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ABSTRACT. We give a formula for a morphism between Specht modules over
(Z/m)Sy, where n > 1, and where the partition indexing the target Specht
module arises from that indexing the source Specht module by a downwards
shift of one box, m being the box shift length. Our morphism can be rein-
terpreted integrally as an extension of order m of the corresponding Specht
lattices.

0. NOTATION

. » . a B af
We write composition of maps on the right, — — = —— . Intervals are to

be read as subsets of Z. Let n > 1, let S,, = Autgets[1, n] denote the symmetric
group on n letters and let €, denote the sign of a permutation o € S,,. Let

A
N —_— N()

be a partition of n, i.e. assume ), \; = n and A\; > \j;1 for i € N. Let
MN:={ixjeNxN|j<\N}

denote the diagram of X\. We say that ¢ x j € [\] lies in row ¢ and in column j. A
A-tableau is a bijection
[a]
N = [Ln]

in — Q.

The element o € S,, acts on the set T of A-tableaux via composition [a] . [a]o.
Let F* be the free Z-module on T* with the induced operation of S,,. Let

N~ N N — N
ixj — i ixj — j
denote the projections. We denote by {a} := [a]!p the \-tabloid associated to

the A-tableaux [a]. The free Z-module on the set of tabloids, equipped with the
inherited S,,-operation, is denoted by M?. Let

Cla) == {0 € Sy | la]7'x = ([a]o) " 'x}
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be the column stabilizer of [a]. Let the Specht lattice S* be the ZS,-sublattice of
M?* generated over Z by the \-polytabloids

(a) := Z {a}oe,.
0€Clq

Let A" denote the transposed partition of A, i.e. j <\ <= i x j € [\] =i < \].

1. CARTER-PAYNE

Let d € [1,n] be the number of shifted boxes. Let 1 < s < ¢ < n, s being the row
of [A] from which the boxes are shifted, and ¢ being the row into which the boxes
are shifted. Suppose

ANi—d fori=s,
i = Ni+d fori=t,
i else
defines a partition of n. Let the box shift length be denoted by
m:=MNs—8)— (N —1t)—d.
Let m[p] := p*»("™ be the p-part of m. Using [1], CARTER and PAYNE proved the
following

Theorem 1.1 ([2]). Let K be an infinite field of characteristic p. Suppose d < m/[p].
Then

HOHIKS" (K Xz S/\7K Xz SH) #0.

2. INTEGRAL REINTERPRETATION

Assume d = 1, i.e. [u] arises from [A] by a one-box-shift. The condition d < m/[p]
translates into p|m.

As we will see below, this particular case of the result of CARTER and PAYNE
already holds over K = F,. So we obtain a nonzero element in

Homgs, (S*/pS*, S* /pS*) <=~ Homgs, (S*, S* /pS*).
We consider a part of the long exact Exty, s, (S A, —)-sequence on
0 — SH —w SH —» SH /pSH — 0,
viz.
0o — Homzsn(S)‘,S“) £, Hongn(S)‘,S“) —»Hongn(S)‘,S“/pS“)

=0 =0

— Bxthg (S, S#) —~ Extlg (5%, 5").

Mapping our morphism into Ext!, we obtain a nonzero element of Exty, s, (S, 5")
which is annihilated by p. Conversely, the p-torsion elements of Ext! are given by
morphisms modulo p.

Since n! annihilates Extlzsn(S’A,S“), replacement of p by n! shows that any
element in Ext! is given by a modular morphism modulo n!,

Homgzs, (S*, " /n! S*) = Extyg (S, S™).

Therefore, in order to get hold of the whole Ext!, we need to calculate modulo
prime powers in general.
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3. ONE-BOX-SHIFT FORMULA

We keep the assumption d = 1. Let s’ := A\; and let ¢/ := A\, + 1. A path of
length [ € [1,s — '] is a map

0, — Uy
ko —  ag x

such that k < k" implies 8; < Bk, and such that ag x Bp =t x t' and 3; = s’. For
a A-tableau [a], we define the u-tableau [a"] by

al; = a for i x j € [W\(7([1,1]) UN x {s}),
alk,ﬁk = aoék+1ﬂk+1 for k € [Oal - 1]7

aly = apy for i < ay,

azsl = Qi1 for i > ay.

For i € [t' + 1, — 1], we denote
Xii=(s" =) — (i = X\)).
Let

l_Iz'G[t’Jrl,s’fl}7 Bi>Hi Xi
er[l,lfl] X8y

Let T" be the set of paths of some length [ € [1,s" — ¢'].

zy = (=)0t

Theorem 3.1 ([4], 4.3.31, cf. 0.7.1). The abelian group Homgs, (S*, S*/mSH)
contains an element f of order m = (A\s — s) — (A — t) — 1 which is given by the
commutative diagram of ZS,, -linear maps

[a] ——— > erzy ®(a?)
[a] F* Q®zS* 1)
~t T
St (b)
{ {

(@) S —L—+ SH/mSr  (b) + mSH.

Reducing modulo a prime dividing m, this recovers the case d = 1 of the result
of CARTER and PAYNE. By the long exact sequence as above, but with p replaced
by m, we obtain a nonzero element in Exty, s, (8%, S") of order m. !

The proof of this theorem proceeds by showing that a sufficient set of Garnir
relations in F* is annihilated by F* —» S#/mSH.

11 do not know the structure of Ext%sn (SA, SH) as an abelian group. At least in case n < 7,
direct computation yields that the projection of our element to its 2’-part generates this 2’-part.
We have, however, for example Ext%s6 (S(4’12), 5(3’13))(2) ~Z/26¢7Z)/2.
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4. EXAMPLE
Letn=9,A=(4,3,2), 0 = (3,3,2,1), ¢ =1 and s’ = 4, whence m = 6, Xy =4,
X3 = 2. We obtain a morphism of order 6 that maps

§(43.2) A, S(3:3.2.1) /6 §(33,2,1)

79 Ul
8

1
) a2 28, 20Ty

—~
W N =
S U

1 4 147
2 5 2 5[9]
+4120 (56 215346
1fo]7 147 147
258 ,,2[9]8 ,,2 58
+4021 (5 >+<3@>+<3@>
6]
147
cat | (2 0%

The [0,1 — 1]-part of the respective path is highlighted.

5. MOTIVATION

We consider the rational Wedderburn isomorphism
QSTL — H)\(Q)TL)\XTLA
o — (o)A
where )\ runs over the partitions of n and where p) denotes the matrix describing

the operation of o € S,, on S* with respect to a chosen tuple of integral bases. The
restriction

28, C [[(Z)nrxns
A
of this isomorphism, viewed as an embedding of abelian groups, has index 2

n! n3/2

A

2Question. Given a central primitive idempotent e of I' := [T, (Z)ny xny , what is the index
of e ZS,, in e*T' 2 Cf. ([4], Section 1.1.3).
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In particular, for n > 2 it is no longer an isomorphism.
Suppose, for partitions A and p of n and for some modulus m > 2, we are given
a ZS,-linear map

S* L Sk /S,
Let G be the matrix, with respect to the chosen integral bases of S* and S*, of a
lifting of g to a Z-linear map S* — S*. The ZS,,-linearity of g reads

Gplt — oG € m(Z)y xm,, for all o € S,,.

Thus such a morphism yields a necessary condition for a tuple of matrices to lie in
the image of the Wedderburn embedding.

For example, the evaluations of our one-box-shift morphism at hook partitions,
ie. at A = (k,1"%) and p = (k — 1,1"7*+1) k € [2,n], furnish a long exact
sequence. In the (simple) case of n = p prime, and localized at (p), the set of
necessary conditions imposed by these morphisms already turns out to be sufficient
for a tuple of matrices over Z, to lie in the image of the localized Wedderburn
embedding ([4], Section 4.2.1). Therefore, it is advisable to chose a tuple of locally
integral bases adapted to this long exact sequence. For instance, we obtain

N b
Zi5)Ss {ax[d Z}xf)ang,dzgo,ezg,f}

Ziy 2
c Z(S)X{Z() ® } < Zs),
the embedding not being written in the combinatorial standard polytabloid bases.
For an approach to the general case, see ([4], Chapters 3 and 5). Further examples
may be found in ([4], Chapter 2).
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