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Abstract

Given an abelian category A with enough projectives, we can form its stable category
A := A/Proj(A). The Heller operator Ω : A - A is characterised on an object X
by a choice of a short exact sequence ΩX -r P - X in A with P projective. If A is
Frobenius, then Ω is an equivalence, hence has a left and a right adjoint. If A is hereditary,
then Ω is zero, hence has a left and a right adjoint. In general, Ω is neither an equivalence
nor zero. In the examples we have calculated via Magma, it has a left adjoint, but in
general not a right adjoint. If A has projective covers, then Ω preserves monomorphisms;
this would also follow from Ω having a left adjoint. I do not know an example where Ω
does not have a left adjoint.
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0 Introduction

0.1 The question

Let E be an exact category. Let Proj(E) be its full additive subcategory of relative projectives,
i.e. for P ∈ Ob E we have P ∈ Ob Proj(E) if and only if E(P,−) maps pure short exact
sequences of E to short exact sequences of abelian groups. Suppose that E has enough relative
projectives, i.e. suppose that for any X ∈ Ob E , there exists a pure epimorphism P -X in E
with P ∈ Ob Proj(E).

Write E := E/Proj(E). The Heller operator Ω : E - E is characterised on a given X ∈ Ob E
by a choice of a pure short exact sequence

ΩX -r P - X

in E with P relatively projective. This then is extended to morphisms.

We ask whether Ω has a left adjoint; cf. Question 1. I do not know a counterexample.

If E is a Frobenius category, then Ω is an equivalence, thus has both a left and a right adjoint.

If E is hereditary, i.e. if Ω ' 0, then Ω has both a left and a right adjoint, viz. 0.

0.2 Monomorphisms

If a functor has a left adjoint, then it preserves monomorphisms. So first of all, we ask whether
the Heller operator Ω : E - E preserves monomorphisms.

It turns out that if E is weakly idempotent complete and has relative projective covers in the
sense of §1.3, then Ω maps monomorphisms even to coretractions; cf. Proposition 4.

0.3 Construction of a left adjoint to the Heller operator Ω

Let p ∈ [2, 997] be a prime. Let R := Fp[X] and π := X.

Let A := (R/π3)(e -a f) '
(
R/π3 R/π3

0 R/π3

)
. Let E := mod-A .

Using Magma [1], we construct a left adjoint S : E - E to Ω. We do so likewise for certain
factor rings of A . Cf. Propositions 6, 9 and 11.

Let now k be a field, R := k[X] and π := X. Let n > 1. An (R/πn)(e -a f)-module is given by

a morphism X -f Y in mod-(R/πn). The full subcategory of mod-(R/πn)(e -a f) consisting

of injective morphisms X -f Y as modules has been intensely studied; it is of finite type if
n 6 5, tame if n = 6, wild if n > 7; cf. [7, (0.1), (0.6)].

0.4 Two counterexamples

The functor Ω : E - E does not have a right adjoint in general; cf. Remark 13.

Provided S a Ω exists, the composite Ω◦S : E - E is not idempotent in general; cf. Remark 12.
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0.6 Notations and conventions

• Given a, b ∈ Z, we write [a, b] := { z ∈ Z : a 6 z 6 b }.

• Composition of morphisms is written naturally, ( -a -b ) = -ab = -a·b .

Composition of functors is written traditionally, ( -F -G ) = -G◦F .

• In a category C, given X, Y ∈ Ob C, we write C(X,Y ) for the set of morphisms from X to Y .

• Given an isomorphism f , we write f− for its inverse.

• In an additive category, a morphism of the form X -(1 0)
X ⊕ Y , or isomorphic to such a morphism, is

called split monomorphic; a morphism of the form X ⊕ Y -

“
1
0

”
X, or isomorphic to such a morphism,

is called split epimorphic.

• In exact categories, pure monomorphisms are denoted by -r , pure epimorphisms by - and pure
squares, i.e. bicartesian squares with pure short exact diagonal sequence, by a box � in the diagram.

• Given a ring A, an A-module is a finitely generated right A-module.

• Given a commutative ring A and a ∈ A, we often write A/a := A/(a) = A/aA.

• Given a noetherian ring A, we write mod-A := mod-A for the factor category of mod-A modulo the full
additive subcategory of projectives.
So in the language of §1.1 below, we consider the abelian category mod-A as an exact category with all
short exact sequences declared to be pure and write mod-A for its classical stable category.

1 The Heller operator Ω

1.1 Notation

Let E be an exact category in the sense of Quillen [5, p. 99] with enough relative projectives.
We will use the notation of [4, §A.2] concerning pure short exact sequences, pure monomor-
phisms and pure epimorphisms.

Let Proj(E) ⊆ E denote the full subcategory of relative projectives. Let

E := E/Proj(E)

denote the classical stable category of E . The residue class functor shall be denoted by

E - E
(X -f Y ) - (X -[f ]

Y ) .

1Cf. also [6, p. 210].
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For each X ∈ Ob E , we choose a pure short exact sequence

(∗) ΩX -riX PX -
pX

X

with PX relatively projective. Let the Heller operator [3]

Ω : E - E

be defined on the objects by the choice just made. Suppose given a morphism X -[f ]
Y in E .

Choose a morphism

ΩX •
iX //

f ′

��

PX
�pX //

f̂
��

X

f

��
ΩY •

iY // PY
�pY // Y

of pure short exact sequences. Let

Ω[f ] := [f ′] .

Different choices of pure short exact sequences (∗) yield mutually isomorphic Heller operators.

Question 1 Does Ω have a left adjoint?

I do not know a counterexample.

1.2 Preservation of monomorphisms

If Ω : E - E has a left adjoint, then it preserves monomorphisms. So if, for some E , the
functor Ω did not preserve monomorphisms, then Ω could not have a left adjoint. Under certain
finiteness assumptions, however, we will show that Ω maps monomorphisms to coretractions,
so in particular to monomorphisms. This is to be compared to the case of E being Frobenius,
where in the triangulated category E all monomorphisms are split.

Lemma 2 Suppose that for X ∈ Ob E and for s ∈ E(PX,PX) such that spX = pX , the
endomorphism s is an isomorphism.

Suppose given X -f Y in E.

If [f ] is a monomorphism, then Ω[f ] is a coretraction.

In particular, Ω preserves monomorphisms.

Proof. Choose a morphism of pure short exact sequences as shown below. Insert a pullback

(T,X, PY, Y ) and the induced morphism PX -v T , having vg = f̂ and vq = pX . Insert a



5

kernel j of q with jg = iY .

ΩX •
iX //

f ′

��

PX
�pX //

f̂

��

v

!!CCCCCCCC X

f

��

T

1qqqqqqq

q
88qqqqqqq

g

���������������

ΩY •
iY //

•mmmmmmmmmmmmmmm

j

66mmmmmmmmmmmmmmmm

PY
�pY // Y

We have f ′j = iXv, since f ′jq = 0 = iXpX = iXvq and f ′jg = f ′iY = iX f̂ = iXvg.

We have [q][f ] = [gpY ] = 0. Since [f ] is monomorphic, we infer that [q] = 0. Hence there exists

T -u PX such that upX = q. On the kernels, we obtain ΩY -u
′

ΩX such that u′iX = ju.

ΩX •
iX //

f ′

��

PX
�pX //

f̂

��

v

!!CCCCCCCC X

f

��

T

1qqqqqqq

q
88qqqqqqq

g

���������������
u

WW

ΩY •
iY //

•mmmmmmmmmmmmmmm

j

66mmmmmmmmmmmmmmmm

u′

KK

PY
�pY // Y

We have vupX = vq = pX . Hence vu is an isomorphism by assumption.

We obtain f ′u′iX = f ′ju = iXvu. So (f ′u′, vu, idX) is a morphism of pure short exact sequences.
Hence f ′u′ is an isomorphism. Thus f ′ is a coretraction. We conclude that Ω[f ] = [f ′] is a
coretraction.

1.3 Relative projective covers

Suppose E to be weakly idempotent complete; cf. [2, Def. 7.2].

A morphism S -i M in E is called small if in each pure square

A //

��
�

T

t
��

S
i // M

in E , the morphism T -t M is purely epimorphic; cf. [8, Def. 2.8.30]. In other words, i is
small iff

(
i
t

)
being purely epimorphic entails t being purely epimorphic for each morphism t

with same target as i. E.g. i = 0 is small, for
(

0
t

)
=
(

0
1

)
t is purely epimorphic only if t is;

cf. [2, Prop. 2.16].
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If S -ri M is small and split monomorphic, then there exists

0 //

��
�

S ′

• i′
��

S •
i // M ,

forcing i′ to be an isomorphism and thus S to be isomorphic to 0.

Given S̃ -j S -i M with S -i M small, then S̃ -ji M is small. In fact, given t such that
(
ji
t

)
is a pure epimorphism, the factorisation

(
ji
t

)
=
(
j 0
0 1

) (
i
t

)
shows that

(
i
t

)
is a pure epimorphism;

cf. [2, Cor. 7.7]. Thus t is purely epimorphic by smallness of i.

A relative projective cover of X ∈ Ob E is a pure epimorphism P -
p

X in E such that P is
relatively projective and such that Kern p -r P is small; cf. [8, 2.8.31].

We say that E has relative projective covers if for each X ∈ Ob E , there exists a relative

projective cover P -
p

X.

Lemma 3 Suppose given a relative projective cover P -
p

X in E. Suppose given P -s P such
that sp = p. Then s is an isomorphism.

Proof. We complete to a pure short exact sequence K -rk P -
p

X. We obtain a morphism

K •
k //

g

��
�

P
�p //

s

��

X

K •
k // P

�p // X .

of pure short exact sequences. Since the left hand side quadrangle is a pure square, we conclude
that s is purely epimorphic by smallness of K -rk P . Hence s is split epimorphic by relative
projectivity of P ; cf. [2, Rem. 7.4]. Let L -r̀ P be a kernel of s. Since ` factors over the small
morphism k, it is small as well. Since ` is split monomorphic, we have L ' 0. Thus s is an
isomorphism.

Proposition 4 Suppose that the exact category E is weakly idempotent complete and has rela-
tive projective covers.

Then Ω : E - E maps each monomorphism to a coretraction. In particular, Ω preserves
monomorphisms.

Proof. We may use relative projective covers to construct Ω in (∗). Then Lemma 3 allows us
to apply Lemma 2.

2 Examples for adjoints of the Heller operator Ω

Let R be a principal ideal domain, with a maximal ideal generated by an element π ∈ R.
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Let
A := (R/π3)(e -a f) .

I.e. A is the path algebra of e -a f over the ground ring R/π3. It has primitive idempotents e
and f , and a ∈ eAf .

An object in mod-A is given by a morphism X - Y in mod-(R/π3). A morphism in mod-A
is given by a commutative quadrangle in mod-(R/π3).

2.1 Example of a left adjoint

2.1.1 A list of indecomposables

Define the following objects in mod-A.

P1 := (R/π3 -1 R/π3) P2 := (0 - R/π3)

X1 := (R/π -1 R/π) X14 := (R/π3 -π
2

R/π3)

X2 := (R/π2 -1 R/π2) X15 := (R/π3 - 0)

X3 := (R/π2 -1 R/π) X16 := (R/π2 ⊕R/π3 -

“
1 π
1 0

”
R/π ⊕R/π3)

X4 := (R/π3 -1 R/π2) X17 := (R/π ⊕R/π3 -

“
π π2

1 0

”
R/π2 ⊕R/π3)

X5 := (R/π2 -π R/π3) X18 := (R/π ⊕R/π3 -

“
0 π2

1 π

”
R/π ⊕R/π3)

X6 := (R/π -π R/π2) X19 := (R/π -π
2

R/π3)

X7 := (R/π2 -(1 π )
R/π ⊕R/π3) X20 := (R/π3 -1 R/π)

X8 := (R/π ⊕R/π3 -

“
π
1

”
R/π2) X21 := (R/π - 0)

X9 := (R/π3 -π R/π3) X22 := (0 - R/π)

X10 := (R/π2 - 0) X23 := (R/π3 -π R/π2)

X11 := (0 - R/π2) X24 := (R/π2 -π
2

R/π3)

X12 := (R/π ⊕R/π3 -

“
π2

π

”
R/π3) X25 := (R/π2 -π R/π2)

X13 := (R/π3 -
(1 π )

R/π ⊕R/π3)

A matrix inspection yields the

Lemma 5

(1) For each projective indecomposable A-module P , there exists a unique i ∈ [1, 2] such that
P ' Pi .

(2) For each nonprojective indecomposable A-module X, there exists a unique i ∈ [1, 25] such
that X ' Xi .
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2.1.2 Construction of a left adjoint

Our aim in this section is to computationally verify the

Proposition 6 Suppose given a prime p ∈ [2, 997]. Suppose that R = Fp[X] and π = X.

Then the Heller operator Ω : mod-A -mod-A has a left adjoint.

For ease of Magma input, we have used that

A ' Fp

(
e a //u 99 f vee

)
/(u3, v3, ua− av)

as Fp-algebras.

To reduce the calculation of this adjoint functor to the proof of the representability of certain
functors, we use

Lemma 7 ([9, 16.4.5, 4.5.1]) Suppose given categories C and D and a functor C -F D.

Suppose that

C -D(Y,F (−))
Sets

(X -x X ′) -
(
D(Y, FX) -D(Y, Fx)

D(Y, FX
′)
)

is representable for each Y ∈ ObD.

Then F has a left adjoint.

More precisely, given a map Ob C �γ ObD and an isomorphism

D(Y, F (−)) -ϕY

∼ C(Y γ,−)

for Y ∈ ObD, there exists a left adjoint C �G D to F , i.e. G a F , such that, writing

εY := (1Y γ)(ϕY (Y γ))− : Y - F (Y γ)

for Y ∈ ObD, we have

G(Y
y−→ Y ′) = (Y γ

(y · εY ′)(ϕY (Y ′γ))−−−−−−−−−−→ Y ′γ)

for Y -y Y in D.

Thus in order to construct the left adjoint to Ω on mod-A, it suffices to show that the functor

mod-A(Xi , Ω(−)) is representable i ∈ [1, 25]. We shall do so by an actual construction of an
isotransformation from a Hom-functor.

Suppose given i ∈ [1, 25]. Such an isotransformation is necessarily of the form

mod-A(SXi , Y ) -
mod-A(Xi ,ΩY )

[f ] - [εi] · Ω[f ]
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for some SXi ∈ Ob mod-A and some A-linear map εi : Xi
- ΩSXi , where Y ∈ Ob mod-A.

So it suffices to find an A-module SXi and an A-linear map εi : Xi
- ΩSXi such that the

induced map

(∗∗) mod-A(SXi , Xj) -
mod-A(Xi ,ΩXj)

[f ] - [εi] · Ω[f ]

is an isomorphism for j ∈ [1, 25].

In particular, given an automorphism α of Xi in mod-A , an automorphism β of SXi in mod-A
and a valid such morphism [εi] , then α · [εi] ·Ωβ is another valid such morphism, sometimes of
a simpler shape.

To show that a guess for SXi is in fact the sought-for representing object, we make use of
the fact that mod-A(Xi ,ΩSXi) is finite, so that we have only a finite set of candidates for εi .
Then to check whether the candidate-induced maps (∗∗) are isomorphisms, is also feasible via
Magma, using in particular its commands ProjectiveCover, AHom and PHom; cf. [1].

We obtain

SX1 = X2 ΩSX1 = X1 SX14 = X5 ΩSX14 = X19

SX2 = X1 ΩSX2 = X2 SX15 = 0 ΩSX15 = 0

SX3 = X2 ΩSX3 = X1 SX16 = X2 ⊕X19 ΩSX16 = X1 ⊕X5

SX4 = X1 ΩSX4 = X2 SX17 = X1 ⊕X5 ΩSX17 = X2 ⊕X19

SX5 = X19 ΩSX5 = X5 SX18 = X6 ΩSX18 = X7

SX6 = X7 ΩSX6 = X6 SX19 = X5 ΩSX19 = X19

SX7 = X6 ΩSX7 = X7 SX20 = X2 ΩSX20 = X1

SX8 = X1 ΩSX8 = X2 SX21 = 0 ΩSX21 = 0

SX9 = X19 ΩSX9 = X5 SX22 = X11 ΩSX22 = X22

SX10 = 0 ΩSX10 = 0 SX23 = X7 ΩSX23 = X6

SX11 = X22 ΩSX11 = X11 SX24 = X5 ΩSX24 = X19

SX12 = X19 ΩSX12 = X5 SX25 = X7 ΩSX25 = X6

SX13 = X6 ΩSX13 = X7

and  X1

ε1 ��
ΩSX1

 =

 R/π
1 //

1 ��

R/π

1��
R/π

1 // R/π


 X14

ε14 ��
ΩSX14

 =


R/π3 π2

//

1 ��

R/π3

1��
R/π

π2
// R/π3


 X2

ε2 ��
ΩSX2

 =

 R/π2 1 //

1 ��

R/π2

1��
R/π2 1 // R/π2


 X15

ε15 ��
ΩSX15

 =

 R/π3 //

��

0

��
0 // 0


 X3

ε3 ��
ΩSX3

 =

 R/π2 1 //

1 ��

R/π

1��
R/π

1 // R/π


 X16

ε16 ��
ΩSX16

 =


R/π2 ⊕R/π3

“
1 π
1 0

”
//“

1 1
1 0

”
��

R/π ⊕R/π3“
1 0
0 1

”
��

R/π ⊕R/π2

“
1 0
0 π

”
// R/π ⊕R/π3
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 X4

ε4 ��
ΩSX4

 =

 R/π3 1 //

1 ��

R/π2

1��
R/π2 1 // R/π2


 X17

ε17 ��
ΩSX17

 =


R/π ⊕R/π3

„
π π2

1 0

«
//“

π 1
1 0

”
��

R/π2 ⊕R/π3“
1 0
0 1

”
��

R/π2 ⊕R/π

„
1 0
0 π2

«
// R/π2 ⊕R/π3


 X5

ε5 ��
ΩSX5

 =

 R/π2 π //

1 ��

R/π3

1��
R/π2 π // R/π3


 X18

ε18 ��
ΩSX18

 =


R/π ⊕R/π3

„
0 π2

1 π

«
//“

π
1

”
��

R/π ⊕R/π3“
1 0
0 1

”
��

R/π2
(1 π ) // R/π ⊕R/π3


 X6

ε6 ��
ΩSX6

 =

 R/π
π //

1 ��

R/π2

1��
R/π

π // R/π2


 X19

ε19 ��
ΩSX19

 =


R/π

π2
//

1 ��

R/π3

1��
R/π

π2
// R/π3


 X7

ε7 ��
ΩSX7

 =


R/π2

(1 π ) //

1 ��

R/π ⊕R/π3“
1 0
0 1

”
��

R/π2
(1 π ) // R/π ⊕R/π3


 X20

ε20 ��
ΩSX20

 =

 R/π3 1 //

1 ��

R/π

1��
R/π

1 // R/π


 X8

ε8 ��
ΩSX8

 =


R/π ⊕R/π3

“
π
1

”
//“

π
1

”
��

R/π2

1��
R/π2 1 // R/π2


 X21

ε21 ��
ΩSX21

 =

 R/π //

��

0

��
0 // 0


 X9

ε9 ��
ΩSX9

 =

 R/π3 π //

1 ��

R/π3

1��
R/π2 π // R/π3


 X22

ε22 ��
ΩSX22

 =

 0 //

��

R/π

1��
0 // R/π


 X10

ε10 ��
ΩSX10

 =

 R/π2 //

��

0

��
0 // 0


 X23

ε23 ��
ΩSX23

 =

 R/π3 π //

1 ��

R/π2

1��
R/π

π // R/π2


 X11

ε11 ��
ΩSX11

 =

 0 //

��

R/π2

1��
0 // R/π2


 X24

ε24 ��
ΩSX24

 =


R/π2 π2

//

1 ��

R/π3

1��
R/π

π2
// R/π3


 X12

ε12 ��
ΩSX12

 =


R/π ⊕R/π3

„
π2

π

«
//“

π
1

”
��

R/π3

1��
R/π2 π // R/π3


 X25

ε25 ��
ΩSX25

 =

 R/π2 π //

1 ��

R/π2

1��
R/π

π // R/π2

 .

 X13

ε13 ��
ΩSX13

 =


R/π3

(1 π ) //

1 ��

R/π ⊕R/π3“
1 0
0 1

”
��

R/π2
(1 π ) // R/π ⊕R/π3



Remark 8 Keep the assumptions of Proposition 6.

We have (Ω ◦ S)2 Y ' (Ω ◦ S)Y for Y ∈ Ob mod-A.
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The unit of the adjunction S a Ω at an A-module X -f Y is represented by a factorisation

X
f //

_f̄
��

Y

If •
ḟ

// Y

over an image If of the module-defining morphism f .

I do not know why.

2.2 Another example of a left adjoint

Recall that R is a principal ideal domain, with a maximal ideal generated by an element π ∈ R.

2.2.1 A list of indecomposables

Let

B := A/(π2a) = (R/π3)(e -a f)/(π2a) .

Indecomposable nonprojective B-modules become indecomposable nonprojective A-modules
via restriction along the residue class map A - B.

We list the 24 representatives of isoclasses of indecomposable nonprojective B-modules in the
numbering used in §2.1.1 as follows.

X1 , X2 , X3 , X5 , X6 , X7 , X8 , X9 , X10 , X11 , X12 , X13 , X14 , X15 , X16 ,

X17 , X18 , X19 , X20 , X21 , X22 , X23 , X24 , X25

2.2.2 Construction of a left adjoint

Our aim in this section is to computationally verify the

Proposition 9 Suppose given a prime p ∈ [2, 997]. Suppose that R = Fp[X] and π = X.

Then the Heller operator Ω : mod-B -mod-B has a left adjoint.

We proceed analogously to §2.1.
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We obtain

SX1 = X2 ΩSX1 = X21 SX14 = X2 ⊕X9 ΩSX14 = X21 ⊕X11

SX2 = X1 ΩSX2 = X3 SX15 = X2 ΩSX15 = X21

SX3 = X1 ΩSX3 = X3 SX16 = X1 ⊕X17 ΩSX16 = X3 ⊕X25

SX5 = X17 ΩSX5 = X25 SX17 = X1 ⊕X2 ⊕X9 ΩSX17 = X21 ⊕X3 ⊕X11

SX6 = X2 ⊕X13 ΩSX6 = X21 ⊕X22 SX18 = X1 ⊕X2 ⊕X9 ΩSX18 = X21 ⊕X3 ⊕X11

SX7 = X1 ⊕X9 ΩSX7 = X3 ⊕X11 SX19 = X2 ⊕X9 ΩSX19 = X21 ⊕X11

SX8 = X1 ⊕X2 ΩSX8 = X21 ⊕X3 SX20 = X1 ΩSX20 = X3

SX9 = X17 ΩSX9 = X25 SX21 = X2 ΩSX21 = X21

SX10 = X2 ΩSX10 = X21 SX22 = X13 ΩSX22 = X22

SX11 = X9 ΩSX11 = X11 SX23 = X17 ΩSX23 = X25

SX12 = X2 ⊕X17 ΩSX12 = X21 ⊕X25 SX24 = X2 ⊕X9 ΩSX24 = X21 ⊕X11

SX13 = X1 ⊕X9 ΩSX13 = X3 ⊕X11 SX25 = X17 ΩSX25 = X25

and X1

ε1 ��
ΩSX1

 =

 R/π
1 //

1 ��

R/π

��
R/π // 0


 X14

ε14 ��
ΩSX14

 =


R/π3 π2

//

1 ��

R/π3

1��
R/π

0 // R/π2


 X2

ε2 ��
ΩSX2

 =

 R/π2 1 //

1 ��

R/π2

1��
R/π2 1 // R/π


 X15

ε15 ��
ΩSX15

 =

 R/π3 //

1 ��

0

��
R/π // 0


 X3

ε3 ��
ΩSX3

 =

 R/π2 1 //

1 ��

R/π

1��
R/π2 1 // R/π


 X16

ε16 ��
ΩSX16

 =


R/π2 ⊕R/π3

“
1 π
1 0

”
//“

1 1
1 0

”
��

R/π ⊕R/π3“
1 0
0 1

”
��

R/π2 ⊕R/π2

“
1 0
0 π

”
// R/π ⊕R/π2


 X17

ε17 ��
ΩSX17

 =


R/π ⊕R/π3

„
π π2

1 0

«
//“

1 0
0 1

”
��

R/π2 ⊕R/π3“
1 0
0 1

”
��

R/π ⊕R/π2

“
0 0
1 0

”
// R/π ⊕R/π2


 X5

ε5 ��
ΩSX5

 =

 R/π2 π //

1 ��

R/π3

1��
R/π2 π // R/π2


 X18

ε18 ��
ΩSX18

 =


R/π ⊕R/π3

„
0 π2

1 π

«
//“

1 0
0 1

”
��

R/π ⊕R/π3“
1 −π
0 1

”
��

R/π ⊕R/π2

“
0 0
1 0

”
// R/π ⊕R/π2


 X6

ε6 ��
ΩSX6

 =

 R/π
π //

1 ��

R/π2

1��
R/π

0 // R/π


 X19

ε19 ��
ΩSX19

 =


R/π

π2
//

1 ��

R/π3

1��
R/π

0 // R/π2


 X7

ε7 ��
ΩSX7

 =


R/π2

(1 π ) //

1 ��

R/π ⊕R/π3“
1 −π
0 1

”
��

R/π2
(1 0) // R/π ⊕R/π2


 X20

ε20 ��
ΩSX20

 =

 R/π3 1 //

1 ��

R/π

1��
R/π2 1 // R/π
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 X8

ε8 ��
ΩSX8

 =


R/π ⊕R/π3

“
π
1

”
//“

1 0
0 1

”
��

R/π2

1��
R/π ⊕R/π2

“
0
1

”
// R/π


 X21

ε21 ��
ΩSX21

 =

 R/π //

1 ��

0

��
R/π // 0


 X9

ε9 ��
ΩSX9

 =

 R/π3 π //

1 ��

R/π3

1��
R/π2 π // R/π2


 X22

ε22 ��
ΩSX22

 =

 0 //

��

R/π

1��
0 // R/π


 X10

ε10 ��
ΩSX10

 =

 R/π2 //

1 ��

0

��
R/π // 0


 X23

ε23 ��
ΩSX23

 =

 R/π3 π //

1 ��

R/π2

1��
R/π2 π // R/π2


 X11

ε11 ��
ΩSX11

 =

 0 //

��

R/π2

1��
0 // R/π2


 X24

ε24 ��
ΩSX24

 =


R/π2 π2

//

1 ��

R/π3

1��
R/π

0 // R/π2


 X12

ε12 ��
ΩSX12

 =


R/π ⊕R/π3

„
π2

π

«
//“

1 0
0 1

”
��

R/π3

1��
R/π ⊕R/π2

“
0
π

”
// R/π2


 X25

ε25 ��
ΩSX25

 =

 R/π2 π //

1 ��

R/π2

1��
R/π2 π // R/π2

 .

 X13

ε13 ��
ΩSX13

 =


R/π3

(1 π ) //

1 ��

R/π ⊕R/π3“
1 −π
0 1

”
��

R/π2
(1 0) // R/π ⊕R/π2



Cf. §2.1.

Remark 10 Keep the assumptions of Proposition 9.

We have (Ω ◦ S)2 Y ' (Ω ◦ S)Y for Y ∈ Ob mod-B.

Given an R/π3-module X, we write X̄ := X/π2X and Annπ X̄ := { x̄ ∈ X̄ : πx̄ = 0 }.

The unit of the adjunction S a Ω at a B-module X -f Y is represented by the composite

X
f //

_
��

Y

_
��

X̄
f̄ //

_
��

Ȳ

_
��

X̄/πKern f̄ // Ȳ /(Annπ X̄)f̄ ,

where the vertical maps are the respective residue class maps, and the middle and lower hori-
zontal maps are the induced maps.

I do not know why.
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2.3 Further examples of left adjoints

Let
C1 := A/(π2f) = (R/π3)(e -a f)/(π2f)

C2 := A/(πf) = (R/π3)(e -a f)/(πf)

C3 := A/(π2e, π2f) = (R/π2)(e -a f)

C4 := A/(πa) = (R/π3)(e -a f)/(πa)

C5 := A/(πa, π2f) = (R/π3)(e -a f)/(πa, π2f)

C6 := A/(π2e) = (R/π3)(e -a f)/(π2e)

C7 := A/(πe) = (R/π3)(e -a f)/(πe)

C8 := A/(π2e, πa) = (R/π3)(e -a f)/(π2e, πa)

Proposition 11 Suppose given a prime p ∈ [2, 997]. Suppose that R = Fp[X] and π = X.

Then the Heller operator Ω : mod-Cj -mod-Cj has a left adjoint for j ∈ [1, 8].

Remark 12 Keep the assumptions of Proposition 11.

We have (Ω ◦ S)2 Y ' (Ω ◦ S)Y for Y ∈ Ob mod-Cj for j ∈ [1, 8] r {5}.

For j = 5, we have

(Ω ◦ S)X10 = X10 ⊕X21

(Ω ◦ S)X21 = X21

in the notation of §2.1.1, i.e.

(Ω ◦ S)(R/π2 - 0) = (R/π2 - 0)⊕ (R/π - 0)

(Ω ◦ S)(R/π - 0) = (R/π - 0) .

2.4 Counterexample: no right adjoint

Recall from §2.3 that C3 = (R/π2)(e -a f). As representatives of isoclasses of nonprojective
C3-modules we obtain, in the notation of §2.1.1,

Y1 := X1 = (R/π -1 R/π) Y5 := X21 = (R/π - 0)

Y2 := X3 = (R/π2 -1 R/π) Y6 := X22 = (0 - R/π)

Y3 := X6 = (R/π -π R/π2) Y7 := X25 = (R/π2 -π R/π2) .

Y4 := X10 = (R/π - 0)

Remark 13 Suppose that R = F3[X] and π = X.

The functor Ω : mod-C3
-mod-C3 does not have a right adjoint.

Proof. Magma yields

H :=
(

dimF3( mod-C3(Yi , Yj))
)
i,j

=


1 0 1 0 1 0 0
1 1 1 1 1 0 1
0 1 1 0 1 1 0
0 1 0 2 1 0 1
0 1 0 1 1 0 1
1 1 0 0 0 1 0
0 1 1 1 1 1 1

 ∈ (Z>0)7×7
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and

H ′ :=
(

dimF3( mod-C3(ΩYi , Yj))
)
i,j

=


1 0 1 0 1 0 0
1 1 0 0 0 1 0
0 1 1 0 1 1 0
0 0 0 0 0 0 0
0 1 1 0 1 1 0
1 1 0 0 0 1 0
0 0 0 0 0 0 0

 ∈ (Z>0)7×7 .

Assume that Ω has right adjoint T : mod-C3
-mod-C3 .

Write TYj '
⊕

k∈[1,7] Y
⊕uk,j

k for j ∈ [1, 7], where U := (uk,j)k,j ∈ (Z>0)7×7. We obtain

H ′ =
(

dimF3( mod-C3(ΩYi , Yj))
)
i,j

=
(

dimF3( mod-C3(Yi , TYj))
)
i,j

=
(

dimF3( mod-C3(Yi ,
⊕

k∈[1,7] Y
⊕uk,j

k ))
)
i,j

=
(∑

k∈[1,7] dimF3( mod-C3(Yi , Yk)) · uk,j
)
i,j

= H · U .

So every column ofH ′ is a linear combination of columns inH with coefficients in Z>0 . However,
the third column of H ′ would afford a coefficient ∈ Z>0 at the first, third or fifth column of
H because its first entry equals 1. But then its second entry would also be in Z>0 , because
these columns of H all have second entry equal to 1. But this second entry equals 0. We have
arrived at a contradiction.
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