 0
0 0

)
,

0× 0× 2× 2× 0× 0× 2× 2×
(

0 2
0 2

)
×
(

0 2
0 2

)
,

0× 0× 0× 4× 0× 0× 0× 4×
(

0 0
0 0

)
×
(

0 4
0 4

)
,

0× 0× 0× 0× 2× 2× 2× 2×
(

0 0
−1 2

)
×
(

0 0
−1 −2

)
,
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0× 0× 0× 0× 0× 4× 4× 0×

(
0 0
−2 4

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 4× 4×
(

0 0
0 2

)
×
(

0 0
0 2

)
,

0× 0× 0× 0× 0× 0× 0× 8×
(

0 0
0 0

)
×
(

0 0
0 4

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

2 0
0 2

)
×
(

2 0
0 2

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 4
0 0

)
×
(

0 4
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
2 0

)
×
(

0 0
2 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 4

)
×
(

0 0
0 4

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

4 0
0 4

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 8
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
4 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 8

)
〉

rΛ = R〈 2× 0× 0× 2× 2× 0× 0× 2×
(

0 0
0 0

)
×
(

2 0
0 2

)
,

0× 2× 2× 0× 0× 2× 2× 0×
(

2 0
0 2

)
×
(

0 0
0 0

)
,

0× 0× 2× 2× 0× 0× 2× 2×
(

0 2
0 2

)
×
(

0 2
0 2

)
,

0× 0× 0× 4× 0× 0× 0× 4×
(

0 0
0 0

)
×
(

0 4
0 4

)
,

0× 0× 0× 0× 2× 2× 2× 2×
(

0 0
−1 2

)
×
(

0 0
−1 −2

)
,

0× 0× 0× 0× 0× 4× 4× 0×
(

0 0
−2 4

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 4× 4×
(

0 0
0 2

)
×
(

0 0
0 2

)
,

0× 0× 0× 0× 0× 0× 0× 8×
(

0 0
0 0

)
×
(

0 0
0 4

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

2 0
0 2

)
×
(

2 0
0 2

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 4
0 0

)
×
(

0 4
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
2 0

)
×
(

0 0
2 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 4

)
×
(

0 0
0 4

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

4 0
0 4

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 8
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
4 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 8

)
〉

r2Λ = R〈 4× 0× 0× 4× 4× 0× 0× 4×
(

0 0
0 0

)
×
(

4 0
0 4

)
,

0× 4× 4× 0× 0× 4× 4× 0×
(

4 0
0 4

)
×
(

0 0
0 0

)
,

0× 0× 4× 0× 0× 0× 4× 0×
(

0 4
0 4

)
×
(

0 0
0 0

)
,

0× 0× 0× 4× 0× 0× 0× 4×
(

0 0
0 0

)
×
(

0 4
0 4

)
,

0× 0× 0× 0× 4× 0× 0× 4×
(

0 0
0 0

)
×
(

0 0
−2 −4

)
,

0× 0× 0× 0× 0× 4× 4× 0×
(

0 0
−2 4

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 4× 4×
(

0 0
0 2

)
×
(

0 0
0 2

)
,

0× 0× 0× 0× 0× 0× 0× 8×
(

0 0
0 0

)
×
(

0 0
0 4

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

2 0
0 2

)
×
(

2 0
0 2

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 4
0 0

)
×
(

0 4
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
2 0

)
×
(

0 0
2 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 4

)
×
(

0 0
0 4

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

4 0
0 4

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 8
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
4 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 8

)
〉

r3Λ = R〈 8× 0× 0× 8× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 8× 8× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 8× 0× 0× 0× 8× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 8× 0× 0× 0× 8×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 8× 0× 0× 8×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 8× 8× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 8× 0×
(

0 0
0 4

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 8×
(

0 0
0 0

)
×
(

0 0
0 4

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

4 0
0 0

)
×
(

4 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 4
0 0

)
×
(

0 4
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
2 0

)
×
(

0 0
2 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 4

)
×
(

0 0
0 4

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

4 0
0 4

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 8
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
4 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 8

)
〉
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r4Λ = R〈 16× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 16× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 16× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 16× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 16× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 16× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 16× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 16×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

4 0
0 0

)
×
(

4 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 8
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
4 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 4

)
×
(

0 0
0 4

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

8 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 8
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
4 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 8

)
〉

r5Λ = R〈 32× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 32× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 32× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 32× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 32× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 32× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 32× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 32×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

8 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 8
0 0

)
×
(

0 8
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
4 0

)
×
(

0 0
4 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 8

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

8 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 16
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
8 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 8

)
〉

r6Λ = R〈 64× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 64× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 64× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 64× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 64× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 64× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 64× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 64×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

8 0
0 0

)
×
(

8 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 16
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
8 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 8

)
×
(

0 0
0 8

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

16 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 16
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
8 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 16

)
〉

' r4Λ,

whence

Λ/rΛ = k〈 1× 1× 1× 1× 1× 1× 1× 1×
(

1 0
0 1

)
×
(

1 0
0 1

)
〉,

rΛ/r2Λ = k〈 2× 0× 0× 2× 2× 0× 0× 2×
(

0 0
0 0

)
×
(

2 0
0 2

)
,

0× 2× 2× 0× 0× 2× 2× 0×
(

2 0
0 2

)
×
(

0 0
0 0

)
,

0× 0× 2× 2× 0× 0× 2× 2×
(

0 2
0 2

)
×
(

0 2
0 2

)
,

0× 0× 0× 0× 2× 2× 2× 2×
(

0 0
−1 2

)
×
(

0 0
−1 −2

)
〉
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r2Λ/r3Λ = k〈 4× 0× 0× 4× 4× 0× 0× 4×
(

0 0
0 0

)
×
(

4 0
0 4

)
,

0× 4× 4× 0× 0× 4× 4× 0×
(

4 0
0 4

)
×
(

0 0
0 0

)
,

0× 0× 4× 0× 0× 0× 4× 0×
(

0 4
0 4

)
×
(

0 0
0 0

)
,

0× 0× 0× 4× 0× 0× 0× 4×
(

0 0
0 0

)
×
(

0 4
0 4

)
,

0× 0× 0× 0× 4× 0× 0× 4×
(

0 0
0 0

)
×
(

0 0
−2 −4

)
,

0× 0× 0× 0× 0× 4× 4× 0×
(

0 0
−2 4

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 4× 4×
(

0 0
0 2

)
×
(

0 0
0 2

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

2 0
0 2

)
×
(

2 0
0 2

)
〉

r3Λ/r4Λ = k〈 8× 0× 0× 8× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 8× 8× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 8× 0× 0× 0× 8× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 8× 0× 0× 0× 8×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 8× 0× 0× 8×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 8× 8× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 8× 0×
(

0 0
0 4

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 8×
(

0 0
0 0

)
×
(

0 0
0 4

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 4
0 0

)
×
(

0 4
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
2 0

)
×
(

0 0
2 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

4 0
0 4

)
〉

r4Λ/r5Λ = k〈 16× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 16× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 16× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 16× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 16× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 16× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 16× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 16×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

4 0
0 0

)
×
(

4 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 4

)
×
(

0 0
0 4

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 8
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
4 0

)
〉

r5Λ/r6Λ = k〈 32× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 32× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 32× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 32× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 32× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 32× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 32× 0×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 32×
(

0 0
0 0

)
×
(

0 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 8
0 0

)
×
(

0 8
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
4 0

)
×
(

0 0
4 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

8 0
0 0

)
,

0× 0× 0× 0× 0× 0× 0× 0×
(

0 0
0 0

)
×
(

0 0
0 8

)
〉,

respecting the bound of (E.2.9).

Note that

π̃ := 4× 4× 4× 4× 4× 4× 4× 4×
(

2 0
0 2

)
×
(

2 0
0 2

)
∈ Z(Λ)

is an element satisfying the requirements of (E.2.5 c) with m = 2, viz.

π̃Λ ⊆ r2Λ ⊆ π̃Γ.

The formula for rkπ̃P = 8·(1·2)+2·(4·1) = 24 is in accordance with the observation that l(riP/ri+1P ) = 12
for i large enough.

We drop the consideration of morphisms.
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Example E.3.7
Let R := Z(3), k := F3, let

Λ :=

{
a× b× c× d

∣∣∣∣∣ a− b ≡9 c− d ≡3 0,
b ≡3 c,

}
⊆ R1 ×R2 ×R3 ×R4 =: Γ.

the indices denoting merely an ordering. Λ is isomorphic to four of the endomorphism rings of indecom-
posable projective lattices over Z(3)S6 (S 2.3.3).

By (E.1.28) we obtain
Λ = R〈 1× 1× 1× 1,

0× 3× 0× 3,
0× 0× 3× 3,
0× 0× 0× 9 〉

rΛ = R〈 3× 0× 3× 0,
0× 3× 0× 3,
0× 0× 3× 3,
0× 0× 0× 9 〉

r2Λ = R〈 9× 0× 0× 0,
0× 9× 0× 0,
0× 0× 9× 0,
0× 0× 0× 9 〉

r3Λ = R〈 27× 0× 0× 0,
0× 27× 0× 0,
0× 0× 27× 0,
0× 0× 0× 27 〉

= 3r2Λ,

whence
Λ/rΛ = k〈 1× 1× 1× 1 〉

rΛ/r2Λ = k〈 3× 0× 3× 0, 0× 3× 0× 3,
0× 0× 3× 3 〉

r2Λ/r3Λ = k〈 9× 0× 0× 0, 0× 9× 0× 0,
0× 0× 9× 0, 0× 0× 0× 9 〉,

in accordance with (E.2.3) and respecting the bound of (E.2.9).

Example E.3.8
Let R := Z(3), k := F3, let

Λ :=

{
a× b× c

∣∣∣∣∣ b+ c ≡9 2a,
a ≡3 b

}
⊆ R1 ×R2 ×R3 =: Γ.

the indices denoting merely an ordering. Λ is the endomorphism ring of an indecomposable projective
lattice over Z(3)S6 (S 2.3.3).

By (E.1.28) we obtain
Λ = R〈 1× 1× 1, 0× 3×−3, 0× 0× 9 〉
rΛ = R〈 3× 3× 3, 0× 3×−3, 0× 0× 9 〉
r2Λ = R〈 9× 0× 0, 0× 9× 0, 0× 0× 9 〉
r3Λ = R〈 27× 0× 0, 0× 27× 0, 0× 0× 27 〉

= 3r2Λ,

whence
Λ/rΛ = k〈 1× 1× 1 〉

rΛ/r2Λ = k〈 3× 3× 3, 0× 3×−3 〉
r2Λ/r3Λ = k〈 9× 0× 0, 0× 9× 0, 0× 0× 9 〉,

in accordance with (E.2.3) and respecting the bound of (E.2.9).



Appendix F

ZS7, quasiblocks

We are concerned with the integral quasiblocks Qλ of S7, λ running over the partitions of
7. For lack of an index formula for quasiblocks (cf. S 1.1.3) we have to ask the reader who
wants to check the results, to establish his own algorithm that allows him to conclude by
integral linear algebra that the image of the respective ring morphism is surjective. Most
of the examples we give are well known [P 80/1, (III, §7)].

We remark that the quasiblocks Qλ and Qλ
′

are isomorphic, since we may conjugate by the ‘Gram
matrix’ Sλ,− -
�� Sλ,∗,− ' Sλ

′
(6.2.5) to pass from Qλ

′
to Qλ, and backwards with roles of λ′ and λ

interchanged.

We will not consider the ties at 7, which are known by (4.2.8).

F.1 The quasiblock Q(2,1,1,1,1,1)

Setup

Let λ := (2, 1, 1, 1, 1, 1). A ring morphism ZS6
- Z6×6 having Qλ as its image is given by

(12) -

−1 0 0 0 0 −1
0 −1 0 0 0 1
0 0 −1 0 0 −1
0 0 0 −1 0 1
0 0 0 0 −1 −1
0 0 0 0 0 1



(1234567) -

 0 0 0 0 0 1
−1 0 0 0 0 −1

0 −1 0 0 0 1
0 0 −1 0 0 −1
0 0 0 −1 0 1
0 0 0 0 −1 −1

 ,
as we check via the modified Coxeter relations (S 1.2) and via a comparison of characters.
We shall make use of the possibility to give separate morphisms for the naive localizations at the prime
divisors of n!, yielding a global surjective morphism

ZS7
- Qλ[2] ∩Q

λ
[3] ∩Q

λ
[5] ∩Q

λ
[7] ⊆ Znλ×nλ ,

in a constructive, but not explicitely given manner (cf. S 2.2.1).

Moreover, we employ the language of Morita multiplicities (cf. S 2.2.1).

The quasiblock Q
(2,1,1,1,1,1)
[2]

At the prime 2, this quasiblock is the full matrix ring,

Q
(2,1,1,1,1,1)
[2] = Z6×6.

257
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The quasiblock Q
(2,1,1,1,1,1)
[3]

At the prime 3, this quasiblock is the full matrix ring,

Q
(2,1,1,1,1,1)
[3] = Z6×6.

The quasiblock Q
(2,1,1,1,1,1)
[5]

At the prime 5, this quasiblock is the full matrix ring,

Q
(2,1,1,1,1,1)
[5] = Z6×6.

F.2 The quasiblock Q(2,2,1,1,1)

Setup

A ring morphism ZS7
- Z14×14 having Q(2,2,1,1,1) as its image is given by

(12) -



−1 0 0 0 1 0 0 0 −1 0 0 0 0 0
0 −1 0 0 −1 0 0 0 0 0 0 −1 0 0
0 0 −1 0 1 0 0 0 0 0 0 0 0 −1
0 0 0 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 −1 0 0 1 0 0
0 0 0 0 0 0 −1 0 1 0 0 0 0 1
0 0 0 0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 1



(1234567) -



−1 0 0 0 1 0 0 0 −1 0 0 0 0 0
0 −1 0 0 −1 0 0 0 0 0 0 −1 0 0
0 0 −1 0 1 0 0 0 0 0 0 0 0 −1
0 0 0 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 −1 0 0 1 0 0
0 0 0 0 0 0 −1 0 1 0 0 0 0 1
0 0 0 0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 1


,

as we check via the modified Coxeter relations (S 1.2) and via a comparison of characters.

The quasiblock Q
(2,2,1,1,1)
[2]

At the prime 2, this quasiblock is the full matrix ring,

Q
(2,2,1,1,1)
[2] = Z14×14.



The quasiblock Q(2,2,1,1,1) 259

The quasiblock Q
(2,2,1,1,1)
[3]

We conjugate the morphism given in the setup from the left by



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
−1 −2 −1 −2 −1 −1 −2 −1 −2 −1 −2 −1 −1 1


to obtain the morphism

(12) -



−1 0 0 0 1 0 0 0 −1 0 0 0 0 0
0 −1 0 0 −1 0 0 0 0 0 0 −1 0 0
−1 −2 −2 −2 0 −1 −2 −1 −2 −1 −2 −1 −1 −1

0 0 0 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 −1 0 0 1 0 0
1 2 1 2 1 1 1 1 3 1 2 1 1 1
0 0 0 0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
−1 −2 −1 −2 −1 −1 −2 −1 −2 −2 −2 0 −1 −1

0 0 0 0 0 0 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
−1 −2 −1 −2 −1 −1 −2 −1 −2 −1 −2 −1 −2 −1

3 6 3 6 3 3 6 3 3 3 6 3 3 2



(1234567) -



−1 −2 −1 −2 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1
1 2 1 2 1 1 2 1 1 1 2 1 2 1
−1 −2 −1 −2 −1 −1 −2 −1 −2 −1 −2 −2 −2 −1

0 0 0 0 0 0 0 0 0 0 0 0 1 0
−1 −2 −1 −2 −1 −1 −2 −1 −2 −1 −2 −1 −2 −1

0 −2 −1 −2 −2 −1 −2 −1 −1 −1 −2 −1 −2 −1
1 3 1 2 2 1 2 1 2 1 2 2 2 1
0 0 1 0 −1 0 0 0 0 0 0 0 −1 0
1 2 1 3 2 1 2 1 2 1 2 1 2 1
−1 −2 −1 −2 −1 0 −2 −1 −1 −1 −2 −2 −2 −1

0 0 0 0 0 0 1 0 −1 0 0 0 1 0
−1 −2 −1 −2 −1 −1 −2 0 −1 −1 −2 −1 −2 −1

0 0 0 0 0 0 0 0 0 1 0 −1 −1 0
0 0 0 0 0 0 0 0 3 0 3 3 0 1


.

The image of this morphism, naively localized at 3, i.e. the quasiblock Q
(2,2,1,1,1)
[3] , takes the form

3

13 1

The quasiblock Q
(2,2,1,1,1)
[5]

We conjugate the morphism given in the setup from the left by



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
−1 0 0 0 0 −1 1 −1 1 0 0 0 0 0

1 −1 1 0 0 1 −1 0 0 1 0 0 0 0
1 −1 1 −1 1 0 0 0 0 0 0 0 0 0
−1 0 −1 0 0 0 1 0 0 0 −1 1 0 0

0 0 0 −1 0 0 0 1 0 0 −1 0 1 0
1 −1 0 −1 0 1 0 1 0 0 −1 0 0 1
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to obtain the morphism

(12) -



−3 1 −1 1 0 −1 1 −1 −1 0 1 0 0 0
0 −2 0 −1 −1 0 1 0 0 0 −1 −1 0 0
0 0 −2 0 −1 1 0 1 0 0 1 0 0 −1
1 −1 1 −2 0 0 0 0 0 0 −1 0 0 0
−1 0 −1 0 −2 0 1 0 0 0 0 −1 0 0

0 0 1 0 1 −2 0 −1 −1 0 0 1 0 0
0 1 0 1 1 0 −2 0 1 0 0 0 0 1
−1 0 0 0 0 −1 1 −2 −1 0 0 0 0 0

5 0 0 0 0 5 −5 5 5 0 −1 −1 0 1
0 0 0 0 0 0 0 0 −3 −1 3 3 0 −3
−5 5 −5 5 0 0 0 0 −1 0 5 1 0 −1

5 0 5 0 5 0 −5 0 2 0 −2 2 0 2
0 0 0 0 0 0 0 0 −1 0 1 1 −1 −1
−5 5 0 5 5 −5 0 −5 −3 0 3 3 0 1



(1234567) -



2 −2 1 −3 −2 1 0 2 0 0 −1 0 −1 −1
−2 1 0 2 2 −2 1 −3 −1 0 0 0 1 1

0 −1 −1 −2 −3 1 1 2 0 0 0 −1 −1 −1
0 0 0 1 1 0 0 −1 0 0 0 0 1 0
−1 0 0 1 1 −1 2 −2 −1 0 0 0 1 0

4 −2 1 −3 −2 2 −1 3 1 0 −1 0 −1 −1
−1 3 0 3 3 −1 −1 −2 0 0 1 1 1 1

1 −1 2 −2 −1 0 0 1 0 0 −1 0 −1 0
−10 10 −5 15 10 −5 0 −10 −1 0 5 1 5 4

10 −10 0 −15 −15 10 0 15 3 0 −3 −3 −6 −6
5 −5 0 −10 −10 5 0 10 1 0 −1 −1 −5 −4
0 5 0 5 5 0 −5 0 2 0 2 2 1 2
0 0 0 −5 −5 0 0 5 1 1 −1 −1 −4 0

10 −5 5 −10 −5 5 −5 10 3 0 −3 1 −5 −2


.

The image of this morphism, naively localized at 5, i.e. the quasiblock Q
(2,2,1,1,1)
[5] , takes the form

5

8 6

F.3 The quasiblock Q(2,2,2,1)

Setup

A ring morphism ZS7
- Z14×14 having Q(2,2,2,1) as its image is given by

(12) -



−1 0 0 −1 0 0 1 0 0 0 0 −1 0 0
0 −1 0 1 0 0 0 0 1 0 0 0 0 −1
0 0 −1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 −1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 1



(1234567) -



0 0 0 1 0 0 0 −1 −1 1 −1 −2 −1 0
0 0 0 0 0 0 1 1 1 −1 1 2 2 1
0 0 0 0 0 0 0 −1 0 1 0 −1 −1 0
0 0 0 0 0 0 0 1 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 −1 −1 −1 0
0 0 0 0 0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 0 0 1 0 −1 −1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1
−1 0 0 −1 0 0 1 1 1 −1 1 1 1 0

0 −1 0 1 0 0 0 −1 0 1 0 −1 0 0
0 0 −1 −1 0 0 0 1 1 0 1 1 0 0
0 0 0 0 −1 0 1 1 0 −1 0 1 1 0
0 0 0 0 0 −1 −1 −1 −1 0 −1 −1 −1 −1


,

as we check via the modified Coxeter relations (S 1.2) and via a comparison of characters.
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The quasiblock Q
(2,2,2,1)
[2]

We conjugate the morphism given in the setup from the left by

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 −1 −1 −1 1 0 0 0 0 0
−1 −1 0 0 −1 0 0 0 0 1 0 0 0 0
−1 −1 −1 1 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 −1 −1 0 0 0 −1 1 0 0
0 0 −1 0 0 −1 0 −1 0 0 −1 0 1 0
−1 0 −1 0 −1 0 −1 −1 0 0 −1 0 0 1


to obtain the morphism

(12) -



−2 −2 −1 −1 0 −1 0 0 0 0 −1 −1 0 0
0 0 0 −1 0 1 0 0 1 0 1 0 0 −1
−1 −1 −2 0 0 0 0 0 0 0 −1 0 0 0

0 −1 0 −2 0 −1 −1 0 0 0 0 −1 0 0
0 0 0 0 −2 −1 0 −1 −1 0 0 0 0 0
0 0 0 0 0 −1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 −1 −1 −1 −2 −1 0 0 0 0 0
0 0 0 0 4 4 2 4 3 0 0 0 0 0
0 2 0 2 0 2 0 0 0 −1 0 2 0 0
4 4 4 2 0 0 0 0 −1 0 2 1 0 1
0 2 0 4 0 2 2 0 −1 0 −1 2 0 1
0 2 0 0 0 2 2 0 1 0 1 1 −1 −1
4 4 4 4 4 4 2 4 2 0 2 2 0 1



(1234567) -



2 0 0 −4 0 −4 −3 −3 −1 1 1 −2 −1 0
0 1 3 6 1 5 5 5 1 −1 0 2 2 1
1 0 −1 −2 1 −2 −1 −2 0 1 0 −1 −1 0
2 0 1 −1 1 −1 −1 −1 0 1 1 −1 0 0
1 0 −1 −3 1 −2 −1 −1 0 1 0 −1 −1 0
−1 0 0 1 −1 1 1 0 0 −1 0 1 0 0

0 −1 0 −2 0 −1 −1 0 0 0 0 −1 0 0
1 0 −1 −2 1 −2 −1 −1 0 1 0 −1 −1 0
0 2 4 10 0 6 4 4 0 −1 0 3 3 1
−6 −2 −2 4 −2 4 2 2 1 −2 −2 2 1 −1
−2 0 0 4 0 4 2 4 1 −1 −1 2 1 0
−2 0 −6 −2 0 −2 −2 −2 0 1 −2 0 −2 −1
−4 0 2 6 −4 6 4 6 0 −3 −1 3 3 0
−8 0 0 10 −6 8 4 4 0 −5 −2 6 3 −1


.

The image of this morphism, naively localized at 2, i.e. the quasiblock Q
(2,2,2,1)
[2] , takes the form

2

8 6

The quasiblock Q
(2,2,2,1)
[3]

We conjugate the morphism given in the setup from the left by

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 1


to obtain the morphism

(12) -



−1 0 0 −1 0 0 1 1 1 0 1 0 0 0
0 −1 0 1 0 0 0 0 1 0 1 1 1 0
0 0 −1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 −1 −3 −3 −3 0 −3 −3 −3 −3
0 0 0 0 0 0 1 2 3 0 3 3 3 3
0 0 0 0 0 0 0 −1 −3 0 −3 −3 −3 −3
0 0 0 0 0 0 0 0 1 0 2 3 3 3
0 0 0 0 0 0 0 0 0 −1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 −1 −3 −3 −3
0 0 0 0 0 0 0 0 0 0 0 1 2 3
0 0 0 0 0 0 0 0 0 0 0 0 −1 −3
0 0 0 0 0 0 0 0 0 0 0 0 0 1
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0 0 0 1 0 0 0 −1 −2 1 −3 −5 −6 −6
0 0 0 0 0 0 1 2 3 −1 4 6 8 9
0 0 0 0 0 0 0 −1 −1 1 −1 −2 −3 −3
0 0 0 0 0 0 0 1 2 0 3 4 5 6
0 0 0 0 0 0 0 0 0 1 −1 −2 −3 −3
0 0 0 0 0 0 0 0 0 −1 1 3 3 3
0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0
0 0 0 0 0 0 0 0 0 1 −1 −3 −5 −6
0 1 0 −1 0 0 0 1 1 −1 2 4 5 6
−1 0 0 −1 0 0 1 2 3 −1 4 5 6 6

0 −1 1 2 0 0 0 −2 −3 1 −4 −6 −6 −6
0 0 −1 −1 1 0 −1 −1 0 1 1 1 0 0
0 0 0 0 −1 1 3 5 6 −1 7 9 11 12
0 0 0 0 0 −1 −2 −3 −4 0 −5 −6 −7 −8


.

The image of this morphism, naively localized at 3, i.e. the quasiblock Q
(2,2,2,1)
[3] , takes the form

3

13 1

The quasiblock Q
(2,2,2,1)
[5]

We conjugate the morphism given in the setup from the left by

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 −1 1 −1 1 −1 1 1 −1 −1 1 −1 −1 1


to obtain the morphism

(12) -



−1 0 0 −1 0 0 1 0 0 0 0 −1 0 0
1 −2 1 0 1 −1 1 1 0 −1 1 −1 −1 −1
0 0 −1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 −1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 −1 1 −1 1 −1 1 1 −1 −2 1 0 −1 −1
0 0 0 0 0 0 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 −1 1 −1 1 −1 1 1 −1 −1 1 −1 −2 −1
−5 5 −5 0 −5 5 0 −5 0 5 −5 0 5 4



(1234567) -



0 0 0 1 0 0 0 −1 −1 1 −1 −2 −1 0
−1 1 −1 1 −1 1 0 0 2 0 0 3 3 1

0 0 0 0 0 0 0 −1 0 1 0 −1 −1 0
−1 1 −1 1 −1 1 −1 0 2 1 0 2 2 1

0 0 0 0 0 0 0 0 0 1 −1 −1 −1 0
0 0 0 0 0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 0 0 1 0 −1 −1 0
−1 1 −1 1 −1 1 −1 −1 1 1 0 2 2 1
−1 0 0 −1 0 0 1 1 1 −1 1 1 1 0

0 −1 0 1 0 0 0 −1 0 1 0 −1 0 0
0 0 −1 −1 0 0 0 1 1 0 1 1 0 0
0 0 0 0 −1 0 1 1 0 −1 0 1 1 0
5 −5 5 0 5 −5 0 −5 −10 5 −5 −20 −15 −4


.

The image of this morphism, naively localized at 5, i.e. the quasiblock Q
(2,2,2,1)
[5] , takes the form

5

13 1
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F.4 The quasiblock Q(3,1,1,1,1)

Setup

A ring morphism ZS7
- Z15×15 having Q(3,1,1,1,1) as its image is given by

(12) -



−1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 −1 0 0 −1 0 0 0 0 0 0 1 0 0 0
0 0 −1 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 −1 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



(1234567) -



0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 −1 0 0 0 −1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 −1 0 0 0
0 0 1 0 −1 0 0 0 0 0 0 0 0 −1 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 −1 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 −1 0 −1 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1


,

as we check via the modified Coxeter relations (S 1.2) and via a comparison of characters.

The quasiblock Q
(3,1,1,1,1)
[2]

We conjugate the morphism given in the setup from the left by

1 −1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −15
0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1
1 −1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −14


to obtain the morphism

(12) -



29 0 0 0 −2 −2 −2 −2 −6 −6 −6 −4 −4 0 −30
2 −1 0 0 −2 −2 −2 −2 −2 −2 −2 −1 −1 −2 −2
−2 0 −1 0 2 2 2 2 2 2 2 2 2 3 2

2 0 0 −1 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −2
−4 0 0 0 1 2 2 2 3 3 3 4 4 4 4

2 0 0 0 0 −1 0 0 −2 −2 −2 −3 −3 −2 −2
−2 0 0 0 0 0 −1 0 2 2 2 2 2 1 2

4 0 0 0 0 0 0 −1 −3 −3 −3 −3 −3 −3 −4
0 0 0 0 0 0 0 0 1 2 2 1 1 0 0
−2 0 0 0 0 0 0 0 0 −1 0 2 2 3 2

2 0 0 0 0 0 0 0 0 0 −1 −3 −3 −3 −2
−4 0 0 0 0 0 0 0 0 0 0 1 2 3 4

4 0 0 0 0 0 0 0 0 0 0 0 −1 −3 −4
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

28 0 0 0 −2 −2 −2 −2 −6 −6 −6 −4 −4 0 −29



(1234567) -



29 0 2 0 −2 −2 −2 −2 0 −2 0 2 −12 −28 −28
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

12 −1 −2 −1 −1 0 −1 0 0 1 0 1 0 1 −13
−12 0 1 0 −1 −2 −1 −2 −2 −3 −2 −2 −1 −2 13
−2 1 0 0 2 2 2 2 2 2 2 1 1 2 2

2 0 1 0 −2 −2 −2 −2 −2 −2 −2 −2 −2 −3 −2
2 0 0 1 2 1 1 1 0 0 0 −1 −1 −1 −2
−2 0 0 0 0 1 0 0 2 2 2 3 3 2 2

2 0 0 0 0 0 1 0 −2 −2 −2 −2 −2 −1 −2
−4 0 0 0 0 0 0 1 2 1 1 2 2 3 4

2 0 0 0 0 0 0 0 0 1 0 −2 −2 −3 −2
2 0 0 0 0 0 0 0 0 0 1 2 1 0 −2

26 0 2 0 −2 −2 −2 −2 0 −2 0 2 −11 −26 −25


.

The image of this morphism, naively localized at 2, i.e. the quasiblock Q
(3,1,1,1,1)
[2] , takes the form
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2

2

1 14

NB the Specht lattice S
(3,1,1,1,1)
(2) , appearing as a column of Z15×15, is not projective over Q

(3,1,1,1,1)
(2) ,

although Q
(3,1,1,1,1)
(2) is a Gram order. Cf. also [J 78, 23.10 iii].

The quasiblock Q
(3,1,1,1,1)
[3]

At the prime 3, this quasiblock is the full matrix ring,

Q
(3,1,1,1,1)
[3] = Z15×15.

The quasiblock Q
(3,1,1,1,1)
[5]

At the prime 5, this quasiblock is the full matrix ring,

Q
(3,1,1,1,1)
[5] = Z15×15.

F.5 The quasiblock Q(3,2,1,1)

Setup

A ring morphism ZS7
- Z35×35 having Q(3,2,1,1) as its image is given by

(12) -



−1 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 1 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 −1 0 0 −1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 −1 0 0 0 0 −1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 1 0 0 −1 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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(1234567) -



0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 −1 0 0 0 1 1 0 0 0 −1 0 0 0 0 0 −1 0 0 0 1 1 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 −1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 −1 0 0 1 −1 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 −1 0 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1
−1 0 0 −1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 −1 −1 0 0 1

0 −1 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 −1 −1
0 0 −1 −1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 1 1 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 −1 0 0 −1 0 0 −1 0 0 0 0 0 1 1 1 0 0 1 0 0 −1 1 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 −1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 1 0 0 0 0 0 −1 −1 0 0 −1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 −1 −1 −1



,

as we check via the modified Coxeter relations (S 1.2) and via a comparison of characters.

The quasiblock Q
(3,2,1,1)
[2]

We conjugate the morphism given in the setup from the left by



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

−18 −6 −6 −10 0 −17 5 0 0 −27 −12 −14 2 −21 −16 0 −20 0 0 3 −14 −17 0 0 3 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 3 1 7 0 17 −4 0 0 22 5 9 −1 20 16 0 16 0 0 −3 14 17 0 0 −3 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 3 5 3 0 0 0 0 0 5 7 5 −1 0 0 0 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−121 −21 29 −37 6 −153 46 0 0 −184 −41 −63 7 −182 −118 0 −136 0 0 63 −103 −137 0 0 27 13 −7 24 0 0 0 −6 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−5 0 −1 −3 0 −7 −1 0 0 −6 −3 −2 0 −9 −12 0 −6 0 0 0 −5 −7 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 −3 7 0 −5 1 −3 −1 −4 −4 0 0 −4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 5 5 −5 0 −2 −5 −1 1 3 1 −1 −4 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

69 23 21 39 0 68 −20 0 0 101 43 49 −8 84 64 0 80 0 0 −12 56 63 0 1 −12 0 4 −4 0 0 0 0 0 0 0
−3 0 0 7 −3 −5 −2 0 −1 0 −4 −4 0 −3 −5 1 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 −3 −3 3 0 14 2 0 0 7 −1 −1 1 18 24 0 8 0 0 0 10 14 0 0 −2 0 0 0 0 0 0 0 0 0 0
10 0 2 −1 0 14 1 0 1 12 2 4 0 14 12 0 12 0 0 0 10 14 0 0 −2 0 0 0 0 0 0 0 0 0 0

605 105 −145 185 −30 766 −230 0 0 920 205 315 −35 906 590 0 680 0 0 −315 515 685 0 0 −135 −65 35 −120 0 0 0 30 0 0 0
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The image of this morphism, naively localized at 2, i.e. the quasiblock Q
(3,2,1,1)
[2] , takes the form

2

8 4

20 1 14

An equivalent description of Q
(3,2,1,1)
(2) is given in [P 80/1, (III.12)].

The quasiblock Q
(3,2,1,1)
[3]

We conjugate the morphism given in the setup from the left by



1 −2 −1 −1 0 −1 0 0 −1 0 −2 0 0 0 0 0 0 0 0 0 0 −2 0 −1 0 0 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 4 −4 0 0 0 0 0 0 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 −4 0 2 −4 0 0 0 0 1 1 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −10 −2 11 −4 1 −1 0 0 −3 −8 −7 −2 4 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −2 8 3 −1 7 −3 2 3 4 −1 −5 0 4 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 −2 −11 11 1 0 0 −3 3 2 −7 −7 −2 −1 0 0 0 0 0 −1 0 0 3 −3 1 0 0 0 0 0 −3 3 0 0 0
−1 −8 4 1 0 1 0 −3 0 1 −1 −4 −1 0 −1 0 0 0 0 0 −1 0 3 0 0 1 0 0 0 0 −3 0 0 0 0

4 1 5 0 −4 1 0 0 −3 2 −1 −5 0 4 −1 0 0 0 0 0 0 −1 0 3 0 0 1 0 0 0 0 −3 0 0 0
2 −7 −5 5 −4 1 0 0 −3 1 −5 −1 −2 4 −1 0 0 0 0 3 −3 −3 2 −3 0 0 0 1 0 0 0 −3 0 0 0
4 −6 6 3 −3 1 0 −3 0 −1 0 −3 0 3 −1 0 0 0 0 −3 −3 −3 −3 2 0 0 0 0 1 0 −3 0 0 0 0
−5 12 −3 3 1 −1 0 0 3 −1 6 3 0 −1 1 0 0 0 0 0 0 6 0 1 0 0 0 0 −1 1 0 3 0 0 0

4 −2 −2 4 −6 7 −3 3 2 −1 −4 −4 −1 3 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 −5 −8 8 4 −3 3 3 −3 4 −10 −7 −2 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 −18 9 4 −5 14 3 0 −3 −2 0 −9 −1 2 −2 0 0 0 0 3 −3 −6 0 4 0 0 0 0 2 −2 2 0 1 0 0

−15 39 −20 −2 16 −26 −3 −3 6 6 3 17 2 −7 5 0 0 0 0 −6 6 3 0 −1 0 0 0 0 −5 4 −4 2 −2 1 0
−1 9 −4 −1 3 2 −3 −3 −3 1 0 4 1 0 1 0 0 0 0 −3 −2 3 −6 3 0 −1 0 0 0 0 0 3 0 0 1



to obtain the morphism

(12) -

6 18 11 −14 −1 4 6 9 0 5 16 2 6 −2 3 6 0 6 −4 6 0 0 1 0 0 1 −1 0 1 1 0 0 0 0 1
0 −7 4 4 3 −6 3 −6 −1 0 0 −1 −3 0 −3 −3 2 −3 0 −3 1 0 0 0 0 0 0 0 −1 0 1 0 0 0 0
−3 1 −1 2 −6 0 −3 −6 3 −6 2 3 −3 0 −3 −3 0 −3 0 −3 2 0 0 0 0 0 0 0 −1 −1 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 5 5 12 −2 9 1 −3 4 0 10 −5 −3 1 −6 −3 12 −3 5 −3 −1 −1 0 0 0 0 0 0 −1 0 −1 0 −2 −1 0
0 0 0 0 7 −1 −1 −3 −6 6 −3 −3 −3 2 3 −3 3 −3 3 −3 −2 0 0 0 0 −1 0 0 0 0 0 −1 0 0 −1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 −3 −2 −2 −4 1 −3 −4 0 −4 −2 3 0 −2 −4 0 −2 0 −2 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−4 −13 1 −5 0 −4 −1 0 −1 −6 −3 4 0 0 −6 0 −7 0 −1 0 −3 0 −1 0 0 0 1 0 0 0 0 0 0 0 0

0 4 −8 1 −3 6 −3 6 2 0 −5 −1 3 0 3 3 −1 3 0 3 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0
3 1 4 −7 6 0 3 6 −3 6 2 −2 3 0 3 3 0 3 0 3 −3 0 0 0 0 0 0 0 1 1 0 −1 0 0 0
1 7 4 7 −5 −2 3 3 7 −4 9 0 −1 2 1 0 1 0 1 0 0 0 0 0 0 1 0 0 −1 −1 0 0 0 0 1
−3 −1 −7 −15 3 −6 1 3 −5 3 −11 7 3 −4 6 3 −12 3 −4 3 3 2 1 0 0 0 0 0 1 0 1 0 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −4 −2 −5 2 1 0 3 −2 2 −4 0 3 −2 −1 2 −3 3 −2 3 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 3 2 2 −3 −1 3 6 5 −2 5 0 3 0 1 3 −1 2 −2 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 9 3 −1 −4 −1 −3 3 5 −2 8 2 0 1 20 0 −3 0 3 −1 0 −1 0 0 0 0 0 0 0 0 0 0 2 1 0
−6 6 −24 6 −18 12 −12 0 12 −12 −12 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 −2 −2 2 0 0 0
27 −3 30 51 −12 21 21 27 33 −9 48 −27 15 0 −27 15 36 15 3 15 −9 −8 −3 0 0 5 0 0 0 5 −3 0 −8 −4 5
−27 54 −45 −99 0 −27 −18 0 −36 18 −54 63 9 −18 63 9 −81 9 −27 9 30 15 9 0 0 −2 −3 0 5 −5 6 3 16 8 −2
−72 −54 −54 −45 −18 −36 −63 −81 −27 −45 −81 63 −45 0 −9 −45 −72 −45 0 −45 15 9 0 −1 0 −8 5 0 −7 −13 3 6 10 5 −8
−9 −117 27 18 72 −27 27 −18 −45 27 −36 −18 −9 0 −81 −9 −9 −9 9 −9 −27 0 −5 0 −1 −3 5 0 0 7 3 −7 −8 −4 −3
−27 9 −45 −36 −18 45 −54 −18 −18 −9 −36 18 −9 0 0 −9 −18 −9 9 −9 −3 0 −1 0 0 −8 1 0 4 −3 −7 3 0 0 −7
−54 −18 −54 −81 −18 −63 −18 −54 −27 −27 −81 72 −18 −18 18 −18 −81 −18 −36 −18 42 15 7 0 0 −2 −1 0 −4 −10 10 8 16 8 −2

9 27 −18 −180 54 −36 −9 54 −72 63 −54 54 36 −18 135 36 −108 36 −27 36 −3 9 6 0 0 −5 −1 −1 17 8 6 −6 22 11 −5
−54 54 −90 −81 0 18 −36 −36 −54 27 −99 36 −9 −9 0 −9 −27 −9 −18 −9 30 15 9 0 0 −8 −5 0 4 −9 0 4 6 3 −8

18 −108 18 72 36 −36 27 0 9 0 −18 −36 0 0 −27 0 18 0 9 0 −12 −6 −6 0 0 2 4 0 −2 7 4 −4 −4 −2 2
−27 9 −36 −117 63 −72 −9 −36 −90 63 −99 36 −9 −9 72 −9 −63 −9 −27 −9 24 15 9 0 0 −8 −5 0 5 −2 12 −3 18 9 −8
−9 −36 54 −9 −18 −9 18 −36 0 −36 45 36 −9 −18 −63 −9 −9 −9 −9 −9 6 0 0 0 0 3 2 0 −6 1 3 6 −4 −2 3
−54 198 −144 −99 −36 81 −117 −27 −63 36 −90 45 −27 18 153 −27 −36 −27 18 −27 24 12 11 0 0 −18 −7 0 9 −19 −11 2 17 9 −18
126 −450 324 342 72 −126 234 45 162 −99 234 −144 27 −9 −369 27 153 27 18 27 −87 −39 −33 0 0 35 21 0 −26 39 13 −9 −50 −26 35

9 −81 63 72 90 −45 63 −27 −36 45 9 −54 −27 18 −72 −27 72 −27 27 −27 −27 0 −3 0 0 0 3 0 −9 3 6 −12 −12 −6 −1
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15 6 4 6 16 10 6 13 −3 18 3 −14 4 2 22 3 11 3 9 3 −6 −2 0 0 0 −1 0 0 2 3 −1 −3 0 0 −1
2 7 0 −1 −1 2 4 6 5 1 4 2 3 −2 1 3 −1 2 −2 3 2 1 1 0 0 1 0 0 0 0 0 0 0 0 1

−12 −20 1 3 7 3 6 −15 −14 0 −7 −4 −9 −1 −27 −6 6 −4 −1 −3 0 1 0 0 0 −1 0 0 −1 −2 1 0 −3 −1 −1
−2 −3 −2 −2 −4 1 −3 −3 1 −4 −2 3 0 −2 −4 0 −2 0 −2 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0
−6 −14 −7 −6 5 0 −3 −6 −6 0 −13 4 −3 −2 −8 −3 −6 −2 1 −3 0 1 0 0 0 −1 1 0 0 0 0 0 0 0 −1

4 6 −9 −14 −2 −11 −3 15 4 2 −11 7 12 −1 14 9 −16 7 −7 6 1 1 0 0 0 1 0 0 2 2 0 0 3 1 1
1 −4 −2 −5 2 1 0 3 −2 2 −4 0 3 −2 −1 3 −2 3 −2 3 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
−7 −5 0 −1 0 8 0 −6 −7 −2 1 −1 −6 0 −5 −3 2 −1 2 0 −1 0 0 0 0 −1 0 0 0 −2 0 0 −1 0 −1

2 3 2 2 −3 −1 3 6 5 −2 5 0 3 0 1 3 −1 3 −1 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
1 9 8 2 2 −2 3 1 2 2 10 −1 −3 4 5 −2 5 −3 4 −3 −3 0 0 0 0 0 0 0 −1 −1 0 −1 0 0 0
−4 −10 −2 −1 −3 −1 −8 −10 −5 −5 −6 1 −3 0 −5 −3 −1 −2 0 −3 0 −1 −1 0 0 −1 0 0 0 0 0 1 0 0 −1
14 23 1 −1 −3 −4 −3 19 13 4 9 1 9 3 31 6 −4 4 3 3 −2 −1 0 0 0 1 0 0 1 2 −1 −1 3 1 1
−10 −20 5 9 2 5 3 −22 −9 −5 0 −3 −12 −2 −26 −9 10 −7 1 −6 2 0 0 0 0 −1 0 0 −2 −2 1 1 −3 −1 −1

7 10 5 1 −3 1 3 9 4 2 9 −4 6 0 6 5 3 5 −3 6 0 −1 0 0 0 1 −1 0 1 1 0 0 0 0 1
−1 4 1 4 −2 −1 0 −2 3 −2 4 0 −3 2 1 −3 2 −3 2 −3 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0
13 18 4 7 −1 −2 1 13 12 5 10 −3 6 3 17 3 4 1 4 0 −2 −1 0 0 0 1 0 0 0 2 −1 −1 1 0 1
−2 −3 −2 −2 3 0 −4 −7 −6 2 −5 0 −3 0 −1 −3 1 −3 1 −3 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 −1
−4 3 8 11 −3 8 0 −12 −1 −5 14 −3 −12 3 2 −8 10 −7 8 −7 −1 −1 0 0 0 −1 0 0 −2 −3 0 0 −1 0 −1

2 3 2 2 −3 −1 3 6 5 −2 5 0 2 0 0 2 −2 3 −1 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
7 19 6 3 1 1 8 10 5 7 12 −5 3 2 10 3 7 2 0 3 0 0 1 0 0 1 −1 0 0 0 0 −1 0 0 1

−24 −48 6 12 24 0 6 −39 −45 6 −18 −18 −24 6 −48 −18 18 −12 6 −12 −8 0 −2 0 0 −4 0 0 −2 −4 2 −2 −6 −2 −4
15 33 18 45 −12 39 −24 −27 36 −15 54 3 −33 6 39 −30 33 −30 48 −33 −3 −5 1 0 0 −3 4 0 −8 −3 −5 0 0 0 −3
−27 −63 −9 −9 −45 9 9 −27 −18 −36 −27 −9 18 −27 −108 18 0 27 −63 36 27 −3 −2 0 0 3 −8 0 6 1 5 13 −9 −3 3
−108 −135 0 −54 27 −45 63 −63 −108 −9 −81 0 −18 −9 −216 0 −18 9 −72 18 6 15 −1 0 0 0 −5 0 0 −15 13 3 −16 −5 0

99 144 −9 −36 −90 −63 −9 171 198 −36 54 81 117 −18 117 81 −90 54 −36 45 21 3 3 0 0 23 4 0 4 23 −7 7 21 4 23
−18 −108 −36 −36 45 −72 0 −9 −54 27 −126 −9 27 0 −99 9 −27 9 −36 0 −9 3 −7 0 0 −2 0 0 6 13 3 −1 −3 −4 −2
−72 −126 9 −9 63 27 54 −99 −135 36 −63 −54 −36 −18 −198 −18 63 −9 −45 9 9 6 2 0 0 −7 −8 0 2 −8 10 1 −24 −8 −7
171 288 18 −45 −45 −36 9 261 135 72 99 −18 153 18 315 117 −27 90 −27 90 −9 −12 2 0 0 17 −11 0 23 29 −8 −8 28 9 17
−81 −261 −99 −99 36 −54 −27 −63 −144 −9 −234 0 36 −45 −216 27 −81 45 −99 45 15 3 −10 0 0 −6 −3 0 19 13 9 11 −9 −4 −6

63 198 36 27 −99 9 −27 81 162 −45 144 54 27 9 144 18 −18 0 18 0 18 0 7 −1 0 14 2 0 −9 −2 −7 5 15 5 14
45 90 −45 −72 −63 −45 18 153 54 0 −18 18 117 −18 90 99 −90 90 −90 99 24 3 2 0 0 16 −9 0 20 12 2 5 15 6 16
−36 −36 9 −9 18 81 18 −45 −18 0 18 0 −45 −18 −72 −27 36 −18 18 −9 3 3 5 0 0 −6 2 0 −3 −9 −1 1 −12 −3 −6
−162 −396 −198 −225 72 −135 −45 −117 −297 9 −432 9 45 −54 −279 45 −162 63 −162 54 12 9 −17 2 −1 −18 −9 0 35 14 17 13 −4 −1 −18

288 684 342 324 −117 243 9 162 540 −18 729 63 −90 72 513 −90 243 −144 306 −135 −12 −9 35 −4 2 26 26 0 −65 −16 −35 −19 17 4 27
27 117 −36 −63 −36 −45 −45 63 81 −18 18 90 27 0 144 18 −99 0 0 0 12 9 6 0 0 6 6 −1 −1 1 −3 1 24 9 6



.

The image of this morphism, naively localized at 3, i.e. the quasiblock Q
(3,2,1,1)
[3] , takes the form

3 3

3 3

9 3 3

20 1 1 13

An equivalent description of Q
(3,2,1,1)
(3) is given in [P 80/1, (III.10)].

The quasiblock Q
(3,2,1,1)
[5]

At the prime 5, this quasiblock is the full matrix ring,

Q
(3,2,1,1)
[5] = Z35×35.

F.6 The quasiblock Q(3,2,2)

Setup

A ring morphism ZS7
- Z21×21 having Q(3,2,2) as its image is given by

(12) -



−1 0 1 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 −1
0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 −1 0 0 0 0 −1 0 0 0 0 1 0
0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 1 0 1 0 0 −1 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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0 0 0 0 0 0 0 0 0 0 1 −1 −1 0 −1 1 −1 0 −1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 −1 −1 −1 0 0 0 0 0 0 −1 1 1 0 0 −1 1 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0

0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 −1 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 −1 −1 0 1 −1 −1 0 0 1 −1 0 0 0 1
0 0 0 0 0 −1 0 1 0 0 0 0 0 −1 −1 −1 0 0 −1 0 −1
0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 −1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0
0 0 0 0 0 1 0 −1 −1 0 0 0 0 0 1 1 0 0 1 0 1
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 1 0 −1 0 −1 0 −1 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 −1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1


,

as we check via the modified Coxeter relations (S 1.2) and via a comparison of characters.

The quasiblock Q
(3,2,2)
[2]

We conjugate the morphism given in the setup from the left by

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1


to obtain the morphism

(12) -



−2 −1 0 −1 −2 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 −2 −1
0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −1 −1 −2 −2 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −2 −1 −1 −1 −1 −1

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 −1 0 0 0 0 −1 0 0 0 0 1 0
1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 1 0 1 0 0 −1 0 −1 0
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −2 −2 −1 −1 0 −1 −1 −1 −1 −1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −2 −2 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
4 4 2 4 4 4 4 2 4 4 4 4 2 4 2 2 4 4 4 4 3
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−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 −2 −2 −1 −2 0 −2 −1 −2 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −2 −1 −1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 −1 −1 0 0 0 0 0 0 −1 1 1 0 0 −1 1 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0

0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 −1 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 2 0 0 0 1 2 0 0 1 1 2 0 1 1 1 1
−1 −1 −1 −1 −1 −2 −1 0 −1 −1 −1 −1 −1 −2 −2 −2 −1 −1 −2 −1 −1

1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 −1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0
1 1 1 1 1 2 1 0 0 1 1 1 1 1 2 2 1 1 2 1 1
−1 −1 −1 −1 −1 −1 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

0 0 0 0 0 0 0 0 0 0 1 0 −1 0 −1 0 −1 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 −1 1 1 0 0 0
0 2 2 2 0 0 2 2 2 0 0 2 2 4 4 2 2 0 4 2 1


.

The image of this morphism, naively localized at 2, i.e. the quasiblock Q
(3,2,2)
[2] , takes the form
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2

20 1

The quasiblock Q
(3,2,2)
[3]

We conjugate the morphism given in the setup from the left by

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0
−2 0 0 0 0 0 −1 0 −2 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 −2 0 −1 0 0 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 −1 0 −2 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 −2 0 −1 0 0 −1 0 0 0 0 1 0 0 0 0
−1 0 0 0 0 0 −2 0 −1 0 0 −1 0 0 0 0 0 1 0 0 0

0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 −1 0 −2 0 0 0 0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 −1 0 −2 0 0 0 0 0 0 0 0 0 0 0 1


to obtain the morphism

(12) -



−1 0 0 0 −2 −1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 −1
−1 −2 0 0 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1
−1 0 −2 0 −1 −2 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 −1
−1 0 0 −2 −4 −2 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 −1
−1 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0
−1 0 0 0 −1 −1 0 −1 0 −1 0 0 0 0 0 −1 0 0 0 0 1

0 0 0 0 0 0 −1 1 0 0 0 0 −1 0 −2 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 3 6 3 0 0 2 0 0 −1 0 0 −1 1 0 0 0 0 2
3 0 0 0 3 0 0 0 0 2 0 −1 0 0 −1 −1 0 0 0 0 1
3 0 0 0 3 0 0 1 0 3 −1 −2 1 0 −1 −1 0 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
6 0 3 0 6 6 0 2 0 3 0 −1 2 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
3 0 0 0 3 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 −1
3 0 0 0 3 0 0 2 0 3 0 0 1 0 0 0 −1 −1 0 0 0
6 0 3 0 6 6 0 2 0 3 0 −1 1 0 −1 0 0 1 0 0 0
0 0 0 0 6 3 0 0 0 0 0 −1 0 0 0 2 0 0 −1 0 1
6 3 0 0 9 3 0 1 0 3 0 −1 0 0 −1 −1 0 0 0 2 1
3 0 0 0 3 0 0 1 0 3 0 0 0 0 0 −1 0 0 0 0 0



(1234567) -



0 −2 −3 0 −2 −4 0 0 0 0 1 0 −1 0 −1 1 −1 0 0 −1 −1
0 −2 −2 0 −2 −4 0 0 0 0 1 0 −1 0 −1 0 −1 0 0 −1 0
−2 −3 0 0 −7 −4 −1 1 0 1 −1 0 0 −1 −1 −1 0 0 0 −1 −1

0 −1 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
−1 −1 0 −2 −4 −2 0 0 −1 0 0 −1 0 0 −1 −1 0 0 0 −1 0

1 3 0 1 4 2 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0
−3 0 6 −3 −6 3 −1 1 −1 1 −3 −1 2 0 0 −2 2 0 −1 0 −1
−3 0 0 −6 0 0 0 0 −3 0 0 −2 0 0 0 0 0 0 −2 0 0

0 3 3 0 6 6 0 0 0 0 −1 0 1 0 1 −1 1 0 0 1 3
3 3 3 6 6 6 0 0 3 0 −1 2 1 0 2 0 1 0 1 2 1
3 3 3 3 12 9 1 −1 1 −1 0 1 1 −1 3 0 1 0 0 3 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1
0 0 3 0 6 6 1 −2 −1 −2 0 −1 1 −1 1 −1 1 0 0 1 3
0 3 3 0 3 6 0 0 0 0 −2 0 2 0 2 0 1 0 0 2 0
−3 0 −6 0 0 −6 0 0 0 0 0 0 −2 0 0 2 −1 −1 0 0 0

0 −3 0 3 0 0 0 0 1 0 0 1 0 −2 0 0 0 0 0 0 0
3 0 0 0 9 6 2 −2 −1 −2 2 −1 0 −1 1 1 0 0 0 1 2
3 0 3 0 6 6 1 0 −1 1 0 −1 1 −1 1 −1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 1
3 3 9 3 9 15 0 0 1 0 −2 1 3 −1 3 −1 3 1 0 3 1
3 3 0 3 12 6 0 0 1 0 0 1 0 0 2 2 0 0 0 3 1


.

The image of this morphism, naively localized at 3, i.e. the quasiblock Q
(3,2,2)
[3] , takes the form

3

6 15
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The quasiblock Q
(3,2,2)
[5]

We conjugate the morphism given in the setup from the left by



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 −2 −2 2 2 −2 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 1 −1 0 −2 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 −1 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
2 −1 −1 1 −2 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
2 1 2 2 2 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 −1 1 2 0 −1 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
−2 1 −1 −2 −1 2 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 −1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 −2 −1 −2 −1 −2 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 −2 −1 0 2 −2 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0
−2 1 2 −1 2 −1 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

2 −2 0 2 −1 2 0 −1 0 0 0 0 0 0 0 0 0 0 0 1 0
−1 −2 2 −1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



to obtain the morphism

(12) -



2 −5 4 3 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 −1
0 −2 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −1 1 −2 0 2 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−5 3 0 −5 0 −3 0 0 0 −1 0 0 0 0 −1 0 0 0 0 1 0

1 3 −3 1 −1 0 −1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −5 0 5 5 0 0 −1 1 0 0 0 0 0 −2 0 0 0 0 −1

10 0 −5 10 0 5 0 0 0 3 0 0 0 0 1 1 0 0 0 −1 2
10 −15 0 10 0 0 0 0 0 1 −1 0 1 0 3 1 0 −1 0 −3 −1
5 −15 15 5 0 5 0 0 0 0 0 −1 −1 0 2 0 0 0 0 −2 −5
0 −15 10 0 0 5 0 0 0 0 0 0 1 0 2 −1 0 0 0 −2 −4
0 −5 5 0 0 10 0 0 0 1 0 0 0 −1 0 −3 0 0 0 −1 −3

−10 15 −10 −10 0 −15 0 0 0 −2 0 0 0 0 −3 3 0 0 0 4 4
−5 0 0 −5 0 −5 0 0 0 −1 0 0 0 0 −1 2 0 0 0 1 0
15 −10 0 15 0 0 0 0 0 2 0 0 0 0 3 1 −1 −1 0 −3 1
10 0 0 10 0 10 0 0 0 2 0 0 0 0 2 −2 0 1 0 −2 0
0 0 0 0 5 0 0 0 0 1 0 0 0 0 −1 3 0 0 −1 0 1

−10 0 10 −10 0 0 0 0 0 −2 0 0 0 0 0 −4 0 0 0 1 −4
−5 15 −5 −5 0 −5 0 0 0 −1 0 0 0 0 −2 −1 0 0 0 2 3



(1234567) -



−1 −4 5 −3 1 0 −3 −2 0 0 1 −1 −1 0 −1 1 −1 0 −1 0 −1
0 0 0 2 0 0 −1 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0
0 −1 1 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
−3 −1 4 −2 3 0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1

1 2 −2 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
−3 3 −3 −2 1 2 2 1 0 0 −1 1 1 0 0 −1 1 0 0 0 0

3 −2 0 1 −1 −1 2 1 0 0 0 0 0 1 1 1 0 0 1 0 0
0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 10 −5 0 0 0 0 0 0 0 0 0 0 1 0 −2 0 0 −1 0 2

10 0 0 10 −5 −5 0 0 0 0 1 −1 −1 0 1 2 −1 0 2 0 2
5 −10 5 5 0 −5 −10 −5 −1 0 3 −3 −3 −1 −1 1 −3 0 −1 0 0

−15 −10 20 −15 10 5 −10 −5 0 0 2 −2 −2 −1 −4 0 −2 0 −5 0 −6
−5 −5 15 −5 5 −5 −10 −5 0 0 2 −2 −2 −1 −2 3 −2 0 −4 0 −1
−5 −5 10 −5 5 −5 −5 0 0 0 0 −1 0 0 0 2 −1 0 −3 0 −2

5 15 −20 10 −5 5 10 5 0 0 −4 3 3 −1 2 −5 4 0 4 0 3
−5 5 −5 0 0 5 0 0 0 0 −1 1 1 −2 −1 −4 1 0 0 0 0
10 −10 0 5 −5 −5 −5 −5 −1 0 3 −3 −3 1 −1 4 −3 0 1 0 1
10 0 5 0 −5 0 0 0 1 1 2 −2 −2 2 0 3 −2 0 0 0 1
5 10 −10 10 −5 −5 0 0 0 0 0 1 0 −2 0 −1 0 0 1 0 5

−20 0 15 −20 10 10 0 0 0 0 0 1 1 2 −2 1 1 1 −4 0 −5
5 10 −15 0 −5 −5 10 5 0 0 −2 2 2 3 2 3 2 0 3 1 4


.

The image of this morphism, naively localized at 5, i.e. the quasiblock Q
(3,2,2)
[5] , takes the form

5

8 13
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F.7 The quasiblock Q(4,1,1,1)

Setup

A ring morphism ZS7
- Z20×20 having Q(4,1,1,1) as its image is given by

(12) -



−1 0 0 −1 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0
0 0 −1 −1 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 1 0 1 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 −1 −1 0 0 1 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



(1234567) -



0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
−1 0 0 −1 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 −1 0 1 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0
0 0 −1 −1 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 1 0 1 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 −1 −1 0 0 1 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 −1 0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1


,

as we check via the modified Coxeter relations (S 1.2) and via a comparison of characters.

The quasiblock Q
(4,1,1,1)
[2]

We conjugate the morphism given in the setup from the left by



1 −1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
−2 2 1 0 0 −2 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
−1 1 1 0 0 0 1 2 0 0 1 0 0 0 0 0 0 0 −1 0

0 0 1 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 1 0 0
1 −1 −2 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 −6 −6 −4 1 −2 −1 −1 2 1 −7 2 2 1 1 −1 0 0 1 1
1 0 −2 0 0 −1 0 2 0 0 3 0 0 1 0 −1 0 0 −1 0
0 −1 −1 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0
0 −1 0 −1 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0
−1 0 0 −1 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0
−1 −3 −4 −4 0 −1 −1 −5 1 0 −8 1 1 1 1 0 0 0 3 1
−1 6 6 4 −1 1 1 0 −2 0 6 −2 −2 −1 −1 1 0 0 0 −1

0 −7 −6 −4 −1 0 0 −3 1 0 −11 2 2 1 1 0 1 −1 2 1
3 −6 −8 −5 0 −2 −1 −1 2 0 −7 1 2 2 1 −1 0 −1 1 2
−1 11 12 9 0 3 4 5 −4 −1 16 −3 −4 −1 −2 1 0 −1 −4 −2

0 1 −1 2 0 0 1 1 0 0 2 0 −1 1 0 0 0 −1 −1 0
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to obtain the morphism

(12) -



17 10 30 10 6 42 10 16 21 16 4 14 21 5 12 16 0 4 10 2
−3 −5 −2 −4 −1 −2 0 1 2 −2 0 1 −1 0 1 −2 0 1 1 −1
−1 6 −3 4 −1 −4 2 2 0 5 1 0 2 1 0 5 0 0 0 1
−5 −8 −10 −5 −1 −16 −8 −12 −14 −15 −3 −10 −14 −3 −7 −15 0 −4 −7 −1

4 16 2 12 −1 4 7 12 6 19 3 6 16 1 4 19 0 2 4 5
−8 −12 −12 −10 −2 −17 −7 −11 −10 −14 −3 −7 −14 −3 −6 −14 0 −2 −5 −3
−10 −14 −24 −10 −2 −38 −18 −26 −37 −33 −7 −26 −31 −8 −18 −33 0 −10 −18 1

4 −2 6 2 2 6 −3 −4 −5 −8 0 −5 −4 −1 −1 −8 0 −3 −3 1
16 10 30 10 6 42 10 16 22 16 4 14 21 5 12 16 0 4 10 2
24 36 58 18 4 86 48 48 94 81 13 64 65 21 40 82 0 25 43 −12
10 8 12 8 4 16 0 6 −3 2 1 −2 7 1 1 2 0 −2 −1 6
8 2 14 4 2 18 5 5 11 6 1 6 7 2 6 6 0 2 5 −1
−2 0 −2 −2 0 −2 1 −2 3 1 0 2 −1 1 0 1 0 1 1 −3

0 2 0 0 0 0 1 0 2 3 0 2 1 1 0 3 0 1 1 −1
16 40 48 20 −2 80 58 70 114 106 18 82 86 22 51 106 0 34 56 −12
−18 −20 −46 −8 −4 −66 −34 −30 −70 −52 −8 −46 −42 −16 −29 −53 0 −18 −31 12

4 6 28 −4 −2 46 34 26 80 54 6 56 38 16 31 54 −1 24 37 −22
14 26 46 10 0 74 48 54 102 82 14 72 68 22 45 82 0 29 49 −16
−62 −76 −144 −48 −12 −216 −108 −124 −222 −184 −34 −152 −162 −46 −102 −184 0 −58 −105 24

0 0 −4 0 0 −6 −4 0 −10 −4 −2 −6 −2 −2 −4 −4 0 −2 −4 5



(1234567) -



−1 −2 −3 1 0 −3 −3 1 −2 −2 0 0 1 0 0 −2 0 0 0 1
−3 −2 −5 −1 0 −8 −5 −7 −7 −6 −2 −5 −7 0 −5 −6 0 −2 −4 0
−8 −10 −11 −8 −3 −16 −4 −9 −7 −11 −2 −6 −12 −3 −4 −11 0 −2 −4 −3

4 2 6 2 1 8 2 3 2 2 1 1 3 0 2 2 0 0 1 1
−7 −9 −10 −10 −4 −14 1 −6 −2 −6 −1 −2 −9 −3 −1 −6 0 0 −1 −5

8 11 12 8 3 17 5 9 8 12 2 6 12 3 4 12 0 2 4 3
20 4 32 8 6 40 7 7 10 2 3 4 10 1 9 2 0 −1 4 2
2 −2 2 2 0 2 −1 0 −1 −2 0 −3 −2 −1 1 −3 0 −1 0 0
−6 −2 −10 0 −2 −12 −4 −1 −4 −1 0 −1 −2 0 −2 −1 0 0 −1 0
−42 −6 −74 −8 −12 −96 −21 −16 −36 −13 −8 −15 −17 −8 −23 −11 −1 −1 −15 4

0 −12 4 −6 −2 4 0 −2 1 −9 1 0 −4 −1 3 −8 0 −1 0 −2
0 0 −2 2 0 −2 −2 2 −2 0 0 0 3 −1 0 0 0 0 0 2
−8 −2 −14 −2 −2 −20 −5 −7 −10 −7 −2 −7 −9 −2 −6 −7 0 −2 −5 0

2 0 2 0 2 2 −2 −2 −4 −4 −1 −3 −2 −1 −2 −4 0 −1 −2 1
−64 −14 −110 −26 −18 −146 −30 −40 −56 −26 −16 −28 −46 −10 −41 −24 −1 −3 −26 −3

32 8 58 4 8 78 24 20 40 22 8 20 20 8 23 20 1 5 18 −6
−36 10 −70 0 −6 −90 −24 −16 −44 −8 −10 −18 −14 −6 −30 −6 −1 −2 −19 10
−66 −26 −112 −28 −18 −152 −42 −52 −76 −50 −18 −40 −58 −14 −48 −46 −2 −10 −37 2
116 28 204 34 34 270 62 64 110 52 26 56 78 22 71 49 2 8 48 −2
18 4 32 4 6 44 8 10 16 8 4 12 16 4 10 9 0 2 7 1


.

The image of this morphism, naively localized at 2, i.e. the quasiblock Q
(4,1,1,1)
[2] , takes the form

a

2

2 2 a

6 8 6

a x11 ≡2 x33

The quasiblock Q
(4,1,1,1)
[3]

At the prime 3, this quasiblock is the full matrix ring,

Q
(4,1,1,1)
[3] = Z20×20.

The quasiblock Q
(4,1,1,1)
[5]

At the prime 5, this quasiblock is the full matrix ring,

Q
(4,1,1,1)
[5] = Z20×20.
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Appendix G

Some centers

We give a list of centers, calculated via the method given in (1.1.11). Z(ZS9)[2] and

Z(ZS10)[2] could not be simplified down to a more or less presentable form yet. Also

the examples we present leave something to desire. We have been interested in particular in

blocks of weight 2, which are of defect 3 for p = 2, and of defect 2 for p > 2 [JK 81, 6.2.45].

Cf. [En 90, Th. 11], [Br 88, 1.4.(1)].

Z(ZS3)

Let the correspondence of the rational factors to the partitions be

1 : (1, 1, 1)
2 : (1, 1, 1)′

3 : (2, 1).

We obtain, in abridged notation,

Z(ZS3)[2]
-∼ { x1 ≡2 x

2 }
Z(ZS3)[3]

-∼ { x1 ≡3 x
2 ≡3 x

3 }.

Z(ZS4)

Let the correspondence of the rational factors to the partitions be

1 : (1, 1, 1, 1)
2 : (1, 1, 1, 1)′

3 : (2, 1, 1)
4 : (2, 1, 1)′

5 : (2, 2).

We obtain, in abridged notation,

Z(ZS4)[2]
-∼ { x1 + x2 ≡8 x

3 + x4 ≡8 2x5, x1 ≡4 x
4 ≡2 x

7 }

Z(ZS4)[3]
-∼ { x1 ≡3 x

2 ≡3 x
5 }.
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Z(ZS5)

Let the correspondence of the rational factors to the partitions be as in (2.2.1), viz.

1 : (1, 1, 1, 1, 1)
2 : (1, 1, 1, 1, 1)′

3 : (2, 1, 1, 1)
4 : (2, 1, 1, 1)′

5 : (2, 2, 1)
6 : (2, 2, 1)′

7 : (3, 1, 1).

We obtain, in abridged notation (cf. 1.1.11),

Z(ZS5)[2]
-∼ { x5 + x6 ≡8 x

1 + x2 ≡8 2x7, x7 ≡2 x
1 ≡4 x

6,

x3 ≡2 x
4}

Z(ZS5)[3]
-∼ { x1 ≡3 x

4 ≡3 x
6,

x2 ≡3 x
3 ≡3 x

5}

Z(ZS5)[5]
-∼ { x1 ≡5 x

2 ≡5 x
3 ≡5 x

4 ≡5 x
7}.

Note that Z(ZS5)[5] is also known by (4.2.8).

Z(ZS6)

Let the correspondence of the rational factors to the partitions be as in (2.3.1), viz.

1 : (1, 1, 1, 1, 1, 1)
2 : (1, 1, 1, 1, 1, 1)′

3 : (2, 1, 1, 1, 1)
4 : (2, 1, 1, 1, 1)′

5 : (2, 2, 1, 1)
6 : (2, 2, 1, 1)′

7 : (2, 2, 2)
8 : (2, 2, 2)′

9 : (3, 1, 1, 1)
10 : (3, 1, 1, 1)′

11 : (3, 2, 1).

We obtain, in abridged notation,

Z(ZS6)[2]
-∼ { x3 + x8 ≡8 2x2, x1 + x2 ≡16 x

5 + x6, x1 + x5 ≡8 x
3 + x7,

x3 ≡4 x
5, x3 + x5 ≡8 2x9, x3 + x4 + x5 + x6 ≡16 x

9 + x10

x1 ≡2 x
3, x3 + x4 ≡16 x

8 + x7, x1 + x7 ≡8 2x10}

Z(ZS6)[3]
-∼ { x4 + x7 ≡9 2x1, x1 + x2 ≡9 2x11, x9 + x10 ≡9 2x11,

x3 + x10 ≡9 2x7, x4 + x8 ≡9 2x9,
x7 ≡3 x

8 ≡3 x
9 ≡3 x

11}

Z(ZS6)[5]
-∼ { x1 ≡5 x

2 ≡5 x
5 ≡5 x

6 ≡5 x
11}.
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Z(ZS7)

Let the correspondence of the rational factors to the partitions be

1 : (7) 9 : (3, 2, 2)
2 : (6, 1) 10 : (3, 2, 1, 1)
3 : (5, 2) 11 : (3, 1, 1, 1, 1)
4 : (5, 1, 1) 12 : (2, 2, 2, 1)
5 : (4, 3) 13 : (2, 2, 1, 1, 1)
6 : (4, 2, 1) 14 : (2, 1, 1, 1, 1, 1)
7 : (4, 1, 1, 1) 15 : (1, 1, 1, 1, 1, 1, 1).
8 : (3, 3, 1)

We obtain, in abridged notation,

Z(ZS7)[2]
-∼ { x1 + 2x3 + x8 ≡16 x

9 + 2x13 + x15, x9 + x15 ≡8 2x3,
x4 + x9 ≡8 2x13, x3 + x13 ≡4 x

8 + x9,
x4 + x8 + x9 + x11 ≡16 2x3 + 2x13, x8 + x9 ≡16 x

6 + x10

x8 + x10 ≡8 2x9, x6 ≡2 x
8 ≡2 x

9 ≡2 x
11 ≡4 x

10,

x2 + x14 ≡8 2x7, x5 + x12 ≡8 2x7, x7 ≡2 x
12 ≡4 x

14}

Z(ZS7)[3]
-∼ { x1 + x15 ≡9 2x7, x3 + x12 ≡9 2x15, x3 + x6 ≡9 2x5,

x10 + x13 ≡9 2x12, x6 + x10 ≡9 2x7, x5 ≡3 x
7 ≡3 x

10 ≡3 x
12,

x2 ≡3 x
9 ≡3 x

11,

x8 ≡3 x
14 ≡3 x

4}

Z(ZS7)[5]
-∼ { x2 ≡5 x

3 ≡5 x
9 ≡5 x

12 ≡5 x
15,

x1 ≡5 x
5 ≡5 x

8 ≡5 x
13 ≡5 x

14}

Z(ZS7)[7]
-∼ { x1 ≡7 x

2 ≡7 x
4 ≡7 x

7 ≡7 x
11 ≡7 x

14 ≡7 x
15}.

Note that Z(ZS7)[7] is also known by (4.2.8).

Z(ZS8)

Let the correspondence of the rational factors to the partitions be

1 : (8) 12 : (4, 1, 1, 1, 1)
2 : (7, 1) 13 : (3, 3, 2)
3 : (6, 2) 14 : (3, 3, 1, 1)
4 : (6, 1, 1) 15 : (3, 2, 2, 1)
5 : (5, 3) 16 : (3, 2, 1, 1, 1)
6 : (5, 2, 1) 17 : (3, 1, 1, 1, 1, 1)
7 : (5, 1, 1, 1) 18 : (2, 2, 2, 2)
8 : (4, 4) 19 : (2, 2, 2, 1, 1)
9 : (4, 3, 1) 20 : (2, 2, 1, 1, 1, 1)

10 : (4, 2, 2) 21 : (2, 1, 1, 1, 1, 1, 1)
11 : (4, 2, 1, 1) 22 : (1, 1, 1, 1, 1, 1, 1, 1).
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We obtain, in abridged notation,

Z(ZS8)[2]
-∼ { x1 + 2x8 + x17 + 8x12 + 8x14 ≡128 x

4 + 2x18 + x22 + 8x10 + 8x11,
x5 + x7 + x9 ≡16 x

11 + x15 + x19, x9 + 2x14 ≡16 x
15 + 2x10,

x9 ≡8 x
15, x7 ≡8 x

12, x11 ≡8 x
13, x7 + 2x9 + x17 ≡64 x

4 + 2x15 + x12,
x4 + 2x7 + 2x9 + 2x12 + 2x13 + 2x15 + x17 ≡128 4x3 + 2x8 + 2x18 + 4x20,
x4 + x7 + 4x8 ≡64 8x11, x9 + x11 ≡8 2x10, x7 + x21 ≡32 2x18,
x2 + x21 + 24x11 ≡128 4x5 + 4x19 + 8x8 + 8x18 + 2x13,
x7 + 4x8 + 4x12 + x21 ≡64 2x18 + 8x10,
2x5 + x7 + 2x8 + x12 + 2x18 + 4x19 ≡128 6x9 + 2x11 + 6x15,
x9 + 3x11 + 3x13 + x15 ≡64 4x10 + 4x14, 2x9 + x13 + x18 ≡32 2x12 + x8 + x11,
x9 + x13 + x17 ≡32 x

11 + x12 + x15, x7 + x17 ≡32 2x15,

x6 ≡2 x
16}

Z(ZS8)[3]
-∼ { x1 + x6 ≡9 2x20, x5 + x6 ≡9 2x9, x18 + x21 ≡9 2x9,

x5 + x7 ≡9 2x14, x18 + x20 ≡9 2x14,
x1 ≡3 x

5 ≡3 x
6 ≡3 x

7 ≡3 x
9 ≡3 x

14 ≡3 x
18 ≡3 x

20 ≡3 x
21,

x19 + x10 ≡9 2x12, x19 + x16 ≡9 2x15, x3 + x8 ≡9 2x10,
x2 + x8 ≡9 2x15, x2 + x12 ≡9 2x22,
x2 ≡3 x

3 ≡3 x
8 ≡3 x

10 ≡3 x
12 ≡3 x

15 ≡3 x
16 ≡3 x

19 ≡3 x
22,

x4 ≡3 x
13 ≡3 x

17}

Z(ZS8)[5]
-∼ { x1 ≡5 x

8 ≡5 x
14 ≡5 x

16 ≡5 x
17,

x4 ≡5 x
6 ≡5 x

10 ≡5 x
18 ≡5 x

22,

x2 ≡5 x
5 ≡5 x

13 ≡5 x
19 ≡5 x

21}

Z(ZS8)[7]
-∼ { x1 ≡7 x

3 ≡7 x
6 ≡7 x

11 ≡7 x
16 ≡7 x

20 ≡7 x
22}.

Z(ZS9), up to the place 2

The following result has been obtained using maple, in particular, using its routines ismith and ihermite.

Let the correspondence of the rational factors to the partitions be

1 : (9) 16 : (4, 2, 2, 1)
2 : (1, 1, 1, 1, 1, 1, 1, 1, 1) 17 : (5, 1, 1, 1, 1)
3 : (2, 1, 1, 1, 1, 1, 1, 1) 18 : (5, 4)
4 : (8, 1) 19 : (2, 2, 2, 2, 1)
5 : (6, 3) 20 : (3, 3, 2, 1)
6 : (2, 2, 2, 1, 1, 1) 21 : (4, 3, 2)
7 : (6, 1, 1, 1) 22 : (3, 3, 1, 1, 1)
8 : (4, 1, 1, 1, 1, 1) 23 : (5, 2, 2)
9 : (5, 3, 1) 24 : (3, 2, 1, 1, 1, 1)

10 : (3, 2, 2, 1, 1) 25 : (6, 2, 1)
11 : (5, 2, 1, 1) 26 : (3, 3, 3)
12 : (4, 2, 1, 1, 1) 27 : (3, 1, 1, 1, 1, 1, 1)
13 : (4, 4, 1) 28 : (7, 1, 1)
14 : (3, 2, 2, 2) 29 : (7, 2)
15 : (4, 3, 1, 1) 30 : (2, 2, 1, 1, 1, 1, 1).
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We obtain, in abridged notation,

Z(ZS9)[2]
-∼ ?

Z(ZS9)[3]
-∼ { x1 + 3x24 ≡81 x

2 + x25, x2 + 3x14 + 3x22 + 3x23 ≡81 x
27 + 3x18 + 3x19 + 3x24,

x3 + 3x21 ≡81 x
28 + 3x19, x4 + 3x20 ≡81 x

27 + 3x18,
x28 + 3x5 + 3x27 + 9x23 ≡81 x

17 + 3x18 + 3x21 + 3x22 + 3x25 + 3x26,
4x27 + 3x6 + 6x23 ≡81 x

17 + 3x19 + 3x20 + 3x24 + 3x26,
x7 + 4x27 + 5x28 ≡81 x

8 + 3x24 + 6x25, x9 + 5x27 + 3x20 + 3x21 + 3x24 ≡81 9x25 + 6x26,
x27 + x13 ≡81 x

28 + x14, x27 + 2x17 + 6x26 ≡81 3x14 + 3x22 + 3x23,
x17 + x27 + x28 ≡27 3x26, x18 + 2x21 ≡9 x

19 + 2x20,
x19 + x21 ≡9 2x28, x20 + x26 ≡9 2x21, x21 + x28 ≡9 x

25 + x26,
x28 + 3x22 ≡27 x

27 + 3x23, x22 + x23 ≡9 x
20 + x25,

x24 + x25 ≡9 2x28, x25 ≡3 x
26 ≡3 x

28 ≡9 x
27,

x11 ≡3 x
15 ≡3 x

30,

x12 ≡3 x
16 ≡3 x

29}

Z(ZS9)[5]
-∼ { x1 ≡5 x

8 ≡5 x
12 ≡5 x

13 ≡5 x
15,

x2 ≡5 x
7 ≡5 x

11 ≡5 x
14 ≡5 x

16,

x3 ≡5 x
9 ≡5 x

19 ≡5 x
21 ≡5 x

28,

x4 ≡5 x
10 ≡5 x

18 ≡5 x
20 ≡5 x

27,

x5 ≡5 x
6 ≡5 x

26 ≡5 x
29 ≡5 x

30}

Z(ZS9)[7]
-∼ { x1 ≡7 x

3 ≡7 x
5 ≡7 x

9 ≡7 x
15 ≡7 x

22 ≡7 x
30,

x2 ≡7 x
4 ≡7 x

6 ≡7 x
10 ≡7 x

16 ≡7 x
23 ≡7 x

29}.

Z(ZS10), up to the place 2

The following result has been obtained using maple, in particular, using its routines ismith and ihermite.

Let the correspondence of the rational factors to the partitions be

1 : (10) 22 : (4, 2, 2, 2)
2 : (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 23 : (4, 3, 2, 1)
3 : (2, 1, 1, 1, 1, 1, 1, 1, 1) 24 : (4, 3, 3)
4 : (9, 1) 25 : (3, 3, 3, 1)
5 : (7, 3) 26 : (4, 2, 2, 1, 1)
6 : (2, 2, 2, 1, 1, 1, 1) 27 : (5, 3, 1, 1)
7 : (7, 1, 1, 1) 28 : (6, 4)
8 : (4, 1, 1, 1, 1, 1, 1) 29 : (2, 2, 2, 2, 1, 1)
9 : (6, 3, 1) 30 : (3, 3, 2, 2)

10 : (3, 2, 2, 1, 1, 1) 31 : (4, 4, 2)
11 : (6, 2, 1, 1) 32 : (3, 3, 1, 1, 1, 1)
12 : (4, 2, 1, 1, 1, 1) 33 : (6, 2, 2)
13 : (5, 5) 34 : (3, 2, 2, 2, 1)
14 : (2, 2, 2, 2, 2) 35 : (5, 4, 1)
15 : (5, 3, 2) 36 : (3, 1, 1, 1, 1, 1, 1, 1)
16 : (3, 3, 2, 1, 1) 37 : (8, 1, 1)
17 : (5, 2, 2, 1) 38 : (5, 2, 1, 1, 1)
18 : (4, 3, 1, 1, 1) 39 : (7, 2, 1)
19 : (5, 1, 1, 1, 1, 1) 40 : (3, 2, 1, 1, 1, 1, 1)
20 : (6, 1, 1, 1, 1) 41 : (8, 2)
21 : (4, 4, 1, 1) 42 : (2, 2, 1, 1, 1, 1, 1, 1).
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We obtain, in abridged notation,

Z(ZS10)[2]
-∼ ?

Z(ZS10)[3]
-∼ { x1 + 3x18 ≡81 x

42 + 3x5, x1 + 3x22 + 3x40 ≡81 x
2 + 3x21 + 3x39,

3x5 + 3x17 + 3x22 + 3x23 + 4x39 + 6x40 + 2x41 ≡81 24x42

3x5 + 3x17 + 3x22 + 2x40 + x42 ≡81 3x6 + 3x18 + 3x21 + 2x39 + x41,
x11 + 6x23 + 2x39 ≡81 3x7 + 3x24 + 3x25,
3x7 + 6x21 + x39 + 6x41 ≡81 3x8 + 6x22 + x40 + 6x42,
x11 + 2x38 + 6x17 + 6x18 + 6x21 + 6x23 + 3x39 + 6x41 ≡81 36x42,
x11 + 6x21 + 3x39 + 3x41 ≡81 x

12 + 6x22 + 3x38 + 3x40,
3x13 + 3x22 + 6x24 + 6x40 + 2x41 ≡81 3x14 + 3x21 + 6x25 + 6x39 + 2x42,
x11 + 3x17 + 3x18 + 3x21 + 3x23 + x42 ≡81 3x14 + 6x25 + 2x38 + 3x39,
x40 + 2x42 ≡27 3x17, x39 + 2x41 ≡27 3x18,
3x21 + x41 ≡27 x

39 + 2x40 + x42,
3x22 + x39 ≡27 x

40 + x41 + 2x42,
3x23 ≡27 x

38 + x39 + x40,
3x24 ≡27 2x39 + x42, 3x25 ≡27 2x40 + x41,
x38 + x41 ≡27 2x42, x39 ≡9 x

40 ≡9 x
41 ≡9 x

42,

x3 + x19 ≡9 2x37, x9 + x32 ≡9 x
19 + x37,

x15 + x19 + 2x32 + x35 + 4x37 ≡9 0, x19 ≡3 x
32 ≡3 x

35 ≡3 x
37,

x29 + x32 ≡9 2x30, x30 + x35 ≡9 2x37,

x4 + x20 ≡9 2x36, x10 + x33 ≡9 x
20 + x36,

x16 + x20 + 2x33 + x34 + 4x36 ≡9 0, x20 ≡3 x
33 ≡3 x

34 ≡3 x
36,

x28 + x33 ≡9 2x31, x31 + x34 ≡9 2x36}

Z(ZS10)[5]
-∼ { x1 + x36 ≡25 2x35, x1 + x2 ≡25 2x38, x1 + x37 ≡25 2x30,

x4 + x31 ≡25 2x36, x7 + x36 ≡25 2x30, x19 + x37 ≡25 2x35,
x19 + x20 ≡25 2x38, x13 + x34 ≡25 x

31 + x38,
x14 + x35 ≡25 x

30 + x38, x13 + x14 ≡25 x
23 + x38,

x26 + x35 ≡25 x
31 + x38, x27 + x34 ≡25 x

30 + x38,
2x1 + x38 ≡25 2x37 + x34,

x9 ≡5 x
24 ≡5 x

29 ≡5 x
39 ≡5 x

42,

x10 ≡5 x
25 ≡5 x

28 ≡5 x
40 ≡5 x

41}

Z(ZS10)[7]
-∼ { x1 ≡7 x

21 ≡7 x
28 ≡7 x

32 ≡7 x
35 ≡7 x

36 ≡7 x
40,

x2 ≡7 x
22 ≡7 x

29 ≡7 x
33 ≡7 x

34 ≡7 x
37 ≡7 x

39,

x3 ≡7 x
4 ≡7 x

5 ≡7 x
6 ≡7 x

15 ≡7 x
16 ≡7 x

23}.
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Broué, M.
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