On adjoint functors of the Heller operator

Matthias Künzer

December 16, 2011

Abstract

Given an abelian category \mathcal{A} with enough projectives, we can form its stable category $\underline{\mathcal{A}} := \mathcal{A}/\operatorname{Proj}(\mathcal{A})$. The Heller operator $\Omega: \underline{\mathcal{A}} \longrightarrow \underline{\mathcal{A}}$ is characterised on an object X by a choice of a short exact sequence $\Omega X \longrightarrow P \longrightarrow X$ in \mathcal{A} with P projective. If \mathcal{A} is Frobenius, then Ω is an equivalence, hence has a left and a right adjoint. If \mathcal{A} is hereditary, then Ω is zero, hence has a left and a right adjoint. In general, Ω is neither an equivalence nor zero. In the examples we have calculated via MAGMA, it has a left adjoint, but in general not a right adjoint. If \mathcal{A} has projective covers, then Ω preserves monomorphisms; this would also follow from Ω having a left adjoint. I do not know an example where Ω does not have a left adjoint.

Contents

0	Intr	roduction	2
	0.1	The question	2
	0.2	Monomorphisms	2
	0.3	Construction of a left adjoint to the Heller operator Ω	2
	0.4	Two counterexamples	2
	0.5	Acknowledgements	
	0.6	Notations and conventions	
1	The	e Heller operator Ω	3
	1.1	Notation	3
	1.2	Preservation of monomorphisms	4
	1.3	Relative projective covers	1
2	Exa	amples for adjoints of the Heller operator Ω	6
	2.1	Example of a left adjoint	7
		2.1.1 A list of indecomposables	7
		2.1.2 Construction of a left adjoint	
	2.2	Another example of a left adjoint	11
		2.2.1 A list of indecomposables	
		2.2.2 Construction of a left adjoint	
	2.3	Further examples of left adjoints	14
	2.4	Counterexample: no right adjoint	

MSC 2010: 18E30.

0 Introduction

0.1 The question

Let \mathcal{E} be an exact category. Let $\operatorname{Proj}(\mathcal{E})$ be its full additive subcategory of relative projectives, i.e. for $P \in \operatorname{Ob}\mathcal{E}$ we have $P \in \operatorname{Ob}\operatorname{Proj}(\mathcal{E})$ if and only if $_{\mathcal{E}}(P,-)$ maps pure short exact sequences of \mathcal{E} to short exact sequences of abelian groups. Suppose that \mathcal{E} has enough relative projectives, i.e. suppose that for any $X \in \operatorname{Ob}\mathcal{E}$, there exists a pure epimorphism $P \longrightarrow X$ in \mathcal{E} with $P \in \operatorname{Ob}\operatorname{Proj}(\mathcal{E})$.

Write $\underline{\mathcal{E}} := \mathcal{E}/\operatorname{Proj}(\mathcal{E})$. The Heller operator $\Omega : \underline{\mathcal{E}} \longrightarrow \underline{\mathcal{E}}$ is characterised on a given $X \in \operatorname{Ob} \mathcal{E}$ by a choice of a pure short exact sequence

$$\Omega X \longrightarrow P \longrightarrow X$$

in \mathcal{E} with P relatively projective. This then is extended to morphisms.

We ask whether Ω has a left adjoint; cf. Question 1. I do not know a counterexample.

If \mathcal{E} is a Frobenius category, then Ω is an equivalence, thus has both a left and a right adjoint.

If \mathcal{E} is hereditary, i.e. if $\Omega \simeq 0$, then Ω has both a left and a right adjoint, viz. 0.

0.2 Monomorphisms

If a functor has a left adjoint, then it preserves monomorphisms. So first of all, we ask whether the Heller operator $\Omega: \mathcal{E} \longrightarrow \mathcal{E}$ preserves monomorphisms.

It turns out that if \mathcal{E} is weakly idempotent complete and has relative projective covers in the sense of §1.3, then Ω maps monomorphisms even to coretractions; cf. Proposition 4.

0.3 Construction of a left adjoint to the Heller operator Ω

Let $p \in [2,997]$ be a prime. Let $R := \mathbf{F}_p[X]$ and $\pi := X$.

Let
$$A := (R/\pi^3)(e \xrightarrow{a} f) \simeq {R/\pi^3 R/\pi^3 \choose 0 R/\pi^3}$$
. Let $\mathcal{E} := \text{mod-}A$.

Using Magma [1], we construct a left adjoint $S: \mathcal{E} \longrightarrow \mathcal{E}$ to Ω . We do so likewise for certain factor rings of A. Cf. Propositions 6, 9 and 11.

Let now k be a field, R := k[X] and $\pi := X$. Let $n \ge 1$. An $(R/\pi^n)(e \xrightarrow{a} f)$ -module is given by a morphism $X \xrightarrow{f} Y$ in mod- (R/π^n) . The full subcategory of mod- $(R/\pi^n)(e \xrightarrow{a} f)$ consisting of injective morphisms $X \xrightarrow{f} Y$ as modules has been intensely studied; it is of finite type if $n \le 5$, tame if n = 6, wild if $n \ge 7$; cf. [7, (0.1), (0.6)].

0.4 Two counterexamples

The functor $\Omega: \underline{\mathcal{E}} \longrightarrow \underline{\mathcal{E}}$ does not have a right adjoint in general; cf. Remark 13.

Provided $S \dashv \Omega$ exists, the composite $\Omega \circ S : \mathcal{E} \longrightarrow \mathcal{E}$ is not idempotent in general; cf. Remark 12.

0.5 Acknowledgements

SEBASTIAN THOMAS asked whether there exists a category with set of weak equivalences (C, W) that carries the structure of a Brown fibration category, but whose Ω on $C[W^{-1}]$ (1) does not have a left adjoint. In our exact category context, this is Question 1.

I thank Steffen König for help with monomorphisms, cf. §1.2. I thank Sebastian Thomas and Markus Kirschmer for help with Magma. I thank Markus Schmidmeier for help with mod- $(R/\pi^n)(e \xrightarrow{a} f)$.

0.6 Notations and conventions

- Given $a, b \in \mathbf{Z}$, we write $[a, b] := \{ z \in \mathbf{Z} : a \leqslant z \leqslant b \}$.
- Composition of morphisms is written naturally, $(\stackrel{a}{\longrightarrow}\stackrel{b}{\longrightarrow})=\stackrel{ab}{\longrightarrow}=\stackrel{a\cdot b}{\longrightarrow}$. Composition of functors is written traditionally, $(\stackrel{F}{\longrightarrow}\stackrel{G}{\longrightarrow})=\stackrel{G\circ F}{\longrightarrow}$.
- In a category \mathcal{C} , given $X, Y \in \text{Ob } \mathcal{C}$, we write $\mathcal{C}(X,Y)$ for the set of morphisms from X to Y.
- Given an isomorphism f, we write f^- for its inverse.
- In an additive category, a morphism of the form $X \xrightarrow{(1\ 0)} X \oplus Y$, or isomorphic to such a morphism, is called split monomorphic; a morphism of the form $X \oplus Y \xrightarrow{\begin{pmatrix} 1 \ 0 \end{pmatrix}} X$, or isomorphic to such a morphism, is called split epimorphic.
- In exact categories, pure monomorphisms are denoted by \longrightarrow , pure epimorphisms by \longrightarrow and pure squares, i.e. bicartesian squares with pure short exact diagonal sequence, by a box \square in the diagram.
- Given a ring A, an A-module is a finitely generated right A-module.
- Given a commutative ring A and $a \in A$, we often write A/a := A/(a) = A/aA.
- Given a noetherian ring A, we write $\underline{\text{mod-}}A := \underline{\text{mod-}}A$ for the factor category of mod-A modulo the full additive subcategory of projectives.

So in the language of $\S 1.1$ below, we consider the abelian category mod-A as an exact category with all short exact sequences declared to be pure and write $\underline{\text{mod-}}A$ for its classical stable category.

1 The Heller operator Ω

1.1 Notation

Let \mathcal{E} be an exact category in the sense of QUILLEN [5, p. 99] with enough relative projectives. We will use the notation of [4, §A.2] concerning pure short exact sequences, pure monomorphisms and pure epimorphisms.

Let $Proj(\mathcal{E}) \subseteq \mathcal{E}$ denote the full subcategory of relative projectives. Let

$$\mathcal{E} := \mathcal{E}/\operatorname{Proj}(\mathcal{E})$$

denote the classical stable category of \mathcal{E} . The residue class functor shall be denoted by

$$\begin{array}{ccc} \mathcal{E} & \longrightarrow & \underline{\mathcal{E}} \\ (X \xrightarrow{f} Y) & \longmapsto & (X \xrightarrow{[f]} Y) \ . \end{array}$$

¹Cf. also [6, p. 210].

For each $X \in \text{Ob } \mathcal{E}$, we choose a pure short exact sequence

$$(*) \qquad \Omega X \xrightarrow{i_X} PX \xrightarrow{p_X} X$$

with PX relatively projective. Let the Heller operator [3]

$$\Omega : \mathcal{E} \longrightarrow \mathcal{E}$$

be defined on the objects by the choice just made. Suppose given a morphism $X \xrightarrow{[f]} Y$ in $\underline{\mathcal{E}}$. Choose a morphism

$$\Omega X \xrightarrow{i_X} PX \xrightarrow{p_X} X$$

$$\downarrow^{f'} \qquad \downarrow^{\hat{f}} \qquad \downarrow^{f}$$

$$\Omega Y \xrightarrow{i_Y} PY \xrightarrow{p_Y} Y$$

of pure short exact sequences. Let

$$\Omega[f] := [f'].$$

Different choices of pure short exact sequences (*) yield mutually isomorphic Heller operators.

Question 1 Does Ω have a left adjoint?

I do not know a counterexample.

1.2 Preservation of monomorphisms

If $\Omega: \underline{\mathcal{E}} \longrightarrow \underline{\mathcal{E}}$ has a left adjoint, then it preserves monomorphisms. So if, for some \mathcal{E} , the functor Ω did not preserve monomorphisms, then Ω could not have a left adjoint. Under certain finiteness assumptions, however, we will show that Ω maps monomorphisms to coretractions, so in particular to monomorphisms. This is to be compared to the case of \mathcal{E} being Frobenius, where in the triangulated category $\underline{\mathcal{E}}$ all monomorphisms are split.

Lemma 2 Suppose that for $X \in \text{Ob } \mathcal{E}$ and for $s \in \mathcal{E}(PX, PX)$ such that $sp_X = p_X$, the endomorphism s is an isomorphism.

Suppose given $X \xrightarrow{f} Y$ in \mathcal{E} .

If [f] is a monomorphism, then $\Omega[f]$ is a coretraction.

In particular, Ω preserves monomorphisms.

Proof. Choose a morphism of pure short exact sequences as shown below. Insert a pullback (T, X, PY, Y) and the induced morphism $PX \xrightarrow{v} T$, having $vg = \hat{f}$ and $vq = p_X$. Insert a

kernel j of q with $jg = i_Y$.

We have $f'j = i_X v$, since $f'jq = 0 = i_X p_X = i_X vq$ and $f'jg = f'i_Y = i_X \hat{f} = i_X vg$.

We have $[q][f] = [gp_Y] = 0$. Since [f] is monomorphic, we infer that [q] = 0. Hence there exists $T \xrightarrow{u} PX$ such that $up_X = q$. On the kernels, we obtain $\Omega Y \xrightarrow{u'} \Omega X$ such that $u'i_X = ju$.

We have $vup_X = vq = p_X$. Hence vu is an isomorphism by assumption.

We obtain $f'u'i_X = f'ju = i_Xvu$. So $(f'u', vu, id_X)$ is a morphism of pure short exact sequences. Hence f'u' is an isomorphism. Thus f' is a coretraction. We conclude that $\Omega[f] = [f']$ is a coretraction.

1.3 Relative projective covers

Suppose \mathcal{E} to be weakly idempotent complete; cf. [2, Def. 7.2].

A morphism $S \xrightarrow{i} M$ in \mathcal{E} is called *small* if in each pure square

$$\begin{array}{ccc}
A \longrightarrow T \\
\downarrow & \Box & \downarrow t \\
S \stackrel{i}{\longrightarrow} M
\end{array}$$

in \mathcal{E} , the morphism $T \xrightarrow{t} M$ is purely epimorphic; cf. [8, Def. 2.8.30]. In other words, i is small iff $\binom{i}{t}$ being purely epimorphic entails t being purely epimorphic for each morphism t with same target as i. E.g. i = 0 is small, for $\binom{0}{t} = \binom{0}{1}t$ is purely epimorphic only if t is; cf. [2, Prop. 2.16].

If $S \xrightarrow{i} M$ is small and split monomorphic, then there exists

$$0 \longrightarrow S'$$

$$\downarrow \qquad \qquad \downarrow i'$$

$$S \stackrel{i}{\longrightarrow} M ,$$

forcing i' to be an isomorphism and thus S to be isomorphic to 0.

Given $\tilde{S} \xrightarrow{j} S \xrightarrow{i} M$ with $S \xrightarrow{i} M$ small, then $\tilde{S} \xrightarrow{ji} M$ is small. In fact, given t such that $\binom{ji}{t}$ is a pure epimorphism, the factorisation $\binom{ji}{t} = \binom{j}{0} \binom{i}{t}$ shows that $\binom{i}{t}$ is a pure epimorphism; cf. [2, Cor. 7.7]. Thus t is purely epimorphic by smallness of i.

A relative projective cover of $X \in \text{Ob } \mathcal{E}$ is a pure epimorphism $P \xrightarrow{p} X$ in \mathcal{E} such that P is relatively projective and such that $\text{Kern } p \longrightarrow P$ is small; cf. [8, 2.8.31].

We say that \mathcal{E} has relative projective covers if for each $X \in \mathrm{Ob}\,\mathcal{E}$, there exists a relative projective cover $P \stackrel{p}{\longrightarrow} X$.

Lemma 3 Suppose given a relative projective cover $P \stackrel{p}{\to} X$ in \mathcal{E} . Suppose given $P \stackrel{s}{\to} P$ such that sp = p. Then s is an isomorphism.

Proof. We complete to a pure short exact sequence $K \xrightarrow{k} P \xrightarrow{p} X$. We obtain a morphism

of pure short exact sequences. Since the left hand side quadrangle is a pure square, we conclude that s is purely epimorphic by smallness of $K \xrightarrow{k} P$. Hence s is split epimorphic by relative projectivity of P; cf. [2, Rem. 7.4]. Let $L \xrightarrow{\ell} P$ be a kernel of s. Since ℓ factors over the small morphism k, it is small as well. Since ℓ is split monomorphic, we have $L \simeq 0$. Thus s is an isomorphism.

Proposition 4 Suppose that the exact category \mathcal{E} is weakly idempotent complete and has relative projective covers.

Then $\Omega: \underline{\mathcal{E}} \longrightarrow \underline{\mathcal{E}}$ maps each monomorphism to a coretraction. In particular, Ω preserves monomorphisms.

Proof. We may use relative projective covers to construct Ω in (*). Then Lemma 3 allows us to apply Lemma 2.

2 Examples for adjoints of the Heller operator Ω

Let R be a principal ideal domain, with a maximal ideal generated by an element $\pi \in R$.

Let

$$A := (R/\pi^3)(e \xrightarrow{a} f)$$
.

I.e. A is the path algebra of $e \xrightarrow{a} f$ over the ground ring R/π^3 . It has primitive idempotents e and f, and $a \in eAf$.

An object in mod-A is given by a morphism $X \longrightarrow Y$ in mod- (R/π^3) . A morphism in mod-A is given by a commutative quadrangle in mod- (R/π^3) .

2.1 Example of a left adjoint

2.1.1 A list of indecomposables

Define the following objects in $\operatorname{mod-}A$.

$$P_{1} := (R/\pi^{3} \xrightarrow{1} R/\pi^{3}) \qquad P_{2} := (0 \longrightarrow R/\pi^{3})$$

$$X_{1} := (R/\pi \xrightarrow{1} R/\pi) \qquad X_{14} := (R/\pi^{3} \xrightarrow{\pi^{2}} R/\pi^{3})$$

$$X_{2} := (R/\pi^{2} \xrightarrow{1} R/\pi^{2}) \qquad X_{15} := (R/\pi^{3} \longrightarrow 0)$$

$$X_{3} := (R/\pi^{2} \xrightarrow{1} R/\pi) \qquad X_{16} := (R/\pi^{2} \oplus R/\pi^{3} \xrightarrow{\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}} R/\pi \oplus R/\pi^{3})$$

$$X_{4} := (R/\pi^{3} \xrightarrow{1} R/\pi^{2}) \qquad X_{17} := (R/\pi \oplus R/\pi^{3} \xrightarrow{\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}} R/\pi^{2} \oplus R/\pi^{3})$$

$$X_{5} := (R/\pi^{2} \xrightarrow{\pi} R/\pi^{3}) \qquad X_{18} := (R/\pi \oplus R/\pi^{3} \xrightarrow{\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}} R/\pi^{2} \oplus R/\pi^{3})$$

$$X_{6} := (R/\pi \xrightarrow{\pi} R/\pi^{2}) \qquad X_{19} := (R/\pi \xrightarrow{\pi^{2}} R/\pi^{3})$$

$$X_{7} := (R/\pi^{2} \xrightarrow{(1\pi)} R/\pi \oplus R/\pi^{3}) \qquad X_{20} := (R/\pi^{3} \xrightarrow{1} R/\pi)$$

$$X_{8} := (R/\pi \oplus R/\pi^{3} \xrightarrow{\begin{pmatrix} 1 \\ 1 \end{pmatrix}} R/\pi^{2}) \qquad X_{21} := (R/\pi \longrightarrow 0)$$

$$X_{9} := (R/\pi^{3} \xrightarrow{\pi} R/\pi^{3}) \qquad X_{22} := (0 \longrightarrow R/\pi)$$

$$X_{10} := (R/\pi^{2} \longrightarrow 0) \qquad X_{23} := (R/\pi^{3} \xrightarrow{\pi} R/\pi^{2})$$

$$X_{11} := (0 \longrightarrow R/\pi^{2}) \qquad X_{24} := (R/\pi^{2} \xrightarrow{\pi^{2}} R/\pi^{3})$$

$$X_{12} := (R/\pi \oplus R/\pi^{3} \xrightarrow{(\pi^{2})} R/\pi^{3}) \qquad X_{25} := (R/\pi^{2} \xrightarrow{\pi} R/\pi^{2})$$

$$X_{13} := (R/\pi^{3} \xrightarrow{(1\pi)} R/\pi \oplus R/\pi^{3})$$

A matrix inspection yields the

Lemma 5

- (1) For each projective indecomposable A-module P, there exists a unique $i \in [1, 2]$ such that $P \simeq P_i$.
- (2) For each nonprojective indecomposable A-module X, there exists a unique $i \in [1, 25]$ such that $X \simeq X_i$.

2.1.2 Construction of a left adjoint

Our aim in this section is to computationally verify the

Proposition 6 Suppose given a prime $p \in [2,997]$. Suppose that $R = \mathbf{F}_p[X]$ and $\pi = X$. Then the Heller operator $\Omega : \underline{\text{mod-}}A \longrightarrow \underline{\text{mod-}}A$ has a left adjoint.

For ease of Magma input, we have used that

$$A \simeq \mathbf{F}_p\left(u \bigcirc e \xrightarrow{a} f \bigcirc v\right)/(u^3, v^3, ua - av)$$

as \mathbf{F}_p -algebras.

To reduce the calculation of this adjoint functor to the proof of the representability of certain functors, we use

Lemma 7 ([9, 16.4.5, 4.5.1]) Suppose given categories C and D and a functor $C \xrightarrow{F} D$. Suppose that

$$\begin{array}{cccc} \mathcal{C} & \xrightarrow{\mathcal{D}(Y,F(-))} & \mathrm{Sets} \\ (X \xrightarrow{x} X') & \longmapsto & \left(\mathcal{D}(Y,FX) & \xrightarrow{\mathcal{D}(Y,FX)} & \mathcal{D}(Y,FX') \right) \end{array}$$

is representable for each $Y \in Ob \mathcal{D}$.

Then F has a left adjoint.

More precisely, given a map $\operatorname{Ob} \mathcal{C} \stackrel{\gamma}{\longleftarrow} \operatorname{Ob} \mathcal{D}$ and an isomorphism

$$_{\mathcal{D}}(Y, F(-)) \xrightarrow{\varphi_Y} _{\mathcal{C}}(Y\gamma, -)$$

for $Y \in Ob \mathcal{D}$, there exists a left adjoint $\mathcal{C} \stackrel{G}{\longleftarrow} \mathcal{D}$ to F, i.e. $G \dashv F$, such that, writing

$$\varepsilon Y := (1_{Y\gamma})(\varphi_Y(Y\gamma))^- : Y \longrightarrow F(Y\gamma)$$

for $Y \in Ob \mathcal{D}$, we have

$$G(Y \xrightarrow{y} Y') = (Y\gamma \xrightarrow{(y \cdot \varepsilon Y')(\varphi_Y(Y'\gamma))} Y'\gamma)$$

for $Y \xrightarrow{y} Y$ in \mathcal{D} .

Thus in order to construct the left adjoint to Ω on $\underline{\text{mod}}$ -A, it suffices to show that the functor $\underline{\text{mod}}$ - $A(X_i, \Omega(-))$ is representable $i \in [1, 25]$. We shall do so by an actual construction of an isotransformation from a Hom-functor.

Suppose given $i \in [1, 25]$. Such an isotransformation is necessarily of the form

$$\underline{\text{mod-}}_{A}(SX_{i}, Y) \longrightarrow \underline{\text{mod-}}_{A}(X_{i}, \Omega Y) \\
[f] \longmapsto [\epsilon_{i}] \cdot \Omega[f]$$

for some $SX_i \in \text{Ob} \underline{\text{mod}}\text{-}A$ and some A-linear map $\epsilon_i : X_i \longrightarrow \Omega SX_i$, where $Y \in \text{Ob} \underline{\text{mod}}\text{-}A$. So it suffices to find an A-module SX_i and an A-linear map $\epsilon_i : X_i \longrightarrow \Omega SX_i$ such that the induced map

$$(**) \qquad \xrightarrow{\text{mod-}A}(SX_i, X_j) \longrightarrow \xrightarrow{\text{mod-}A}(X_i, \Omega X_j)$$
$$[f] \longmapsto [\epsilon_i] \cdot \Omega[f]$$

is an isomorphism for $j \in [1, 25]$.

In particular, given an automorphism α of X_i in $\underline{\text{mod}}$ -A, an automorphism β of SX_i in $\underline{\text{mod}}$ -A and a valid such morphism $[\epsilon_i]$, then $\alpha \cdot [\epsilon_i] \cdot \Omega \beta$ is another valid such morphism, sometimes of a simpler shape.

To show that a guess for SX_i is in fact the sought-for representing object, we make use of the fact that $_{\text{mod-}A}(X_i, \Omega SX_i)$ is finite, so that we have only a finite set of candidates for ϵ_i . Then to check whether the candidate-induced maps (**) are isomorphisms, is also feasible via MAGMA, using in particular its commands ProjectiveCover, AHom and PHom; cf. [1].

We obtain

and

$$\begin{pmatrix} X_{1} \\ \epsilon_{1} \downarrow \\ \Omega S X_{1} \end{pmatrix} = \begin{pmatrix} R/\pi & \xrightarrow{1} \Rightarrow R/\pi \\ 1 \downarrow & \downarrow 1 \\ R/\pi & \xrightarrow{1} \Rightarrow R/\pi \end{pmatrix} \begin{pmatrix} X_{14} \\ \epsilon_{14} \downarrow \\ \Omega S X_{14} \end{pmatrix} = \begin{pmatrix} R/\pi^{3} & \xrightarrow{\pi^{2}} \Rightarrow R/\pi^{3} \\ 1 \downarrow & \downarrow 1 \\ R/\pi & \xrightarrow{\pi^{2}} \Rightarrow R/\pi^{3} \end{pmatrix}$$

$$\begin{pmatrix} X_{2} \\ \epsilon_{2} \downarrow \\ \Omega S X_{2} \end{pmatrix} = \begin{pmatrix} R/\pi^{2} & \xrightarrow{1} \Rightarrow R/\pi^{2} \\ 1 \downarrow & \downarrow 1 \\ R/\pi^{2} & \xrightarrow{1} \Rightarrow R/\pi^{2} \end{pmatrix} \begin{pmatrix} X_{15} \\ \epsilon_{15} \downarrow \\ \Omega S X_{15} \end{pmatrix} = \begin{pmatrix} R/\pi^{3} & \longrightarrow 0 \\ \downarrow & \downarrow \\ 0 & \longrightarrow 0 \end{pmatrix}$$

$$\begin{pmatrix} X_{3} \\ \epsilon_{3} \downarrow \\ \Omega S X_{3} \end{pmatrix} = \begin{pmatrix} R/\pi^{2} & \xrightarrow{1} \Rightarrow R/\pi \\ 1 \downarrow & \downarrow 1 \\ R/\pi & \xrightarrow{1} \Rightarrow R/\pi \end{pmatrix} \begin{pmatrix} X_{16} \\ \epsilon_{16} \downarrow \\ \Omega S X_{16} \end{pmatrix} = \begin{pmatrix} R/\pi^{2} \oplus R/\pi^{3} & \xrightarrow{10} & R/\pi \oplus R/\pi^{3} \\ \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix} & \begin{pmatrix} 1 & 0 & 0 \\ 0 & \pi \end{pmatrix} & \begin{pmatrix} 1 & 0 & 0 \\ 0 & \pi \end{pmatrix}$$

$$\begin{pmatrix} X_4 \\ \epsilon_1 \downarrow \\ \Omega S X_4 \end{pmatrix} = \begin{pmatrix} R/\pi^3 & \xrightarrow{1} \rightarrow R/\pi^2 \\ 1 \downarrow & \downarrow 1 \\ R/\pi^2 & \xrightarrow{1} \rightarrow R/\pi^2 \end{pmatrix} \begin{pmatrix} X_{17} \\ \epsilon_1 \uparrow \\ \Omega S X_{17} \end{pmatrix} = \begin{pmatrix} R/\pi \oplus R/\pi^3 & \xrightarrow{1} \oplus R/\pi^2 \oplus R/\pi^3 \\ (\frac{\pi}{1} \stackrel{\circ}{0}) & \downarrow & (\frac{\pi}{0})^2 \\ (\frac{\pi}{1} \stackrel{\circ}{0}) & \downarrow & (\frac{\pi}{0})^2 \\ R/\pi^2 \oplus R/\pi & \xrightarrow{\longrightarrow} R/\pi^3 \end{pmatrix} \begin{pmatrix} X_{18} \\ \epsilon_2 \downarrow \\ \Omega S X_5 \end{pmatrix} = \begin{pmatrix} R/\pi^2 & \xrightarrow{\longrightarrow} \rightarrow R/\pi^3 \\ 1 \downarrow & \downarrow 1 \\ R/\pi^2 & \xrightarrow{\longrightarrow} \rightarrow R/\pi^3 \end{pmatrix} \begin{pmatrix} X_{18} \\ \epsilon_1 \downarrow & \downarrow 1 \\ R/\pi^2 & \xrightarrow{\longrightarrow} \rightarrow R/\pi^3 \end{pmatrix} \begin{pmatrix} X_{18} \\ \epsilon_2 \downarrow \\ \Omega S X_{18} \end{pmatrix} = \begin{pmatrix} R/\pi \oplus R/\pi^3 & \downarrow & (\frac{\pi}{0})^3 \\ R/\pi^2 & (\frac{\pi}{1} \rightarrow R) & (\frac{\pi}{0})^3 \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0})^3 \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{1} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R) \\ R/\pi^2 & (\frac{\pi}{0} \rightarrow R) & (\frac{\pi}{0} \rightarrow R)$$

Remark 8 Keep the assumptions of Proposition 6.

We have $(\Omega \circ S)^2 Y \simeq (\Omega \circ S) Y$ for $Y \in \text{Ob } \underline{\text{mod-}} A$.

The unit of the adjunction $S \dashv \Omega$ at an A-module $X \xrightarrow{f} Y$ is represented by a factorisation

$$X \xrightarrow{f} Y$$

$$\bar{f} \downarrow \qquad \qquad \parallel$$

$$I_f \xrightarrow{f} Y$$

over an image I_f of the module-defining morphism f. I do not know why.

2.2 Another example of a left adjoint

Recall that R is a principal ideal domain, with a maximal ideal generated by an element $\pi \in R$.

2.2.1 A list of indecomposables

Let

$$B := A/(\pi^2 a) = (R/\pi^3)(e \xrightarrow{a} f)/(\pi^2 a)$$
.

Indecomposable nonprojective B-modules become indecomposable nonprojective A-modules via restriction along the residue class map $A \longrightarrow B$.

We list the 24 representatives of isoclasses of indecomposable nonprojective B-modules in the numbering used in $\S 2.1.1$ as follows.

$$X_1$$
, X_2 , X_3 , X_5 , X_6 , X_7 , X_8 , X_9 , X_{10} , X_{11} , X_{12} , X_{13} , X_{14} , X_{15} , X_{16} , X_{17} , X_{18} , X_{19} , X_{20} , X_{21} , X_{22} , X_{23} , X_{24} , X_{25}

2.2.2 Construction of a left adjoint

Our aim in this section is to computationally verify the

Proposition 9 Suppose given a prime $p \in [2,997]$. Suppose that $R = \mathbf{F}_p[X]$ and $\pi = X$. Then the Heller operator $\Omega : \underline{\text{mod-}B} \longrightarrow \underline{\text{mod-}B}$ has a left adjoint.

We proceed analogously to §2.1.

We obtain

and

$$\begin{pmatrix} X_1 \\ c_1 \downarrow \\ \Omega S X_1 \end{pmatrix} = \begin{pmatrix} R/\pi & \xrightarrow{1} & R/\pi \\ 1 \downarrow & \downarrow \\ R/\pi & \longrightarrow 0 \end{pmatrix} \qquad \begin{pmatrix} X_{14} \\ c_{14} \downarrow \\ \Omega S X_{14} \end{pmatrix} = \begin{pmatrix} R/\pi^3 & \xrightarrow{\pi^2} & R/\pi^3 \\ 1 \downarrow & \downarrow & \downarrow \\ R/\pi & \longrightarrow & R/\pi^2 \end{pmatrix}$$

$$\begin{pmatrix} X_2 \\ c_2 \downarrow \\ \Omega S X_2 \end{pmatrix} = \begin{pmatrix} R/\pi^2 & \xrightarrow{1} & R/\pi^2 \\ 1 \downarrow & \downarrow & \downarrow \\ R/\pi^2 & \xrightarrow{1} & R/\pi \end{pmatrix} \qquad \begin{pmatrix} X_{15} \\ c_{15} \downarrow \\ \Omega S X_{15} \end{pmatrix} = \begin{pmatrix} R/\pi^3 & \longrightarrow & 0 \\ 1 \downarrow & \downarrow \\ R/\pi & \longrightarrow & 0 \end{pmatrix}$$

$$\begin{pmatrix} X_3 \\ c_4 \downarrow \\ \Omega S X_3 \end{pmatrix} = \begin{pmatrix} R/\pi^2 & \xrightarrow{1} & R/\pi \\ 1 \downarrow & \downarrow & \downarrow \\ R/\pi^2 & \xrightarrow{1} & R/\pi \end{pmatrix} \qquad \begin{pmatrix} X_{16} \\ c_{16} \downarrow \\ \Omega S X_{16} \end{pmatrix} = \begin{pmatrix} R/\pi^2 \oplus R/\pi^3 & \frac{(1\pi)}{10} & R/\pi \oplus R/\pi^3 \\ (1\pi) \downarrow & (10\pi) & (10\pi) \\ R/\pi^2 \oplus R/\pi^2 & \xrightarrow{1} & R/\pi \end{pmatrix}$$

$$\begin{pmatrix} X_{17} \\ c_{17} \downarrow \\ \Omega S X_{17} \end{pmatrix} = \begin{pmatrix} R/\pi \oplus R/\pi^3 & \frac{(1\pi)}{10} & R/\pi \oplus R/\pi^3 \\ (1\pi) \downarrow & (10\pi) & (10\pi) \\ R/\pi \oplus R/\pi^2 & \xrightarrow{1} & R/\pi \end{pmatrix}$$

$$\begin{pmatrix} X_{17} \\ c_{17} \downarrow \\ \Omega S X_{17} \end{pmatrix} = \begin{pmatrix} R/\pi \oplus R/\pi^3 & \frac{(\pi\pi^2)}{10} & R/\pi \oplus R/\pi^3 \\ (10\pi) \downarrow & (10\pi) \\ R/\pi \oplus R/\pi^2 & \xrightarrow{1} & R/\pi \oplus R/\pi^3 \end{pmatrix}$$

$$\begin{pmatrix} X_{18} \\ c_{16} \downarrow \\ \Omega S X_{18} \end{pmatrix} = \begin{pmatrix} R/\pi \oplus R/\pi^3 & \frac{(\pi\pi^2)}{10} & R/\pi \oplus R/\pi^3 \\ (10\pi) \downarrow & (10\pi) \\ R/\pi \oplus R/\pi^2 & \xrightarrow{1} & R/\pi \oplus R/\pi^3 \end{pmatrix}$$

$$\begin{pmatrix} X_{18} \\ c_{16} \downarrow \\ \Omega S X_{18} \end{pmatrix} = \begin{pmatrix} R/\pi \oplus R/\pi^3 & \frac{(\pi\pi^2)}{10} & \frac{(\pi\pi^2)}{10} & \frac{(\pi\pi^2)}{10} & \frac{(\pi\pi^2)}{10} \\ R/\pi \oplus R/\pi^2 & \xrightarrow{1} & R/\pi \oplus R/\pi^3 \end{pmatrix}$$

$$\begin{pmatrix} X_{18} \\ c_{19} \downarrow \\ C_{19} \downarrow & C_{19} \end{pmatrix} = \begin{pmatrix} R/\pi \oplus R/\pi^3 & C_{19} & C_{19} & C_{19} & C_{19} \\ R/\pi \oplus R/\pi^2 & \xrightarrow{1} & R/\pi \oplus R/\pi^2 \end{pmatrix}$$

$$\begin{pmatrix} X_{19} \\ c_{19} \downarrow \\ \Omega S X_{19} \end{pmatrix} = \begin{pmatrix} R/\pi & \frac{\pi^2}{10} & R/\pi \oplus R/\pi^2 \\ R/\pi & \xrightarrow{1} & R/\pi \end{pmatrix}$$

$$\begin{pmatrix} X_{19} \\ c_{19} \downarrow \\ R/\pi & \xrightarrow{1} & R/\pi \end{pmatrix} = \begin{pmatrix} R/\pi & \frac{\pi^2}{10} & R/\pi \oplus R/\pi^2 \\ R/\pi & \xrightarrow{1} & R/\pi \end{pmatrix}$$

$$\begin{pmatrix} X_{19} \\ c_{19} \downarrow \\ R/\pi & \xrightarrow{1} & R/\pi \end{pmatrix} = \begin{pmatrix} R/\pi & \frac{\pi^2}{10} & R/\pi \oplus R/\pi^2 \\ R/\pi & \xrightarrow{1} & R/\pi \end{pmatrix}$$

$$\begin{pmatrix} X_{19} \\ c_{19} \downarrow \\ R/\pi & \xrightarrow{1} & R/\pi \end{pmatrix} = \begin{pmatrix} R/\pi & \frac{\pi^2}{10} & R/\pi \oplus R/\pi^2 \\ R/\pi & \xrightarrow{1} & R/\pi \end{pmatrix}$$

$$\begin{pmatrix} X_{19} \\ c_{19} \downarrow \\ R/\pi & \xrightarrow{1} & R/\pi \end{pmatrix} = \begin{pmatrix} R/\pi & \frac{\pi^2}{10} & R/\pi \oplus R/\pi^2 \\ R/\pi & \xrightarrow{1} & R/\pi \end{pmatrix}$$

$$\begin{pmatrix} X_{19} \\ c_{19} \downarrow \\ R/\pi & \xrightarrow{1} & R/\pi \end{pmatrix} = \begin{pmatrix} R/\pi & \frac{\pi^2}{10} & R/\pi \oplus R/\pi^3 \\ R/\pi & \xrightarrow{1} & R/\pi \end{pmatrix}$$

$$\begin{pmatrix} X_{19} \\ c_{19} \downarrow \\ R/\pi & \xrightarrow{1} & R/\pi \end{pmatrix} = \begin{pmatrix} R/\pi & \frac{\pi^2}{10} & R/\pi \oplus R/\pi^3 \\ R/\pi & \xrightarrow{1} & R/\pi \end{pmatrix}$$

$$\begin{pmatrix} X_{19} \\ c_{19} \downarrow \\ R/\pi & \xrightarrow{1} & R/\pi \end{pmatrix} = \begin{pmatrix} R/\pi & \frac{\pi^2}{10} & R/\pi \oplus R/\pi^3 \\ R/\pi & \xrightarrow{1} &$$

$$\begin{pmatrix} X_{8} \\ {}^{\epsilon_{3} \psi} \\ {}^{\Omega}SX_{8} \end{pmatrix} = \begin{pmatrix} R/\pi \oplus R/\pi^{3} & \frac{\pi}{1} & R/\pi^{2} \\ {}^{(1)}_{0} & 1 & 1 \\ R/\pi \oplus R/\pi^{2} & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} X_{21} \\ {}^{\epsilon_{21} \psi} \\ {}^{\Omega}SX_{21} \end{pmatrix} = \begin{pmatrix} R/\pi \longrightarrow 0 \\ 1 \psi & \psi \\ R/\pi \longrightarrow 0 \end{pmatrix}$$

$$\begin{pmatrix} X_{9} \\ {}^{\epsilon_{9} \psi} \\ {}^{\Omega}SX_{9} \end{pmatrix} = \begin{pmatrix} R/\pi^{3} & -\frac{\pi}{N} & R/\pi^{3} \\ 1 \psi & \psi & 1 \\ R/\pi^{2} & -\frac{\pi}{N} & R/\pi^{2} \end{pmatrix} \qquad \begin{pmatrix} X_{22} \\ {}^{\epsilon_{22} \psi} \\ {}^{\Omega}SX_{22} \end{pmatrix} = \begin{pmatrix} 0 \longrightarrow R/\pi \\ \psi & \psi & 1 \\ 0 \longrightarrow R/\pi \end{pmatrix}$$

$$\begin{pmatrix} X_{10} \\ {}^{\epsilon_{10} \psi} \\ {}^{\Omega}SX_{10} \end{pmatrix} = \begin{pmatrix} R/\pi^{2} \longrightarrow 0 \\ 1 \psi & \psi \\ R/\pi \longrightarrow 0 \end{pmatrix} \qquad \begin{pmatrix} X_{23} \\ {}^{\epsilon_{23} \psi} \\ {}^{\Omega}SX_{23} \end{pmatrix} = \begin{pmatrix} R/\pi^{3} & -\frac{\pi}{N} & R/\pi^{2} \\ 1 \psi & \psi & 1 \\ R/\pi^{2} & -\frac{\pi}{N} & R/\pi^{2} \end{pmatrix}$$

$$\begin{pmatrix} X_{11} \\ {}^{\epsilon_{11} \psi} \\ {}^{\Omega}SX_{11} \end{pmatrix} = \begin{pmatrix} 0 \longrightarrow R/\pi^{2} \\ \psi & \psi & 1 \\ 0 \longrightarrow R/\pi^{2} \end{pmatrix} \qquad \begin{pmatrix} X_{24} \\ {}^{\epsilon_{24} \psi} \\ {}^{\Omega}SX_{24} \end{pmatrix} = \begin{pmatrix} R/\pi^{2} & -\frac{\pi^{2}}{N} & R/\pi^{3} \\ 1 \psi & \psi & 1 \\ R/\pi & -\frac{0}{N} & R/\pi^{2} \end{pmatrix}$$

$$\begin{pmatrix} X_{12} \\ {}^{\epsilon_{12} \psi} \\ {}^{\Omega}SX_{12} \end{pmatrix} = \begin{pmatrix} R/\pi \oplus R/\pi^{3} & -\frac{\pi^{2}}{N} \\ {}^{(1)}_{0} & 1 & 1 \\ R/\pi \oplus R/\pi^{2} & -\frac{\pi^{2}}{N} & R/\pi^{2} \end{pmatrix}$$

$$\begin{pmatrix} X_{12} \\ {}^{\epsilon_{12} \psi} \\ {}^{\Omega}SX_{13} \end{pmatrix} = \begin{pmatrix} R/\pi^{3} & -\frac{\pi^{2}}{N} & R/\pi \oplus R/\pi^{3} \\ 1 \psi & \sqrt{(10^{-1})} \\ R/\pi^{2} & -\frac{\pi^{2}}{N} & R/\pi^{2} \end{pmatrix}$$

$$\begin{pmatrix} X_{13} \\ {}^{\epsilon_{13} \psi} \\ {}^{\Omega}SX_{13} \end{pmatrix} = \begin{pmatrix} R/\pi^{3} & -\frac{\pi^{2}}{N} & R/\pi \oplus R/\pi^{3} \\ 1 \psi & \sqrt{(10^{-1})} \\ R/\pi^{2} & -\frac{\pi^{2}}{N} & R/\pi^{2} \end{pmatrix}$$

Cf. §2.1.

Remark 10 Keep the assumptions of Proposition 9.

We have $(\Omega \circ S)^2 Y \simeq (\Omega \circ S) Y$ for $Y \in \text{Ob } \underline{\text{mod}} B$.

Given an R/π^3 -module X, we write $\bar{X}:=X/\pi^2X$ and $\mathrm{Ann}_{\pi}\,\bar{X}:=\{\,\bar{x}\in\bar{X}\,:\,\pi\bar{x}=0\,\}$.

The unit of the adjunction $S \dashv \Omega$ at a B-module $X \xrightarrow{f} Y$ is represented by the composite

where the vertical maps are the respective residue class maps, and the middle and lower horizontal maps are the induced maps.

I do not know why.

2.3 Further examples of left adjoints

Let

$$C_{1} := A/(\pi^{2}f) = (R/\pi^{3})(e \xrightarrow{a} f)/(\pi^{2}f)$$

$$C_{2} := A/(\pi f) = (R/\pi^{3})(e \xrightarrow{a} f)/(\pi f)$$

$$C_{3} := A/(\pi^{2}e, \pi^{2}f) = (R/\pi^{2})(e \xrightarrow{a} f)$$

$$C_{4} := A/(\pi a) = (R/\pi^{3})(e \xrightarrow{a} f)/(\pi a)$$

$$C_{5} := A/(\pi a, \pi^{2}f) = (R/\pi^{3})(e \xrightarrow{a} f)/(\pi a, \pi^{2}f)$$

$$C_{6} := A/(\pi^{2}e) = (R/\pi^{3})(e \xrightarrow{a} f)/(\pi^{2}e)$$

$$C_{7} := A/(\pi e) = (R/\pi^{3})(e \xrightarrow{a} f)/(\pi e)$$

$$C_{8} := A/(\pi^{2}e, \pi a) = (R/\pi^{3})(e \xrightarrow{a} f)/(\pi^{2}e, \pi a)$$

Proposition 11 Suppose given a prime $p \in [2,997]$. Suppose that $R = \mathbf{F}_p[X]$ and $\pi = X$. Then the Heller operator $\Omega : \underline{\text{mod-}}C_j \longrightarrow \underline{\text{mod-}}C_j$ has a left adjoint for $j \in [1,8]$.

Remark 12 Keep the assumptions of Proposition 11.

We have $(\Omega \circ S)^2 Y \simeq (\Omega \circ S) Y$ for $Y \in \text{Ob } \underline{\text{mod}} - C_j$ for $j \in [1, 8] \setminus \{5\}$.

For j = 5, we have

$$(\Omega \circ S)X_{10} = X_{10} \oplus X_{21}$$

$$(\Omega \circ S)X_{21} = X_{21}$$

in the notation of §2.1.1, i.e.

$$(\Omega \circ S)(R/\pi^2 \longrightarrow 0) = (R/\pi^2 \longrightarrow 0) \oplus (R/\pi \longrightarrow 0)$$

$$(\Omega \circ S)(R/\pi \longrightarrow 0) = (R/\pi \longrightarrow 0).$$

2.4 Counterexample: no right adjoint

Recall from §2.3 that $C_3 = (R/\pi^2)(e \xrightarrow{a} f)$. As representatives of isoclasses of nonprojective C_3 -modules we obtain, in the notation of §2.1.1,

$$Y_1 := X_1 = (R/\pi \xrightarrow{1} R/\pi)$$
 $Y_5 := X_{21} = (R/\pi \xrightarrow{1} 0)$
 $Y_2 := X_3 = (R/\pi^2 \xrightarrow{1} R/\pi)$ $Y_6 := X_{22} = (0 \xrightarrow{R/\pi} R/\pi)$
 $Y_3 := X_6 = (R/\pi \xrightarrow{\pi} R/\pi^2)$ $Y_7 := X_{25} = (R/\pi^2 \xrightarrow{\pi} R/\pi^2)$.
 $Y_4 := X_{10} = (R/\pi \xrightarrow{\pi} 0)$

Remark 13 Suppose that $R = \mathbf{F}_3[X]$ and $\pi = X$.

The functor $\Omega : \underline{\text{mod-}}C_3 \longrightarrow \underline{\text{mod-}}C_3$ does not have a right adjoint.

Proof. Magma yields

$$H := \left(\dim_{\mathbf{F}_{3}} \left(\underset{\text{mod-}C_{3}}{\operatorname{mod-}}(Y_{i}, Y_{j}) \right) \right)_{i,j} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \in (\mathbf{Z}_{\geqslant 0})^{7 \times 7}$$

and

$$H' := \left(\dim_{\mathbf{F}_{3}} \left(\underset{\text{mod-}C_{3}}{\operatorname{mod-}}(\Omega Y_{i}, Y_{j}) \right) \right)_{i,j} = \begin{pmatrix} 10101000 \\ 1100010 \\ 0110110 \\ 0000000 \\ 0110110 \\ 1100010 \\ 0000000 \end{pmatrix} \in (\mathbf{Z}_{\geqslant 0})^{7 \times 7}.$$

Assume that Ω has right adjoint $T : \underline{\text{mod}} \cdot C_3 \longrightarrow \underline{\text{mod}} \cdot C_3$.

Write $TY_j \simeq \bigoplus_{k \in [1,7]} Y_k^{\oplus u_{k,j}}$ for $j \in [1,7]$, where $U := (u_{k,j})_{k,j} \in (\mathbf{Z}_{\geqslant 0})^{7 \times 7}$. We obtain

$$\begin{array}{rcl} H' & = & \left(\dim_{\mathbf{F}_3} \left(\underset{\underline{\mathrm{mod}}\text{-}C_3}{\mathrm{mod}\text{-}C_3}(\Omega Y_i \,, Y_j) \right) \right)_{i,j} \\ & = & \left(\dim_{\mathbf{F}_3} \left(\underset{\underline{\mathrm{mod}}\text{-}C_3}{\mathrm{mod}\text{-}C_3}(Y_i \,, TY_j) \right) \right)_{i,j} \\ & = & \left(\dim_{\mathbf{F}_3} \left(\underset{\underline{\mathrm{mod}}\text{-}C_3}{\mathrm{mod}\text{-}C_3}(Y_i \,, \bigoplus_{k \in [1,7]} Y_k^{\oplus u_{k,j}}) \right) \right)_{i,j} \\ & = & \left(\sum_{k \in [1,7]} \dim_{\mathbf{F}_3} \left(\underset{\underline{\mathrm{mod}}\text{-}C_3}{\mathrm{mod}\text{-}C_3}(Y_i \,, Y_k) \right) \cdot u_{k,j} \right)_{i,j} \\ & = & H \cdot U \,. \end{array}$$

So every column of H' is a linear combination of columns in H with coefficients in $\mathbb{Z}_{\geq 0}$. However, the third column of H' would afford a coefficient $\in \mathbb{Z}_{>0}$ at the first, third or fifth column of H because its first entry equals 1. But then its second entry would also be in $\mathbb{Z}_{>0}$, because these columns of H all have second entry equal to 1. But this second entry equals 0. We have arrived at a *contradiction*.

References

- [1] Bosma, W.; Cannon, J.; Playoust, C., *The Magma algebra system. I. The user language*, J. Symbolic Comput. 24 (3-4), p. 235–265, 1997 (cf. magma.maths.usyd.edu.au).
- [2] BÜHLER, T., Exact Categories, Exp. Math. 28 (1), p. 1–69, 2010.
- [3] HELLER, A., The loop-space functor in Homological Algebra, Trans. Am. Math. Soc. 96, p. 382–394, 1960.
- [4] KÜNZER, M., Heller triangulated categories, Homology, Homotopy and Applications 9 (2), p. 233–320, 2007.
- [5] Quillen, D., Higher algebraic K-theory: I, SLN 341, p. 85–147, 1973.
- [6] RAUSSEN, M; SKAU, C., Interview with Jean-Pierre Serre, Notices AMS 51 (2), p. 210-214, 2004.
- [7] RINGEL, C. M., SCHMIDMEIER, M., Invariant subspaces of nilpotent linear operators, I, J. reine angew. Math. 614, p. 1–52, 2008.
- [8] ROWEN, L. H., Ring Theory, Student Edition, Acad. Press, 1991.
- [9] Schubert, H., Categories, Springer, 1972.

Matthias Künzer Lehrstuhl D für Mathematik RWTH Aachen Templergraben 64 D-52062 Aachen kuenzer@math.rwth-aachen.de www.math.rwth-aachen.de/~kuenzer