On adjoint functors of the Heller operator

Matthias Künzer

December 16, 2011

Abstract

Given an abelian category \mathcal{A} with enough projectives, we can form its stable category $\underline{\mathcal{A}}:=\mathcal{A} / \operatorname{Proj}(\mathcal{A})$. The Heller operator $\Omega: \underline{\mathcal{A}} \longrightarrow \underline{\mathcal{A}}$ is characterised on an object X by a choice of a short exact sequence $\Omega X \rightarrow P \longrightarrow X$ in \mathcal{A} with P projective. If \mathcal{A} is Frobenius, then Ω is an equivalence, hence has a left and a right adjoint. If \mathcal{A} is hereditary, then Ω is zero, hence has a left and a right adjoint. In general, Ω is neither an equivalence nor zero. In the examples we have calculated via Magma, it has a left adjoint, but in general not a right adjoint. If \mathcal{A} has projective covers, then Ω preserves monomorphisms; this would also follow from Ω having a left adjoint. I do not know an example where Ω does not have a left adjoint.

Contents

0 Introduction 2
0.1 The question 2
0.2 Monomorphisms 2
0.3 Construction of a left adjoint to the Heller operator Ω 2
0.4 Two counterexamples 2
0.5 Acknowledgements 3
0.6 Notations and conventions 3
1 The Heller operator Ω 3
1.1 Notation 3
1.2 Preservation of monomorphisms 4
1.3 Relative projective covers 5
2 Examples for adjoints of the Heller operator Ω 6
2.1 Example of a left adjoint 7
2.1.1 A list of indecomposables 7
2.1.2 Construction of a left adjoint 8
2.2 Another example of a left adjoint 11
2.2.1 A list of indecomposables 11
2.2.2 Construction of a left adjoint 11
2.3 Further examples of left adjoints 14
2.4 Counterexample: no right adjoint 14

[^0]
0 Introduction

0.1 The question

Let \mathcal{E} be an exact category. Let $\operatorname{Proj}(\mathcal{E})$ be its full additive subcategory of relative projectives, i.e. for $P \in \operatorname{Ob} \mathcal{E}$ we have $P \in \operatorname{Ob} \operatorname{Proj}(\mathcal{E})$ if and only if $\mathcal{E}(P,-)$ maps pure short exact sequences of \mathcal{E} to short exact sequences of abelian groups. Suppose that \mathcal{E} has enough relative projectives, i.e. suppose that for any $X \in \operatorname{Ob} \mathcal{E}$, there exists a pure epimorphism $P \mapsto X$ in \mathcal{E} with $P \in \operatorname{Ob} \operatorname{Proj}(\mathcal{E})$.
Write $\underline{\mathcal{E}}:=\mathcal{E} / \operatorname{Proj}(\mathcal{E})$. The Heller operator $\Omega: \underline{\mathcal{E}} \longrightarrow \underline{\mathcal{E}}$ is characterised on a given $X \in \operatorname{Ob} \mathcal{E}$ by a choice of a pure short exact sequence

$$
\Omega X \mapsto P \mapsto X
$$

in \mathcal{E} with P relatively projective. This then is extended to morphisms.
We ask whether Ω has a left adjoint; cf. Question 1. I do not know a counterexample.
If \mathcal{E} is a Frobenius category, then Ω is an equivalence, thus has both a left and a right adjoint. If \mathcal{E} is hereditary, i.e. if $\Omega \simeq 0$, then Ω has both a left and a right adjoint, viz. 0 .

0.2 Monomorphisms

If a functor has a left adjoint, then it preserves monomorphisms. So first of all, we ask whether the Heller operator $\Omega: \underline{\mathcal{E}} \longrightarrow \underline{\mathcal{E}}$ preserves monomorphisms.

It turns out that if \mathcal{E} is weakly idempotent complete and has relative projective covers in the sense of $\S 1.3$, then Ω maps monomorphisms even to coretractions; cf. Proposition 4.

0.3 Construction of a left adjoint to the Heller operator Ω

Let $p \in[2,997]$ be a prime. Let $R:=\mathbf{F}_{p}[X]$ and $\pi:=X$.
Let $A:=\left(R / \pi^{3}\right)(e \xrightarrow{a} f) \simeq\left(\begin{array}{cc}R / \pi^{3} & R / \pi^{3} \\ 0 & R / \pi^{3}\end{array}\right)$. Let $\mathcal{E}:=\bmod -A$.
Using Magma [1], we construct a left adjoint $S: \underline{\mathcal{E}} \longrightarrow \underline{\mathcal{E}}$ to Ω. We do so likewise for certain factor rings of A. Cf. Propositions 6, 9 and 11.

Let now k be a field, $R:=k[X]$ and $\pi:=X$. Let $n \geqslant 1$. An $\left(R / \pi^{n}\right)(e \xrightarrow{a} f)$-module is given by a morphism $X \xrightarrow{f} Y$ in mod- $\left(R / \pi^{n}\right)$. The full subcategory of $\bmod -\left(R / \pi^{n}\right)(e \xrightarrow{a} f)$ consisting of injective morphisms $X \xrightarrow{f} Y$ as modules has been intensely studied; it is of finite type if $n \leqslant 5$, tame if $n=6$, wild if $n \geqslant 7$; cf. [7, (0.1), (0.6)].

0.4 Two counterexamples

The functor $\Omega: \underline{\mathcal{E}} \longrightarrow \underline{\mathcal{E}}$ does not have a right adjoint in general; cf. Remark 13 .
Provided $S \dashv \Omega$ exists, the composite $\Omega \circ S: \underline{\mathcal{E}} \longrightarrow \underline{\mathcal{E}}$ is not idempotent in general; cf. Remark 12 .

0.5 Acknowledgements

Sebastian Thomas asked whether there exists a category with set of weak equivalences (\mathcal{C}, W) that carries the structure of a Brown fibration category, but whose Ω on $\mathcal{C}\left[W^{-1}\right]\left({ }^{1}\right)$ does not have a left adjoint. In our exact category context, this is Question 1.

I thank Steffen König for help with monomorphisms, cf. §1.2. I thank Sebastian Thomas and Markus Kirschmer for help with Magma. I thank Markus Schmidmeier for help with $\bmod -\left(R / \pi^{n}\right)(e \xrightarrow{a} f)$.

0.6 Notations and conventions

- Given $a, b \in \mathbf{Z}$, we write $[a, b]:=\{z \in \mathbf{Z}: a \leqslant z \leqslant b\}$.
- Composition of morphisms is written naturally, $(\xrightarrow{a} \xrightarrow{b})=\xrightarrow{a b}=\xrightarrow{a \cdot b}$. Composition of functors is written traditionally, $(\xrightarrow{F} \xrightarrow{G})=\xrightarrow{G \circ F}$.
- In a category \mathcal{C}, given $X, Y \in \mathrm{Ob} \mathcal{C}$, we write $\mathcal{c}(X, Y)$ for the set of morphisms from X to Y.
- Given an isomorphism f, we write f^{-}for its inverse.
- In an additive category, a morphism of the form $X \xrightarrow{(10)} X \oplus Y$, or isomorphic to such a morphism, is called split monomorphic; a morphism of the form $X \oplus Y \xrightarrow{\binom{1}{0}} X$, or isomorphic to such a morphism, is called split epimorphic.
- In exact categories, pure monomorphisms are denoted by \rightarrow, pure epimorphisms by \rightarrow and pure squares, i.e. bicartesian squares with pure short exact diagonal sequence, by a box \square in the diagram.
- Given a ring A, an A-module is a finitely generated right A-module.
- Given a commutative ring A and $a \in A$, we often write $A / a:=A /(a)=A / a A$.
- Given a noetherian ring A, we write $\underline{\bmod }-A:=\underline{\bmod -A}$ for the factor category of mod- A modulo the full additive subcategory of projectives.
So in the language of $\S 1.1$ below, we consider the abelian category $\bmod -A$ as an exact category with all short exact sequences declared to be pure and write $\bmod -A$ for its classical stable category.

1 The Heller operator Ω

1.1 Notation

Let \mathcal{E} be an exact category in the sense of Quillen [5, p. 99] with enough relative projectives. We will use the notation of [4, §A.2] concerning pure short exact sequences, pure monomorphisms and pure epimorphisms.

Let $\operatorname{Proj}(\mathcal{E}) \subseteq \mathcal{E}$ denote the full subcategory of relative projectives. Let

$$
\underline{\mathcal{E}}:=\mathcal{E} / \operatorname{Proj}(\mathcal{E})
$$

denote the classical stable category of \mathcal{E}. The residue class functor shall be denoted by

$$
\begin{aligned}
\mathcal{E} & \longrightarrow \mathcal{E} \\
(X \xrightarrow{f} Y) & \longmapsto(X \xrightarrow{[f]} Y) .
\end{aligned}
$$

[^1]For each $X \in \mathrm{Ob} \mathcal{E}$, we choose a pure short exact sequence

$$
\begin{equation*}
\Omega X \xrightarrow{i_{X}} \mathrm{P} X \xrightarrow{p_{X}} X \tag{*}
\end{equation*}
$$

with PX relatively projective. Let the Heller operator [3]

$$
\Omega: \underline{\mathcal{E}} \longrightarrow \underline{\mathcal{E}}
$$

be defined on the objects by the choice just made. Suppose given a morphism $X \xrightarrow{[f]} Y$ in $\underline{\mathcal{E}}$. Choose a morphism

of pure short exact sequences. Let

$$
\Omega[f]:=\left[f^{\prime}\right] .
$$

Different choices of pure short exact sequences $(*)$ yield mutually isomorphic Heller operators.

Question 1 Does Ω have a left adjoint?

I do not know a counterexample.

1.2 Preservation of monomorphisms

If $\Omega: \underline{\mathcal{E}} \longrightarrow \underline{\mathcal{E}}$ has a left adjoint, then it preserves monomorphisms. So if, for some \mathcal{E}, the functor Ω did not preserve monomorphisms, then Ω could not have a left adjoint. Under certain finiteness assumptions, however, we will show that Ω maps monomorphisms to coretractions, so in particular to monomorphisms. This is to be compared to the case of \mathcal{E} being Frobenius, where in the triangulated category $\underline{\mathcal{E}}$ all monomorphisms are split.

Lemma 2 Suppose that for $X \in \mathrm{Ob} \mathcal{E}$ and for $s \in \mathcal{E}(\mathrm{P} X, \mathrm{P} X)$ such that $s p_{X}=p_{X}$, the endomorphism s is an isomorphism.
Suppose given $X \xrightarrow{f} Y$ in \mathcal{E}.
If $[f]$ is a monomorphism, then $\Omega[f]$ is a coretraction.
In particular, Ω preserves monomorphisms.

Proof. Choose a morphism of pure short exact sequences as shown below. Insert a pullback $(T, X, \mathrm{P} Y, Y)$ and the induced morphism $\mathrm{P} X \xrightarrow{v} T$, having $v g=\hat{f}$ and $v q=p_{X}$. Insert a
kernel j of q with $j g=i_{Y}$.

We have $f^{\prime} j=i_{X} v$, since $f^{\prime} j q=0=i_{X} p_{X}=i_{X} v q$ and $f^{\prime} j g=f^{\prime} i_{Y}=i_{X} \hat{f}=i_{X} v g$.
We have $[q][f]=\left[g p_{Y}\right]=0$. Since $[f]$ is monomorphic, we infer that $[q]=0$. Hence there exists $T \xrightarrow{u} \mathrm{P} X$ such that $u p_{X}=q$. On the kernels, we obtain $\Omega Y \xrightarrow{u^{\prime}} \Omega X$ such that $u^{\prime} i_{X}=j u$.

We have $v u p_{X}=v q=p_{X}$. Hence $v u$ is an isomorphism by assumption.
We obtain $f^{\prime} u^{\prime} i_{X}=f^{\prime} j u=i_{X} v u$. So $\left(f^{\prime} u^{\prime}, v u, \mathrm{id}_{X}\right)$ is a morphism of pure short exact sequences. Hence $f^{\prime} u^{\prime}$ is an isomorphism. Thus f^{\prime} is a coretraction. We conclude that $\Omega[f]=\left[f^{\prime}\right]$ is a coretraction.

1.3 Relative projective covers

Suppose \mathcal{E} to be weakly idempotent complete; cf. [2, Def. 7.2].
A morphism $S \xrightarrow{i} M$ in \mathcal{E} is called small if in each pure square

in \mathcal{E}, the morphism $T \xrightarrow{t} M$ is purely epimorphic; cf. [8, Def. 2.8.30]. In other words, i is small iff $\binom{i}{t}$ being purely epimorphic entails t being purely epimorphic for each morphism t with same target as i. E.g. $i=0$ is small, for $\binom{0}{t}=\binom{0}{1} t$ is purely epimorphic only if t is; cf. [2, Prop. 2.16].

If $S \xrightarrow{i} M$ is small and split monomorphic, then there exists

forcing i^{\prime} to be an isomorphism and thus S to be isomorphic to 0 .
Given $\tilde{S} \xrightarrow{j} S \xrightarrow{i} M$ with $S \xrightarrow{i} M$ small, then $\tilde{S} \xrightarrow{j i} M$ is small. In fact, given t such that $\binom{j i}{t}$ is a pure epimorphism, the factorisation $\binom{j i}{t}=\left(\begin{array}{l}j \\ 0 \\ 0\end{array}\right)\binom{i}{t}$ shows that $\binom{i}{t}$ is a pure epimorphism; cf. [2, Cor. 7.7]. Thus t is purely epimorphic by smallness of i.

A relative projective cover of $X \in \mathrm{Ob} \mathcal{E}$ is a pure epimorphism $P \xrightarrow{p} X$ in \mathcal{E} such that P is relatively projective and such that Kern $p \rightarrow P$ is small; cf. [8, 2.8.31].
We say that \mathcal{E} has relative projective covers if for each $X \in \mathrm{Ob} \mathcal{E}$, there exists a relative projective cover $P \xrightarrow{p} X$.

Lemma 3 Suppose given a relative projective cover $P \xrightarrow{p} X$ in \mathcal{E}. Suppose given $P \xrightarrow{s} P$ such that $s p=p$. Then s is an isomorphism.

Proof. We complete to a pure short exact sequence $K \xrightarrow{k} P \xrightarrow{p} X$. We obtain a morphism

of pure short exact sequences. Since the left hand side quadrangle is a pure square, we conclude that s is purely epimorphic by smallness of $K \xrightarrow{k} P$. Hence s is split epimorphic by relative projectivity of P; cf. [2, Rem. 7.4]. Let $L \xrightarrow{\ell} P$ be a kernel of s. Since ℓ factors over the small morphism k, it is small as well. Since ℓ is split monomorphic, we have $L \simeq 0$. Thus s is an isomorphism.

Proposition 4 Suppose that the exact category \mathcal{E} is weakly idempotent complete and has relative projective covers.

Then $\Omega: \underline{\mathcal{E}} \longrightarrow \underline{\mathcal{E}}$ maps each monomorphism to a coretraction. In particular, Ω preserves monomorphisms.

Proof. We may use relative projective covers to construct Ω in $(*)$. Then Lemma 3 allows us to apply Lemma 2.

2 Examples for adjoints of the Heller operator Ω

Let R be a principal ideal domain, with a maximal ideal generated by an element $\pi \in R$.

Let

$$
A:=\left(R / \pi^{3}\right)(e \xrightarrow{a} f) .
$$

I.e. A is the path algebra of $e \xrightarrow{a} f$ over the ground ring R / π^{3}. It has primitive idempotents e and f, and $a \in e A f$.
An object in mod $-A$ is given by a morphism $X \longrightarrow Y$ in $\bmod -\left(R / \pi^{3}\right)$. A morphism in mod- A is given by a commutative quadrangle in $\bmod -\left(R / \pi^{3}\right)$.

2.1 Example of a left adjoint

2.1.1 A list of indecomposables

Define the following objects in mod $-A$.

$$
\begin{aligned}
& P_{1}:=\left(R / \pi^{3} \xrightarrow{1} R / \pi^{3}\right) \quad P_{2}:=\left(0 \longrightarrow R / \pi^{3}\right) \\
& X_{1}:=(R / \pi \xrightarrow{1} R / \pi) \quad X_{14}:=\left(R / \pi^{3} \xrightarrow{\pi^{2}} R / \pi^{3}\right) \\
& X_{2}:=\left(R / \pi^{2} \xrightarrow{1} R / \pi^{2}\right) \quad X_{15}:=\left(R / \pi^{3} \longrightarrow 0\right) \\
& X_{3} \quad:=\left(R / \pi^{2} \xrightarrow{1} R / \pi\right) \\
& X_{4} \quad:=\left(R / \pi^{3} \xrightarrow{1} R / \pi^{2}\right) \\
& X_{5}:=\left(R / \pi^{2} \xrightarrow{\pi} R / \pi^{3}\right) \\
& X_{6} \quad:=\left(R / \pi \xrightarrow{\pi} R / \pi^{2}\right) \\
& X_{16}:=\left(R / \pi^{2} \oplus R / \pi^{3} \xrightarrow{\left(\begin{array}{ll}
1 & \pi \\
10
\end{array}\right)} R / \pi \oplus R / \pi^{3}\right) \\
& X_{17}:=\left(R / \pi \oplus R / \pi^{3} \xrightarrow{\left(\begin{array}{cc}
\pi & \pi^{2} \\
1 & 0
\end{array}\right)} R / \pi^{2} \oplus R / \pi^{3}\right) \\
& X_{18}:=\left(R / \pi \oplus R / \pi^{3} \xrightarrow{\binom{0 \pi^{2}}{1 \pi}} R / \pi \oplus R / \pi^{3}\right) \\
& X_{19}:=\left(R / \pi \xrightarrow{\pi^{2}} R / \pi^{3}\right) \\
& X_{7}:=\left(R / \pi^{2} \xrightarrow{(1 \pi)} R / \pi \oplus R / \pi^{3}\right) \quad X_{20}:=\left(R / \pi^{3} \xrightarrow{1} R / \pi\right) \\
& X_{8} \quad:=\left(R / \pi \oplus R / \pi^{3} \xrightarrow{\binom{\pi}{1}} R / \pi^{2}\right) \quad X_{21} \quad:=(R / \pi \longrightarrow 0) \\
& X_{9}:=\left(R / \pi^{3} \xrightarrow{\pi} R / \pi^{3}\right) \quad X_{22}:=(0 \longrightarrow R / \pi) \\
& X_{10}:=\left(R / \pi^{2} \longrightarrow 0\right) \\
& X_{23}:=\left(R / \pi^{3} \xrightarrow{\pi} R / \pi^{2}\right) \\
& X_{11}:=\left(0 \longrightarrow R / \pi^{2}\right) \quad X_{24}:=\left(R / \pi^{2} \xrightarrow{\pi^{2}} R / \pi^{3}\right) \\
& X_{12}:=\left(R / \pi \oplus R / \pi^{3} \xrightarrow{\binom{\pi^{2}}{\pi}} R / \pi^{3}\right) \quad X_{25}:=\left(R / \pi^{2} \xrightarrow{\pi} R / \pi^{2}\right) \\
& X_{13}:=\left(R / \pi^{3} \xrightarrow{(1 \pi)} R / \pi \oplus R / \pi^{3}\right)
\end{aligned}
$$

A matrix inspection yields the

Lemma 5

(1) For each projective indecomposable A-module P, there exists a unique $i \in[1,2]$ such that $P \simeq P_{i}$.
(2) For each nonprojective indecomposable A-module X, there exists a unique $i \in[1,25]$ such that $X \simeq X_{i}$.

2.1.2 Construction of a left adjoint

Our aim in this section is to computationally verify the

Proposition 6 Suppose given a prime $p \in[2,997]$. Suppose that $R=\mathbf{F}_{p}[X]$ and $\pi=X$.
Then the Heller operator $\Omega: \underline{\bmod -} A \longrightarrow \underline{\bmod -A}$ has a left adjoint.

For ease of Magma input, we have used that

$$
A \simeq \mathbf{F}_{p}\left({ }_{u} G^{a} e \stackrel{a}{\longrightarrow}\right) /\left(u^{3}, v^{3}, u a-a v\right)
$$

as \mathbf{F}_{p}-algebras.
To reduce the calculation of this adjoint functor to the proof of the representability of certain functors, we use

Lemma 7 ([9, 16.4.5, 4.5.1]) Suppose given categories \mathcal{C} and \mathcal{D} and a functor $\mathcal{C} \xrightarrow{F} \mathcal{D}$.
Suppose that

$$
\begin{aligned}
\mathcal{C} & \xrightarrow{\mathcal{D}(Y, F(-))} \\
\left(X \xrightarrow{x} X^{\prime}\right) & \longmapsto \text { Sets } \\
& \left.\longmapsto \mathcal{D}(Y, F X) \xrightarrow{\mathcal{D}(Y, F x)} \mathcal{D}\left(Y, F X^{\prime}\right)\right)
\end{aligned}
$$

is representable for each $Y \in \operatorname{Ob} \mathcal{D}$.
Then F has a left adjoint.
More precisely, given a map $\mathrm{ObC} \stackrel{\mathcal{C l}}{ }_{\gamma}^{\gamma} \mathrm{Ob} \mathcal{D}$ and an isomorphism

$$
\mathcal{D}(Y, F(-)) \xrightarrow{\varphi_{Y}} \mathcal{d}(Y \gamma,-)
$$

for $Y \in \operatorname{Ob} \mathcal{D}$, there exists a left adjoint $\mathcal{C} \stackrel{G}{\leftrightarrows} \mathcal{D}$ to F, i.e. $G \dashv F$, such that, writing

$$
\varepsilon Y:=\left(1_{Y \gamma}\right)\left(\varphi_{Y}(Y \gamma)\right)^{-}: Y \longrightarrow F(Y \gamma)
$$

for $Y \in \operatorname{Ob} \mathcal{D}$, we have

$$
G\left(Y \xrightarrow{y} Y^{\prime}\right)=\left(Y \gamma \xrightarrow{\left(y \cdot \varepsilon Y^{\prime}\right)\left(\varphi_{Y}\left(Y^{\prime} \gamma\right)\right)} Y^{\prime} \gamma\right)
$$

for $Y \xrightarrow{y} Y$ in \mathcal{D}.

Thus in order to construct the left adjoint to Ω on $\underline{\bmod -} A$, it suffices to show that the functor $\underline{\bmod -A}\left(X_{i}, \Omega(-)\right)$ is representable $i \in[1,25]$. We shall do so by an actual construction of an isotransformation from a Hom-functor.

Suppose given $i \in[1,25]$. Such an isotransformation is necessarily of the form

$$
\begin{aligned}
\underline{\bmod -A}\left(S X_{i}, Y\right) & \longrightarrow \\
{[f] } & \longmapsto\left[\epsilon_{i}\right] \cdot \Omega[f]
\end{aligned}
$$

for some $S X_{i} \in \operatorname{Ob} \underline{\text { mod }} A$ and some A-linear map $\epsilon_{i}: X_{i} \longrightarrow \Omega S X_{i}$, where $Y \in \operatorname{Ob} \bmod -A$.
So it suffices to find an A-module $S X_{i}$ and an A-linear map $\epsilon_{i}: X_{i} \longrightarrow \Omega S X_{i}$ such that the induced map

$$
\begin{array}{rll}
\underline{\bmod -A}\left(S X_{i}, X_{j}\right) & \longrightarrow & \bmod -A\left(X_{i}, \Omega X_{j}\right) \tag{**}\\
{[f]} & \longmapsto & {\left[\epsilon_{i}\right] \cdot \Omega[f]}
\end{array}
$$

is an isomorphism for $j \in[1,25]$.
In particular, given an automorphism α of X_{i} in mod- A, an automorphism β of $S X_{i}$ in mod- A and a valid such morphism $\left[\epsilon_{i}\right]$, then $\alpha \cdot\left[\epsilon_{i}\right] \cdot \Omega \beta$ is another valid such morphism, sometimes of a simpler shape.
To show that a guess for $S X_{i}$ is in fact the sought-for representing object, we make use of the fact that $\bmod -A\left(X_{i}, \Omega S X_{i}\right)$ is finite, so that we have only a finite set of candidates for ϵ_{i}. Then to check whether the candidate-induced maps $(* *)$ are isomorphisms, is also feasible via Magma, using in particular its commands ProjectiveCover, AHom and PHom; cf. [1].

We obtain

$$
\begin{array}{rlllll}
S X_{1} & =X_{2} & \Omega S X_{1} & =X_{1} & S X_{14}=X_{5} & \Omega S X_{14}=X_{19} \\
S X_{2} & =X_{1} & \Omega S X_{2} & =X_{2} & S X_{15}=0 & \Omega S X_{15}=0 \\
S X_{3} & =X_{2} & \Omega S X_{3}=X_{1} & S X_{16}=X_{2} \oplus X_{19} & \Omega S X_{16}=X_{1} \oplus X_{5} \\
S X_{4} & =X_{1} & \Omega S X_{4}=X_{2} & S X_{17}=X_{1} \oplus X_{5} & \Omega S X_{17}=X_{2} \oplus X_{19} \\
S X_{5} & =X_{19} & \Omega S X_{5}=X_{5} & S X_{18}=X_{6} & \Omega S X_{18}=X_{7} \\
S X_{6}=X_{7} & \Omega S X_{6}=X_{6} & S X_{19}=X_{5} & \Omega S X_{19}=X_{19} \\
S X_{7}=X_{6} & \Omega S X_{7}=X_{7} & S X_{20}=X_{2} & \Omega S X_{20}=X_{1} \\
S X_{8}=X_{1} & \Omega S X_{8}=X_{2} & S X_{21}=0 & \Omega S X_{21}=0 \\
S X_{9}=X_{19} & \Omega S X_{9}=X_{5} & S X_{22}=X_{11} & \Omega S X_{22}=X_{22} \\
S X_{10}=0 & \Omega S X_{10}=0 & S X_{23}=X_{7} & \Omega S X_{23}=X_{6} \\
S X_{11}=X_{22} & \Omega S X_{11}=X_{11} & S X_{24}=X_{5} & \Omega S X_{24}=X_{19} \\
S X_{12}=X_{19} & \Omega S X_{12}=X_{5} & S X_{25}=X_{7} & \Omega S X_{25}=X_{6} \\
S X_{13}=X_{6} & \Omega S X_{13}=X_{7} & & &
\end{array}
$$

and

$$
\begin{aligned}
& \left(\begin{array}{c}
X_{1} \\
\epsilon_{1} \downarrow \\
\Omega S X_{1}
\end{array}\right)=\left(\begin{array}{cr}
R / \pi \xrightarrow{1} R / \pi \\
1 \downarrow & \downarrow \downarrow \\
R / \pi \xrightarrow{1} R / \pi
\end{array}\right) \quad\left(\begin{array}{c}
X_{14} \\
\epsilon_{14} \downarrow \\
\Omega S X_{14}
\end{array}\right)=\left(\begin{array}{cc}
R / \pi^{3} \xrightarrow{\pi^{2}} R / \pi^{3} \\
1 \downarrow & \downarrow 1 \\
R / \pi \xrightarrow{\pi^{2}} R / \pi^{3}
\end{array}\right) \\
& \left(\begin{array}{c}
X_{2} \\
\epsilon_{2} \downarrow \\
\Omega S X_{2}
\end{array}\right)=\left(\begin{array}{c}
R / \pi^{2} \xrightarrow{1} R / \pi^{2} \\
1 \downarrow \\
R / \pi^{2} \longrightarrow 1 \\
\downarrow \\
1
\end{array}\right) \quad\left(\begin{array}{c}
\pi^{2}
\end{array}\right) \quad\left(\begin{array}{c}
X_{15} \\
\epsilon_{15} \downarrow \\
\Omega S X_{15}
\end{array}\right)=\left(\begin{array}{c}
R / \pi^{3} \longrightarrow 0 \\
\downarrow \\
0 \longrightarrow
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{c}
X_{6} \\
\epsilon_{6} \downarrow \\
\Omega S X_{6}
\end{array}\right)=\left(\begin{array}{cc}
R / \pi \xrightarrow{\pi} R / \pi^{2} \\
1 \downarrow & \downarrow 1 \\
R / \pi \xrightarrow[\longrightarrow]{ } R / \pi^{2}
\end{array}\right) \quad\left(\begin{array}{c}
X_{19} \\
\epsilon_{19} \downarrow \\
\Omega S X_{19}
\end{array}\right)=\left(\begin{array}{c}
R / \pi \xrightarrow{\pi^{2}} R / \pi^{3} \\
1 \downarrow \\
R / \pi \xrightarrow{2} R / \hbar^{2} \\
R / \pi^{3}
\end{array}\right) \\
& \left(\begin{array}{c}
X_{7} \\
\epsilon_{7} \downarrow \\
\Omega S X_{7}
\end{array}\right)=\left(\begin{array}{cc}
R / \pi^{2} \xrightarrow{(1 \pi)} R / \pi \oplus R / \pi^{3} \\
1 \downarrow & \downarrow\binom{10}{0} \\
R / \pi^{2} \xrightarrow{(1 \pi)} R / \pi \oplus R / \pi^{3}
\end{array}\right) \quad\left(\begin{array}{c}
X_{20} \\
\epsilon_{20} \downarrow \\
\Omega S X_{20}
\end{array}\right)=\left(\begin{array}{cc}
R / \pi^{3} \xrightarrow{1} R / \pi \\
1 \downarrow & \downarrow 1 \\
R / \pi \xrightarrow[\longrightarrow]{ } R / \pi
\end{array}\right) \\
& \left(\begin{array}{c}
X_{8} \\
\epsilon_{8} \downarrow \\
\Omega S X_{8}
\end{array}\right)=\left(\begin{array}{cr}
R / \pi \oplus R / \pi^{3} \xrightarrow{\binom{\pi}{1}} R R / \pi^{2} \\
\left(\begin{array}{l}
\pi \\
1
\end{array} \downarrow\right. & \\
R / \pi^{2} \longrightarrow & \downarrow 1 \\
& R / \pi^{2}
\end{array}\right) \quad\left(\begin{array}{c}
X_{21} \\
\epsilon_{21} \downarrow \\
\Omega S X_{21}
\end{array}\right)=\left(\begin{array}{c}
R / \pi \longrightarrow 0 \\
\downarrow \\
0 \longrightarrow
\end{array}\right) \\
& \left(\begin{array}{c}
X_{9} \\
\epsilon_{9} \downarrow \\
\Omega S X_{9}
\end{array}\right)=\left(\begin{array}{cc}
R / \pi^{3} \xrightarrow{\pi} R / \pi^{3} \\
1 \downarrow & \\
& \downarrow 1 \\
R / \pi^{2} \xrightarrow{4} & R / \pi^{3}
\end{array}\right) \quad\left(\begin{array}{c}
X_{22} \\
\epsilon_{22} \downarrow \\
\Omega S X_{22}
\end{array}\right)=\left(\begin{array}{cc}
0 \longrightarrow R / \pi \\
\downarrow & \downarrow^{1} \\
0 \longrightarrow R / \pi
\end{array}\right) \\
& \left(\begin{array}{c}
X_{10} \\
\epsilon_{10} \downarrow \\
\Omega S X_{10}
\end{array}\right)=\left(\begin{array}{cc}
R / \pi^{2} \longrightarrow 0 \\
\downarrow & \downarrow \\
0 \longrightarrow & 0
\end{array}\right) \\
& \left(\begin{array}{c}
X_{11} \\
\epsilon_{11} \downarrow \\
\Omega S X_{11}
\end{array}\right)=\left(\begin{array}{l}
0 \longrightarrow R / \pi^{2} \\
\downarrow \\
0 \longrightarrow R / \pi^{2}
\end{array}\right) \quad\left(\begin{array}{c}
X_{24} \\
\epsilon_{24} \downarrow \\
\Omega S X_{24}
\end{array}\right)=\left(\begin{array}{cc}
R / \pi^{2} \xrightarrow{2} \xrightarrow{2} R / \pi^{3} \\
1 \downarrow & \downarrow 1 \\
R / \pi \xrightarrow{2} R / \pi^{3}
\end{array}\right) \\
& \left(\begin{array}{c}
X_{23} \\
\epsilon_{23} \downarrow \\
\Omega S X_{23}
\end{array}\right)=\left(\begin{array}{ccc}
R / \pi^{3} \xrightarrow{\pi} R / \pi^{2} \\
1 \downarrow & & \downarrow 1 \\
R / \pi \xrightarrow{ } \quad R / \pi^{2}
\end{array}\right) \\
& \left(\begin{array}{c}
X_{12} \\
\epsilon_{12} \downarrow \\
\Omega S X_{12}
\end{array}\right)=\left(\begin{array}{c}
R / \pi \oplus R / \pi^{3} \xrightarrow{\left(\pi^{2}\right)} R / \pi^{3} \\
\binom{\pi}{1} \downarrow \\
R / \pi^{2} \xrightarrow{\pi} \quad \downarrow^{1} \\
R / \pi^{3}
\end{array}\right) \quad\left(\begin{array}{c}
X_{25} \\
\epsilon_{25} \downarrow \\
\Omega S X_{25}
\end{array}\right)=\left(\begin{array}{c}
R / \pi^{2} \xrightarrow{\pi} R / \pi^{2} \\
1 \downarrow \\
R / \pi \xrightarrow[\longrightarrow]{ } R / \pi^{2}
\end{array}\right) \\
& \left(\begin{array}{c}
X_{13} \\
\epsilon_{13} \downarrow \\
\Omega S X_{13}
\end{array}\right)=\left(\begin{array}{cc}
R / \pi^{3} \xrightarrow{(1 \pi)} R / \pi \oplus R / \pi^{3} \\
1 \downarrow & \downarrow\binom{10}{0} \\
R / \pi^{2} \xrightarrow{(1 \pi)} & 1 / \pi \oplus R / \pi^{3}
\end{array}\right)
\end{aligned}
$$

Remark 8 Keep the assumptions of Proposition 6.
We have $(\Omega \circ S)^{2} Y \simeq(\Omega \circ S) Y$ for $Y \in \operatorname{Ob} \bmod -A$.

The unit of the adjunction $S \dashv \Omega$ at an A-module $X \xrightarrow{f} Y$ is represented by a factorisation

over an image I_{f} of the module-defining morphism f.
I do not know why.

2.2 Another example of a left adjoint

Recall that R is a principal ideal domain, with a maximal ideal generated by an element $\pi \in R$.

2.2.1 A list of indecomposables

Let

$$
B:=A /\left(\pi^{2} a\right)=\left(R / \pi^{3}\right)(e \xrightarrow{a} f) /\left(\pi^{2} a\right) .
$$

Indecomposable nonprojective B-modules become indecomposable nonprojective A-modules via restriction along the residue class map $A \longrightarrow B$.
We list the 24 representatives of isoclasses of indecomposable nonprojective B-modules in the numbering used in $\S 2.1 .1$ as follows.

$$
\begin{aligned}
& X_{1}, X_{2}, X_{3}, X_{5}, X_{6}, X_{7}, X_{8}, X_{9}, X_{10}, X_{11}, X_{12}, X_{13}, X_{14}, X_{15}, X_{16} \\
& X_{17}, X_{18}, X_{19}, X_{20}, X_{21}, X_{22}, X_{23}, X_{24}, X_{25}
\end{aligned}
$$

2.2.2 Construction of a left adjoint

Our aim in this section is to computationally verify the

Proposition 9 Suppose given a prime $p \in[2,997]$. Suppose that $R=\mathbf{F}_{p}[X]$ and $\pi=X$.
Then the Heller operator $\Omega: \underline{\bmod }-B \longrightarrow \underline{\bmod }-B$ has a left adjoint.

We proceed analogously to $\S 2.1$.

We obtain

$S X_{1}$	$=X_{2}$	$\Omega S X_{1}$	$=X_{21}$	$S X_{14}$	$=X_{2} \oplus X_{9}$	$\Omega S X_{14}=X_{21} \oplus X_{11}$
$S X_{2}$	$=X_{1}$	$\Omega S X_{2}$	$=X_{3}$	$S X_{15}$	$=X_{2}$	$\Omega S X_{15}=X_{21}$
$S X_{3}$	$=X_{1}$	$\Omega S X_{3}$	$=X_{3}$	$S X_{16}=X_{1} \oplus X_{17}$	$\Omega S X_{16}=X_{3} \oplus X_{25}$	
$S X_{5}$	$=X_{17}$	$\Omega S X_{5}$	$=X_{25}$	$S X_{17}=X_{1} \oplus X_{2} \oplus X_{9}$	$\Omega S X_{17}=X_{21} \oplus X_{3} \oplus X_{11}$	
$S X_{6}$	$=X_{2} \oplus X_{13}$	$\Omega S X_{6}$	$=X_{21} \oplus X_{22}$	$S X_{18}=X_{1} \oplus X_{2} \oplus X_{9}$	$\Omega S X_{18}=X_{21} \oplus X_{3} \oplus X_{11}$	
$S X_{7}$	$=X_{1} \oplus X_{9}$	$\Omega S X_{7}$	$=X_{3} \oplus X_{11}$	$S X_{19}=X_{2} \oplus X_{9}$	$\Omega S X_{19}=X_{21} \oplus X_{11}$	
$S X_{8}$	$=X_{1} \oplus X_{2}$	$\Omega S X_{8}$	$=X_{21} \oplus X_{3}$	$S X_{20}=X_{1}$	$\Omega S X_{20}=X_{3}$	
$S X_{9}$	$=X_{17}$	$\Omega S X_{9}$	$=X_{25}$	$S X_{21}=X_{2}$	$\Omega S X_{21}=X_{21}$	
$S X_{10}$	$=X_{2}$	$\Omega S X_{10}=X_{21}$	$S X_{22}=X_{13}$	$\Omega S X_{22}=X_{22}$		
$S X_{11}$	$=X_{9}$	$\Omega S X_{11}=X_{11}$	$S X_{23}=X_{17}$	$\Omega S X_{23}=X_{25}$		
$S X_{12}$	$=X_{2} \oplus X_{17}$	$\Omega S X_{12}=X_{21} \oplus X_{25}$	$S X_{24}=X_{2} \oplus X_{9}$	$\Omega S X_{24}=X_{21} \oplus X_{11}$		
$S X_{13}$	$=X_{1} \oplus X_{9}$	$\Omega S X_{13}$	$=X_{3} \oplus X_{11}$	$S X_{25}=X_{17}$	$\Omega S X_{25}=X_{25}$	

and

$$
\begin{aligned}
& \left(\begin{array}{c}
X_{1} \\
\epsilon_{1} \downarrow \\
\Omega S X_{1}
\end{array}\right)=\left(\begin{array}{l}
R / \pi \xrightarrow{1} R / \pi \\
1 \downarrow \\
\\
R / \pi \longrightarrow \\
\\
\\
\hline
\end{array}\right) \\
& \left(\begin{array}{c}
X_{2} \\
\epsilon_{2} \downarrow \\
\Omega S X_{2}
\end{array}\right)=\left(\begin{array}{ccc}
R / \pi^{2} \xrightarrow{1} R / \pi^{2} \\
1 \downarrow & & \downarrow 1 \\
R / \pi^{2} \xrightarrow{1} & R / \pi
\end{array}\right) \\
& \left(\begin{array}{c}
X_{3} \\
\epsilon_{3} \downarrow \\
\Omega S X_{3}
\end{array}\right)=\left(\begin{array}{ccc}
R / \pi^{2} \xrightarrow{1} R / \pi \\
1 \downarrow & & \downarrow 1 \\
R / \pi^{2} \xrightarrow{ } R / \pi
\end{array}\right) \\
& \left(\begin{array}{c}
X_{14} \\
\epsilon_{14} \downarrow \\
\Omega S X_{14}
\end{array}\right)=\left(\begin{array}{cc}
R / \pi^{3} \xrightarrow{\pi^{2}} R / \pi^{3} \\
1 \downarrow & \\
R / \pi \xrightarrow{1} R / \pi^{2}
\end{array}\right) \\
& \left(\begin{array}{c}
X_{15} \\
\epsilon_{15} \downarrow \\
\Omega S X_{15}
\end{array}\right)=\left(\begin{array}{ll}
R / \pi^{3} \longrightarrow 0 \\
1 \downarrow & \downarrow \\
R / \pi \longrightarrow & 0
\end{array}\right) \\
& \left(\begin{array}{c}
X_{16} \\
\epsilon_{16} \downarrow \\
\Omega S X_{16}
\end{array}\right)=\left(\begin{array}{cc}
R / \pi^{2} \oplus R / \pi^{3} \xrightarrow{\left(\begin{array}{ll}
1 & \pi
\end{array}\right)} R / \pi \oplus R / \pi^{3} \\
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \downarrow & \downarrow\left(\begin{array}{ll}
10 \\
0 & 1
\end{array}\right) \\
R / \pi^{2} \oplus R / \pi^{2} \xrightarrow{\left(\begin{array}{ll}
1 & 0 \\
0 & \pi
\end{array}\right)} R / \pi \oplus R / \pi^{2}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{c}
X_{6} \\
\epsilon_{6} \downarrow \\
\Omega S X_{6}
\end{array}\right)=\left(\begin{array}{c}
R / \pi \xrightarrow{\pi} R / \pi^{2} \\
1 \downarrow \\
R / \pi \xrightarrow{2} R / \pi
\end{array}\right) \\
& \left(\begin{array}{c}
X_{19} \\
\epsilon_{19} \downarrow \\
\Omega S X_{19}
\end{array}\right)=\left(\begin{array}{cc}
R / \pi \xrightarrow{\pi^{2}} R / \pi^{3} \\
1 \downarrow & \downarrow 1 \\
R / \pi \xrightarrow{0} R / \pi^{2}
\end{array}\right) \\
& \left(\begin{array}{c}
X_{7} \\
\epsilon_{7} \downarrow \\
\Omega S X_{7}
\end{array}\right)=\left(\begin{array}{cr}
R / \pi^{2} \xrightarrow{(1 \pi)} R / \pi \oplus R / \pi^{3} \\
1 \downarrow & \downarrow\binom{1-\pi}{0} \\
R / \pi^{2} \xrightarrow{(10)} R / \pi \oplus R / \pi^{2}
\end{array}\right) \quad\left(\begin{array}{c}
X_{20} \\
\epsilon_{20} \downarrow \\
\Omega S X_{20}
\end{array}\right)=\left(\begin{array}{cc}
R / \pi^{3} \xrightarrow{1} R / \pi \\
1 \downarrow & \downarrow 1 \\
R / \pi^{2} \xrightarrow[\longrightarrow]{l} R / \pi
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{c}
X_{8} \\
\epsilon_{8} \downarrow \\
\Omega S X_{8}
\end{array}\right)=\left(\begin{array}{c}
R / \pi \oplus R / \pi^{3} \xrightarrow{\binom{\pi}{1}} R / \pi^{2} \\
\left(\begin{array}{ll}
10 \\
0 & 0
\end{array}\right) \downarrow \\
\left.R / \pi \oplus R / \pi^{2} \xrightarrow{\binom{0}{1}} \begin{array}{l}
\downarrow 1 \\
\hline
\end{array}\right)
\end{array}\right) \quad\left(\begin{array}{c}
X_{21} \\
\epsilon_{21} \downarrow \\
\Omega S X_{21}
\end{array}\right)=\left(\begin{array}{c}
R / \pi \longrightarrow 0 \\
1 \downarrow \\
R / \pi \longrightarrow 0
\end{array}\right) \\
& \left(\begin{array}{c}
X_{9} \\
\epsilon_{9} \downarrow \\
\Omega S X_{9}
\end{array}\right)=\left(\begin{array}{cc}
R / \pi^{3} \xrightarrow{\pi} R / \pi^{3} \\
1 \downarrow & \downarrow 1 \\
R / \pi^{2} \xrightarrow{\longrightarrow} R / \pi^{2}
\end{array}\right) \quad\left(\begin{array}{c}
X_{22} \\
\epsilon_{22} \downarrow \\
\Omega S X_{22}
\end{array}\right)=\left(\begin{array}{cc}
0 \longrightarrow R / \pi \\
\downarrow & \downarrow 1 \\
0 \longrightarrow R / \pi
\end{array}\right) \\
& \left(\begin{array}{c}
X_{10} \\
\epsilon_{10} \downarrow \\
\Omega S X_{10}
\end{array}\right)=\left(\begin{array}{cr}
R / \pi^{2} \longrightarrow 0 \\
1 \downarrow & \downarrow \\
R / \pi \longrightarrow & 0
\end{array}\right) \quad\left(\begin{array}{c}
X_{23} \\
\epsilon_{23} \downarrow \\
\Omega S X_{23}
\end{array}\right)=\left(\begin{array}{c}
R / \pi^{3} \xrightarrow{\pi} R / \pi^{2} \\
1 \downarrow \\
R / \pi^{2} \xrightarrow{\pi} R / \pi^{2}
\end{array}\right) \\
& \left(\begin{array}{c}
X_{11} \\
\epsilon_{11} \downarrow \\
\Omega S X_{11}
\end{array}\right)=\left(\begin{array}{c}
0 \longrightarrow R / \pi^{2} \\
\downarrow \\
\downarrow \longrightarrow R / \pi^{2}
\end{array}\right) \quad\left(\begin{array}{c}
X_{24} \\
\epsilon_{24} \downarrow \\
\Omega S X_{24}
\end{array}\right)=\left(\begin{array}{c}
R / \pi^{2} \xrightarrow{\pi^{2}} R / \pi^{3} \\
1 \downarrow \\
R / \pi \xrightarrow{2} \quad R / \pi^{2}
\end{array}\right) \\
& \left(\begin{array}{c}
X_{12} \\
\epsilon_{12} \downarrow \\
\Omega S X_{12}
\end{array}\right)=\left(\begin{array}{c}
R / \pi \oplus R / \pi^{3} \xrightarrow{\binom{\pi^{2}}{\pi}} R / \pi^{3} \\
\left(\begin{array}{ll}
10 \\
0 & 1
\end{array}\right) \downarrow \\
\left.R / \pi \oplus R / \pi^{2} \xrightarrow{\binom{0}{\pi}} \begin{array}{l}
\downarrow 1 \\
\hline
\end{array}\right) \quad \downarrow / \pi^{2}
\end{array}\right) \quad\left(\begin{array}{c}
X_{25} \\
\epsilon_{25} \downarrow \\
\Omega S X_{25}
\end{array}\right)=\left(\begin{array}{c}
R / \pi^{2} \xrightarrow{\pi} R / \pi^{2} \\
1 \downarrow \\
R / \pi^{2} \xrightarrow[\longrightarrow]{\pi} R / \pi^{2}
\end{array}\right) \\
& \left(\begin{array}{c}
X_{13} \\
\epsilon_{13} \downarrow \\
\Omega S X_{13}
\end{array}\right)=\left(\begin{array}{cr}
R / \pi^{3} \xrightarrow{(1 \pi)} R / \pi \oplus R / \pi^{3} \\
1 \downarrow & \downarrow\binom{1-\pi}{0} \\
R / \pi^{2} \xrightarrow{(10)} R / \pi \oplus R / \pi^{2}
\end{array}\right)
\end{aligned}
$$

Cf. §2.1.

Remark 10 Keep the assumptions of Proposition 9.
We have $(\Omega \circ S)^{2} Y \simeq(\Omega \circ S) Y$ for $Y \in$ Ob mod- B.
Given an R / π^{3}-module X, we write $\bar{X}:=X / \pi^{2} X$ and $\operatorname{Ann}_{\pi} \bar{X}:=\{\bar{x} \in \bar{X}: \pi \bar{x}=0\}$.
The unit of the adjunction $S \dashv \Omega$ at a B-module $X \xrightarrow{f} Y$ is represented by the composite

where the vertical maps are the respective residue class maps, and the middle and lower horizontal maps are the induced maps.
I do not know why.

2.3 Further examples of left adjoints

Let

$$
\begin{array}{ll}
C_{1}:=A /\left(\pi^{2} f\right) & =\left(R / \pi^{3}\right)(e \xrightarrow{a} f) /\left(\pi^{2} f\right) \\
C_{2}:=A /(\pi f) & =\left(R / \pi^{3}\right)(e \xrightarrow{a} f) /(\pi f) \\
C_{3}:=A /\left(\pi^{2} e, \pi^{2} f\right) & =\left(R / \pi^{2}\right)(e \xrightarrow{a} f) \\
C_{4}:=A /(\pi a) & =\left(R / \pi^{3}\right)(e \xrightarrow{a} f) /(\pi a) \\
C_{5}:=A /\left(\pi a, \pi^{2} f\right) & =\left(R / \pi^{3}\right)(e \xrightarrow{a} f) /\left(\pi a, \pi^{2} f\right) \\
C_{6}:=A /\left(\pi^{2} e\right) & =\left(R / \pi^{3}\right)(e \xrightarrow{a} f) /\left(\pi^{2} e\right) \\
C_{7}:=A /(\pi e) & =\left(R / \pi^{3}\right)(e \xrightarrow{a} f) /(\pi e) \\
C_{8}:=A /\left(\pi^{2} e, \pi a\right) & =\left(R / \pi^{3}\right)(e \xrightarrow{a} f) /\left(\pi^{2} e, \pi a\right)
\end{array}
$$

Proposition 11 Suppose given a prime $p \in[2,997]$. Suppose that $R=\mathbf{F}_{p}[X]$ and $\pi=X$.
Then the Heller operator $\Omega: \underline{\bmod }-C_{j} \longrightarrow \underline{\bmod -C_{j}}$ has a left adjoint for $j \in[1,8]$.
Remark 12 Keep the assumptions of Proposition 11.
We have $(\Omega \circ S)^{2} Y \simeq(\Omega \circ S) Y$ for $Y \in \mathrm{Ob} \underline{\bmod -C_{j}}$ for $j \in[1,8] \backslash\{5\}$.
For $j=5$, we have

$$
\begin{aligned}
(\Omega \circ S) X_{10} & =X_{10} \oplus X_{21} \\
(\Omega \circ S) X_{21} & =X_{21}
\end{aligned}
$$

in the notation of $\S 2.1 .1$, i.e.

$$
\begin{aligned}
& (\Omega \circ S)\left(R / \pi^{2} \longrightarrow 0\right)=\left(R / \pi^{2} \longrightarrow 0\right) \oplus(R / \pi \longrightarrow 0) \\
& (\Omega \circ S)(R / \pi \longrightarrow 0)=(R / \pi \longrightarrow 0)
\end{aligned}
$$

2.4 Counterexample: no right adjoint

Recall from $\S 2.3$ that $C_{3}=\left(R / \pi^{2}\right)(e \xrightarrow{a} f)$. As representatives of isoclasses of nonprojective C_{3}-modules we obtain, in the notation of $\S 2.1 .1$,

$$
\begin{array}{ll}
Y_{1}:=X_{1}=(R / \pi \xrightarrow{1} R / \pi) & Y_{5}:=X_{21}=(R / \pi \longrightarrow 0) \\
Y_{2}:=X_{3}=\left(R / \pi^{2} \xrightarrow{1} R / \pi\right) & Y_{6}:=X_{22}=(0 \longrightarrow R / \pi) \\
Y_{3}:=X_{6}=\left(R / \pi \xrightarrow{\pi} R / \pi^{2}\right) & Y_{7}:=X_{25}=\left(R / \pi^{2} \xrightarrow{\pi} R / \pi^{2}\right) . \\
Y_{4}:=X_{10}=(R / \pi \longrightarrow 0) &
\end{array}
$$

Remark 13 Suppose that $R=\mathbf{F}_{3}[X]$ and $\pi=X$.
The functor $\Omega: \underline{\bmod }-C_{3} \longrightarrow \underline{\bmod }-C_{3}$ does not have a right adjoint.
Proof. Magma yields
and

Write $T Y_{j} \simeq \bigoplus_{k \in[1,7]} Y_{k}^{\oplus u_{k, j}}$ for $j \in[1,7]$, where $U:=\left(u_{k, j}\right)_{k, j} \in\left(\mathbf{Z}_{\geqslant 0}\right)^{7 \times 7}$. We obtain

$$
\begin{aligned}
H^{\prime} & =\left(\operatorname{dim}_{\mathbf{F}_{3}}\left(\underline{\bmod -C_{3}}\left(\Omega Y_{i}, Y_{j}\right)\right)\right)_{i, j} \\
& =\left(\operatorname{dim}_{\mathbf{F}_{3}}\left(\underline{\bmod -C_{3}}\left(Y_{i}, T Y_{j}\right)\right)\right)_{i, j} \\
& =\left(\operatorname{dim}_{\mathbf{F}_{3}}\left({\underline{\bmod }-C_{3}}\left(Y_{i}, \bigoplus_{k \in[1,7]} Y_{k}^{\oplus u_{k, j}}\right)\right)\right)_{i, j} \\
& =\left(\sum_{k \in[1,7]} \operatorname{dim}_{\mathbf{F}_{3}}\left(\underline{\bmod -C_{3}}\left(Y_{i}, Y_{k}\right)\right) \cdot u_{k, j}\right)_{i, j} \\
& =H \cdot U .
\end{aligned}
$$

So every column of H^{\prime} is a linear combination of columns in H with coefficients in $\mathbf{Z}_{\geqslant 0}$. However, the third column of H^{\prime} would afford a coefficient $\in \mathbf{Z}_{>0}$ at the first, third or fifth column of H because its first entry equals 1 . But then its second entry would also be in $\mathbf{Z}_{>0}$, because these columns of H all have second entry equal to 1 . But this second entry equals 0 . We have arrived at a contradiction.

References

[1] Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (3-4), p. 235-265, 1997 (cf. magma.maths.usyd.edu.au).
[2] Bühler, T., Exact Categories, Exp. Math. 28 (1), p. 1-69, 2010.
[3] Heller, A., The loop-space functor in Homological Algebra, Trans. Am. Math. Soc. 96, p. 382-394, 1960.
[4] Künzer, M., Heller triangulated categories, Homology, Homotopy and Applications 9 (2), p. 233-320, 2007.
[5] Quillen, D., Higher algebraic K-theory: I, SLN 341, p. 85-147, 1973.
[6] Raussen, M; Skau, C., Interview with Jean-Pierre Serre, Notices AMS 51 (2), p. 210-214, 2004.
[7] Ringel, C. M., Schmidmeier, M., Invariant subspaces of nilpotent linear operators, I, J. reine angew. Math. 614, p. 1-52, 2008.
[8] Rowen, L. H., Ring Theory, Student Edition, Acad. Press, 1991.
[9] Schubert, H., Categories, Springer, 1972.

Matthias Künzer Lehrstuhl D für Mathematik RWTH Aachen Templergraben 64 D-52062 Aachen kuenzer@math.rwth-aachen.de www.math.rwth-aachen.de/~kuenzer

[^0]: MSC 2010: 18E30.

[^1]: ${ }^{1}$ Cf. also [6, p. 210].

