ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 6, Pages 90–94 (October 5, 2000) S 1079-6762(00)00085-8

A ONE-BOX-SHIFT MORPHISM BETWEEN SPECHT MODULES

MATTHIAS KÜNZER

(Communicated by David J. Benson)

ABSTRACT. We give a formula for a morphism between Specht modules over $(\mathbf{Z}/m)\mathcal{S}_n$, where $n \geq 1$, and where the partition indexing the target Specht module arises from that indexing the source Specht module by a downwards shift of one box, m being the box shift length. Our morphism can be reinterpreted integrally as an extension of order m of the corresponding Specht lattices.

0. NOTATION

We write composition of maps on the right, $\xrightarrow{\alpha} \xrightarrow{\beta} = \xrightarrow{\alpha\beta}$. Intervals are to be read as subsets of **Z**. Let $n \geq 1$, let $S_n = \text{Aut}_{\text{Sets}}[1, n]$ denote the symmetric group on n letters and let ε_{σ} denote the sign of a permutation $\sigma \in S_n$. Let

$$\begin{array}{ccc} \mathbf{N} & \stackrel{\lambda}{\longrightarrow} & \mathbf{N}_0 \\ i & \stackrel{\lambda}{\longrightarrow} & \lambda_i \end{array}$$

be a partition of n, i.e. assume $\sum_{i} \lambda_i = n$ and $\lambda_i \ge \lambda_{i+1}$ for $i \in \mathbf{N}$. Let

$$[\lambda] := \{i \times j \in \mathbf{N} \times \mathbf{N} \mid j \le \lambda_i\}$$

denote the diagram of λ . We say that $i \times j \in [\lambda]$ lies in row i and in column j. A λ -tableau is a bijection

$$\begin{array}{ccc} [\lambda] & \xrightarrow{[a]} & [1,n] \\ i \times j & \longrightarrow & a_{i,j}. \end{array}$$

The element $\sigma \in S_n$ acts on the set T^{λ} of λ -tableaux via composition $[a] \xrightarrow{\sigma} [a]\sigma$. Let F^{λ} be the free **Z**-module on T^{λ} with the induced operation of S_n . Let

denote the projections. We denote by $\{a\} := [a]^{-1}\rho$ the λ -tabloid associated to the λ -tableaux [a]. The free **Z**-module on the set of tabloids, equipped with the inherited S_n -operation, is denoted by M^{λ} . Let

$$C_{[a]} := \{ \sigma \in \mathcal{S}_n \mid [a]^{-1} \kappa = ([a]\sigma)^{-1} \kappa \}$$

©2000 American Mathematical Society

Received by the editors July 14, 2000.

²⁰⁰⁰ Mathematics Subject Classification. Primary 20C30.

Key words and phrases. Symmetric group, Specht module.

be the column stabilizer of [a]. Let the Specht lattice S^{λ} be the \mathbb{ZS}_n -sublattice of M^{λ} generated over \mathbb{Z} by the λ -polytabloids

$$\langle a \rangle := \sum_{\sigma \in C_{[a]}} \{a\} \sigma \varepsilon_{\sigma}.$$

Let λ' denote the transposed partition of λ , i.e. $j \leq \lambda_i \iff i \times j \in [\lambda] \iff i \leq \lambda'_i$.

1. CARTER-PAYNE

Let $d \in [1, n]$ be the number of shifted boxes. Let $1 \leq s < t \leq n$, s being the row of $[\lambda]$ from which the boxes are shifted, and t being the row into which the boxes are shifted. Suppose

$$\mu_i := \begin{cases} \lambda_i - d & \text{for } i = s, \\ \lambda_i + d & \text{for } i = t, \\ \lambda_i & \text{else} \end{cases}$$

defines a partition of n. Let the box shift length be denoted by

$$m := (\lambda_s - s) - (\lambda_t - t) - d.$$

Let $m[p] := p^{v_p(m)}$ be the *p*-part of *m*. Using [1], CARTER and PAYNE proved the following

Theorem 1.1 ([2]). Let K be an infinite field of characteristic p. Suppose d < m[p]. Then

$$\operatorname{Hom}_{K\mathcal{S}_n}(K \otimes_{\mathbf{Z}} S^{\lambda}, K \otimes_{\mathbf{Z}} S^{\mu}) \neq 0.$$

2. INTEGRAL REINTERPRETATION

Assume d = 1, i.e. $[\mu]$ arises from $[\lambda]$ by a one-box-shift. The condition d < m[p] translates into p|m.

As we will see below, this particular case of the result of CARTER and PAYNE already holds over $K = \mathbf{F}_p$. So we obtain a nonzero element in

$$\operatorname{Hom}_{\mathbf{Z}\mathcal{S}_n}(S^{\lambda}/pS^{\lambda}, S^{\mu}/pS^{\mu}) \xleftarrow{\sim} \operatorname{Hom}_{\mathbf{Z}\mathcal{S}_n}(S^{\lambda}, S^{\mu}/pS^{\mu})$$

We consider a part of the long exact $\operatorname{Ext}_{\mathbf{Z}S_n}^*(S^{\lambda}, -)$ -sequence on

$$0 \longrightarrow S^{\mu} \xrightarrow{p} S^{\mu} \longrightarrow S^{\mu} / pS^{\mu} \longrightarrow 0,$$

viz.

$$0 \longrightarrow \underbrace{\operatorname{Hom}_{\mathbf{Z}\mathcal{S}_{n}}(S^{\lambda}, S^{\mu})}_{= 0} \xrightarrow{p} \underbrace{\operatorname{Hom}_{\mathbf{Z}\mathcal{S}_{n}}(S^{\lambda}, S^{\mu})}_{= 0} \longrightarrow \operatorname{Hom}_{\mathbf{Z}\mathcal{S}_{n}}(S^{\lambda}, S^{\mu}/pS^{\mu})$$
$$\longrightarrow \operatorname{Ext}^{1}_{\mathbf{Z}\mathcal{S}_{n}}(S^{\lambda}, S^{\mu}) \xrightarrow{p} \operatorname{Ext}^{1}_{\mathbf{Z}\mathcal{S}_{n}}(S^{\lambda}, S^{\mu}).$$

Mapping our morphism into Ext^1 , we obtain a nonzero element of $\text{Ext}^1_{\mathbf{ZS}_n}(S^{\lambda}, S^{\mu})$ which is annihilated by p. Conversely, the p-torsion elements of Ext^1 are given by morphisms modulo p.

Since n! annihilates $\operatorname{Ext}^{1}_{\mathbf{ZS}_{n}}(S^{\lambda}, S^{\mu})$, replacement of p by n! shows that any element in Ext^{1} is given by a modular morphism modulo n!,

$$\operatorname{Hom}_{\mathbf{Z}\mathcal{S}_n}(S^{\lambda}, S^{\mu}/n! S^{\mu}) \xrightarrow{\sim} \operatorname{Ext}^1_{\mathbf{Z}\mathcal{S}_n}(S^{\lambda}, S^{\mu}).$$

Therefore, in order to get hold of the whole Ext^1 , we need to calculate modulo prime powers in general.

3. One-box-shift formula

We keep the assumption d = 1. Let $s' := \lambda_s$ and let $t' := \lambda_t + 1$. A path of length $l \in [1, s' - t']$ is a map

$$\begin{bmatrix} 0, l \end{bmatrix} \xrightarrow{\gamma} [\lambda] \cup [\mu] \\ k \xrightarrow{} \alpha_k \times \beta_k$$

such that k < k' implies $\beta_k < \beta_{k'}$, and such that $\alpha_0 \times \beta_0 = t \times t'$ and $\beta_l = s'$. For a λ -tableau [a], we define the μ -tableau $[a^{\gamma}]$ by

$$\begin{array}{rcl} a_{i,j}^{\gamma} & := & a_{i,j} & \text{ for } i \times j \in [\mu] \backslash (\gamma([1,l]) \cup \mathbf{N} \times \{s'\}), \\ a_{\alpha_k,\beta_k}^{\gamma} & := & a_{\alpha_{k+1},\beta_{k+1}} & \text{ for } k \in [0,l-1], \\ a_{i,s'}^{\gamma} & := & a_{i,s'} & \text{ for } i < \alpha_l, \\ a_{i,s'}^{\gamma} & := & a_{i+1,s'} & \text{ for } i \geq \alpha_l. \end{array}$$

For $i \in [t'+1, s'-1]$, we denote

$$X_i := (s' - \lambda'_{s'}) - (i - \lambda'_i).$$

Let

$$x_{\gamma} := (-1)^{\alpha_l+1} \frac{\prod_{i \in [t'+1,s'-1], \ \mu'_i > \mu'_{i+1}} X_i}{\prod_{k \in [1,l-1]} X_{\beta_k}}.$$

Let Γ be the set of paths of some length $l \in [1, s' - t']$.

Theorem 3.1 ([4], 4.3.31, cf. 0.7.1). The abelian group $\operatorname{Hom}_{\mathbf{ZS}_n}(S^{\lambda}, S^{\mu}/mS^{\mu})$ contains an element f of order $m = (\lambda_s - s) - (\lambda_t - t) - 1$ which is given by the commutative diagram of \mathbf{ZS}_n -linear maps

Reducing modulo a prime dividing m, this recovers the case d = 1 of the result of CARTER and PAYNE. By the long exact sequence as above, but with p replaced by m, we obtain a nonzero element in $\operatorname{Ext}^{1}_{\mathbf{ZS}_{p}}(S^{\lambda}, S^{\mu})$ of order m.¹

by m, we obtain a nonzero element in $\operatorname{Ext}^{1}_{\mathbf{Z}S_{n}}(S^{\lambda}, S^{\mu})$ of order m.¹ The proof of this theorem proceeds by showing that a sufficient set of Garnir relations in F^{λ} is annihilated by $F^{\lambda} \longrightarrow S^{\mu}/mS^{\mu}$.

¹I do not know the structure of $\operatorname{Ext}_{\mathbf{Z}S_n}^1(S^{\lambda}, S^{\mu})$ as an abelian group. At least *in case* $n \leq 7$, direct computation yields that the projection of our element to its 2'-part generates this 2'-part. We have, however, for example $\operatorname{Ext}_{\mathbf{Z}S_6}^1(S^{(4,1^2)}, S^{(3,1^3)})_{(2)} \simeq \mathbf{Z}/2 \oplus \mathbf{Z}/2$.

4. Example

Let n = 9, $\lambda = (4, 3, 2)$, $\mu = (3, 3, 2, 1)$, t' = 1 and s' = 4, whence m = 6, $X_2 = 4$, $X_3 = 2$. We obtain a morphism of order 6 that maps

The [0, l-1]-part of the respective path is highlighted.

5. MOTIVATION

We consider the rational Wedderburn isomorphism

$$\begin{array}{ccc} \mathbf{Q}\mathcal{S}_n & \xrightarrow{\sim} & \prod_{\lambda}(\mathbf{Q})_{n_{\lambda} \times n_{\lambda}} \\ \sigma & \longrightarrow & (\rho_{\sigma}^{\lambda})_{\lambda} \end{array}$$

where λ runs over the partitions of n and where ρ_{σ}^{λ} denotes the matrix describing the operation of $\sigma \in S_n$ on S^{λ} with respect to a chosen tuple of integral bases. The restriction

$$\mathbf{Z}\mathcal{S}_n \hookrightarrow \prod_{\lambda} (\mathbf{Z})_{n_{\lambda} \times n_{\lambda}}$$

of this isomorphism, viewed as an embedding of abelian groups, has index 2

$$\prod_{\lambda} \left(\frac{n!}{n_{\lambda}}\right)^{n_{\lambda}^2/2}$$

.

²Question. Given a central primitive idempotent e^{λ} of $\Gamma := \prod_{\lambda} (\mathbf{Z})_{n_{\lambda} \times n_{\lambda}}$, what is the index of $e^{\lambda} \mathbf{Z} S_n$ in $e^{\lambda} \Gamma$? Cf. ([4], Section 1.1.3).

In particular, for $n \ge 2$ it is no longer an isomorphism.

Suppose, for partitions λ and μ of n and for some modulus $m \geq 2$, we are given a \mathbb{ZS}_n -linear map

$$S^{\lambda} \xrightarrow{g} S^{\mu}/mS^{\mu}$$

Let G be the matrix, with respect to the chosen integral bases of S^{λ} and S^{μ} , of a lifting of g to a **Z**-linear map $S^{\lambda} \longrightarrow S^{\mu}$. The $\mathbb{Z}S_n$ -linearity of g reads

$$G\rho_{\sigma}^{\mu} - \rho_{\sigma}^{\lambda}G \in m(\mathbf{Z})_{n_{\lambda} \times n_{\mu}}$$
 for all $\sigma \in \mathcal{S}_n$.

Thus such a morphism yields a *necessary* condition for a tuple of matrices to lie in the image of the Wedderburn embedding.

For example, the evaluations of our one-box-shift morphism at hook partitions, i.e. at $\lambda = (k, 1^{n-k})$ and $\mu = (k - 1, 1^{n-k+1})$, $k \in [2, n]$, furnish a long exact sequence. In the (simple) case of n = p prime, and localized at (p), the set of necessary conditions imposed by these morphisms already turns out to be sufficient for a tuple of matrices over $\mathbf{Z}_{(p)}$ to lie in the image of the localized Wedderburn embedding ([4], Section 4.2.1). Therefore, it is advisable to chose a tuple of locally integral bases adapted to this long exact sequence. For instance, we obtain

$$\begin{aligned} \mathbf{Z}_{(3)}\mathcal{S}_3 & \xrightarrow{\sim} & \left\{ a \times \left[\begin{array}{cc} b & c \\ d & e \end{array} \right] \times f \mid a \equiv_3 b, \ d \equiv_3 0, \ e \equiv_3 f \right\} \\ & \subseteq & \mathbf{Z}_{(3)} \times \left[\begin{array}{cc} \mathbf{Z}_{(3)} & \mathbf{Z}_{(3)} \\ \mathbf{Z}_{(3)} & \mathbf{Z}_{(3)} \end{array} \right] \times \mathbf{Z}_{(3)}, \end{aligned}$$

the embedding not being written in the combinatorial standard polytabloid bases.

For an approach to the general case, see ([4], Chapters 3 and 5). Further examples may be found in ([4], Chapter 2).

6. Acknowledgments

This result being part of my thesis, I repeat my thanks to my advisor STEFFEN KÖNIG.

References

- R. W. Carter and G. Lusztig, On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974), 139–242. MR 50:7364
- R. W. Carter and M. T. J. Payne, On homomorphisms between Weyl modules and Specht modules, Math. Proc. Camb. Phil. Soc. 87 (1980), 419–425. MR 81h:20048
- G. D. James, The representation theory of the symmetric groups, SLN 682, 1978. MR 80g:20019
- 4. M. Künzer, Ties for the $\mathbf{ZS}_n,$ thesis, http://www.mathematik.uni-bielefeld.de/~kuenzer, Bielefeld, 1999.

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT BIELEFELD, POSTFACH 100131, 33501 BIELEFELD *E-mail address*: kuenzer@mathematik.uni-bielefeld.de

94