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A ONE-BOX-SHIFT MORPHISM BETWEEN SPECHT MODULES

MATTHIAS KÜNZER

(Communicated by David J. Benson)

Abstract. We give a formula for a morphism between Specht modules over
(Z/m)Sn, where n ≥ 1, and where the partition indexing the target Specht

module arises from that indexing the source Specht module by a downwards
shift of one box, m being the box shift length. Our morphism can be rein-

terpreted integrally as an extension of order m of the corresponding Specht

lattices.

0. Notation

We write composition of maps on the right, -α -β = -αβ . Intervals are to
be read as subsets of Z. Let n ≥ 1, let Sn = AutSets[1, n] denote the symmetric
group on n letters and let εσ denote the sign of a permutation σ ∈ Sn. Let

N -λ N0

i - λi

be a partition of n, i.e. assume
∑
i λi = n and λi ≥ λi+1 for i ∈ N. Let

[λ] := {i× j ∈ N×N | j ≤ λi}

denote the diagram of λ. We say that i× j ∈ [λ] lies in row i and in column j. A
λ-tableau is a bijection

[λ] -[a]

∼ [1, n]
i× j - ai,j .

The element σ ∈ Sn acts on the set Tλ of λ-tableaux via composition [a] -
σ

[a]σ.
Let Fλ be the free Z-module on Tλ with the induced operation of Sn. Let

[λ] -ρ N [λ] -κ N
i× j - i i× j - j

denote the projections. We denote by {a} := [a]−1ρ the λ-tabloid associated to
the λ-tableaux [a]. The free Z-module on the set of tabloids, equipped with the
inherited Sn-operation, is denoted by Mλ. Let

C[a] := {σ ∈ Sn | [a]−1κ = ([a]σ)−1κ}
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be the column stabilizer of [a]. Let the Specht lattice Sλ be the ZSn-sublattice of
Mλ generated over Z by the λ-polytabloids

〈a〉 :=
∑
σ∈C[a]

{a}σεσ.

Let λ′ denote the transposed partition of λ, i.e. j ≤ λi ⇐⇒ i× j ∈ [λ]⇐⇒ i ≤ λ′j .

1. Carter-Payne

Let d ∈ [1, n] be the number of shifted boxes. Let 1 ≤ s < t ≤ n, s being the row
of [λ] from which the boxes are shifted, and t being the row into which the boxes
are shifted. Suppose

µi :=

 λi − d for i = s,
λi + d for i = t,
λi else

defines a partition of n. Let the box shift length be denoted by

m := (λs − s)− (λt − t)− d.
Let m[p] := pvp(m) be the p-part of m. Using [1], Carter and Payne proved the
following

Theorem 1.1 ([2]). Let K be an infinite field of characteristic p. Suppose d < m[p].
Then

HomKSn(K ⊗Z S
λ,K ⊗Z S

µ) 6= 0.

2. Integral reinterpretation

Assume d = 1, i.e. [µ] arises from [λ] by a one-box-shift. The condition d < m[p]
translates into p|m.

As we will see below, this particular case of the result of Carter and Payne
already holds over K = Fp. So we obtain a nonzero element in

HomZSn(Sλ/pSλ, Sµ/pSµ)�∼ HomZSn(Sλ, Sµ/pSµ).

We consider a part of the long exact Ext∗ZSn(Sλ,−)-sequence on

0 - Sµ -p Sµ - Sµ/pSµ - 0,

viz.

0 - HomZSn(Sλ, Sµ)︸ ︷︷ ︸
= 0

-p HomZSn(Sλ, Sµ)︸ ︷︷ ︸
= 0

- HomZSn(Sλ, Sµ/pSµ)

- Ext1
ZSn(Sλ, Sµ) -p Ext1

ZSn(Sλ, Sµ).

Mapping our morphism into Ext1, we obtain a nonzero element of Ext1
ZSn(Sλ, Sµ)

which is annihilated by p. Conversely, the p-torsion elements of Ext1 are given by
morphisms modulo p.

Since n! annihilates Ext1
ZSn(Sλ, Sµ), replacement of p by n! shows that any

element in Ext1 is given by a modular morphism modulo n!,

HomZSn(Sλ, Sµ/n!Sµ) -∼ Ext1
ZSn(Sλ, Sµ).

Therefore, in order to get hold of the whole Ext1, we need to calculate modulo
prime powers in general.



92 MATTHIAS KÜNZER

3. One-box-shift formula

We keep the assumption d = 1. Let s′ := λs and let t′ := λt + 1. A path of
length l ∈ [1, s′ − t′] is a map

[0, l] -γ [λ] ∪ [µ]
k - αk × βk

such that k < k′ implies βk < βk′ , and such that α0 × β0 = t× t′ and βl = s′. For
a λ-tableau [a], we define the µ-tableau [aγ ] by

aγi,j := ai,j for i× j ∈ [µ]\(γ([1, l]) ∪N× {s′}),
aγαk,βk := aαk+1,βk+1 for k ∈ [0, l − 1],
aγi,s′ := ai,s′ for i < αl,

aγi,s′ := ai+1,s′ for i ≥ αl.

For i ∈ [t′ + 1, s′ − 1], we denote

Xi := (s′ − λ′s′)− (i− λ′i).

Let

xγ := (−1)αl+1

∏
i∈[t′+1,s′−1], µ′

i>µ
′
i+1

Xi∏
k∈[1,l−1]Xβk

.

Let Γ be the set of paths of some length l ∈ [1, s′ − t′].

Theorem 3.1 ([4], 4.3.31, cf. 0.7.1). The abelian group HomZSn(Sλ, Sµ/mSµ)
contains an element f of order m = (λs − s) − (λt − t) − 1 which is given by the
commutative diagram of ZSn-linear maps

[a] - ∑
γ∈Γ xγ ⊗ 〈aγ〉

Fλ - Q⊗Z S
µ[a]

?

〈a〉
?

6

Sµ

?

H
HHHj

〈b〉
?
〈b〉+mSµ.

6

1⊗ 〈b〉

Sλ -f
Sµ/mSµ

Reducing modulo a prime dividing m, this recovers the case d = 1 of the result
of Carter and Payne. By the long exact sequence as above, but with p replaced
by m, we obtain a nonzero element in Ext1

ZSn(Sλ, Sµ) of order m. 1

The proof of this theorem proceeds by showing that a sufficient set of Garnir
relations in Fλ is annihilated by Fλ - Sµ/mSµ.

1I do not know the structure of Ext1ZSn (Sλ, Sµ) as an abelian group. At least in case n ≤ 7,

direct computation yields that the projection of our element to its 2′-part generates this 2′-part.

We have, however, for example Ext1ZS6 (S(4,12), S(3,13))(2) ' Z/2⊕ Z/2.
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4. Example

Let n = 9, λ = (4, 3, 2), µ = (3, 3, 2, 1), t′ = 1 and s′ = 4, whence m = 6, X2 = 4,
X3 = 2. We obtain a morphism of order 6 that maps

S(4,3,2) -f S(3,3,2,1)/6 S(3,3,2,1)

〈
1 4 7 9
2 5 8
3 6

〉 - 4020

〈
1 7 9
2 5 8
3 6
4

〉+ 〈

1 4 9
2 7 8
3 6
5

〉+ 〈

1 4 9
2 5 8
3 7
6

〉

+〈

1 8 7
2 5 9
3 6
4

〉+ 〈

1 4 7
2 8 9
3 6
5

〉+ 〈

1 4 7
2 5 9
3 8
6

〉



+4120

〈
1 4 9
2 5 8
3 6
7

〉+ 〈

1 4 7
2 5 9
3 6
8

〉



+4021

〈
1 9 7
2 5 8
3 6
4

〉+ 〈

1 4 7
2 9 8
3 6
5

〉+ 〈

1 4 7
2 5 8
3 9
6

〉



+4121

〈
1 4 7
2 5 8
3 6
9

〉

 .

The [0, l − 1]-part of the respective path is highlighted.

5. Motivation

We consider the rational Wedderburn isomorphism

QSn -∼ ∏
λ(Q)nλ×nλ

σ - (ρλσ)λ

where λ runs over the partitions of n and where ρλσ denotes the matrix describing
the operation of σ ∈ Sn on Sλ with respect to a chosen tuple of integral bases. The
restriction

ZSn -
�� ∏

λ

(Z)nλ×nλ

of this isomorphism, viewed as an embedding of abelian groups, has index 2

∏
λ

(
n!
nλ

)n2
λ/2

.

2Question. Given a central primitive idempotent eλ of Γ :=
Q
λ(Z)nλ×nλ , what is the index

of eλZSn in eλΓ ? Cf. ([4], Section 1.1.3).
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In particular, for n ≥ 2 it is no longer an isomorphism.
Suppose, for partitions λ and µ of n and for some modulus m ≥ 2, we are given

a ZSn-linear map

Sλ -g Sµ/mSµ.

Let G be the matrix, with respect to the chosen integral bases of Sλ and Sµ, of a
lifting of g to a Z-linear map Sλ - Sµ. The ZSn-linearity of g reads

Gρµσ − ρλσG ∈ m(Z)nλ×nµ for all σ ∈ Sn.

Thus such a morphism yields a necessary condition for a tuple of matrices to lie in
the image of the Wedderburn embedding.

For example, the evaluations of our one-box-shift morphism at hook partitions,
i.e. at λ = (k, 1n−k) and µ = (k − 1, 1n−k+1), k ∈ [2, n], furnish a long exact
sequence. In the (simple) case of n = p prime, and localized at (p), the set of
necessary conditions imposed by these morphisms already turns out to be sufficient
for a tuple of matrices over Z(p) to lie in the image of the localized Wedderburn
embedding ([4], Section 4.2.1). Therefore, it is advisable to chose a tuple of locally
integral bases adapted to this long exact sequence. For instance, we obtain

Z(3)S3
-∼

{
a×

[
b c
d e

]
× f

∣∣∣ a ≡3 b, d ≡3 0, e ≡3 f

}
⊆ Z(3) ×

[
Z(3) Z(3)

Z(3) Z(3)

]
× Z(3),

the embedding not being written in the combinatorial standard polytabloid bases.
For an approach to the general case, see ([4], Chapters 3 and 5). Further examples

may be found in ([4], Chapter 2).
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