A counterexample on nilpotent endomorphisms in triangulated categories

Matthias Künzer

September 16, 2009

Abstract

We give a counterexample to an assertion on nilpotent endomorphisms of degree 3 in triangulated categories. Roughly speaking, it is in general not possible to lower the nilpotency degree by passing to a certain cone.

1 Nilpotency degree 2 in triangulated categories

Let \mathcal{C} be a Verdier triangulated category.
Suppose given $X \in \mathrm{Ob} \mathcal{C}$ and $d \in \operatorname{End}_{\mathcal{C}} X$ such that $d^{2}=0$. Let $X \xrightarrow{d} X \xrightarrow{f} C \xrightarrow{g} X^{+1}$ be a (distinguished) triangle. M. Breuning made use of the following endomorphism of triangles.

So the pair $(0, d)$ can be extended to an endomorphism of triangles $(0, d, e)$ such that $e=e^{1}=0$.

2 Nilpotency degree 3 in abelian categories

Let \mathcal{A} be an abelian category.
Suppose given $X \in \operatorname{Ob} \mathcal{A}$ and $d \in \operatorname{End}_{\mathcal{A}} X$ such that $d^{3}=0$. Let f be a cokernel of d. We obtain an endomorphism of sequences.

Now $f e^{2}=d^{2} f=0$, whence $e^{2}=0$. So the pair ($0, d$) can be (uniquely) extended to an endomorphism of sequences $(0, d, e)$ such that $e^{2}=0$.

3 Nilpotency degree 3 in triangulated categories

Let \mathcal{C} be a Verdier triangulated category.
Suppose given $X \in \mathrm{Ob} \mathcal{C}$ and $d \in \operatorname{End}_{\mathcal{C}} X$ such that $d^{3}=0$. Let $X \xrightarrow{d} X \xrightarrow{f} C \xrightarrow{g} X^{+1}$ be a triangle. There exists $C \xrightarrow{e} C$ fitting into an endomorphism of triangles as follows.

Now, $e g=0$, whence $e=b f$ for some $C \xrightarrow{b} X$. Hence $e^{3}=b f e^{2}=b d^{2} f=0$.
Motivated by $\S 1$ and $\S 2$, we consider the following
Assertion. There exists an endomorphism $C \xrightarrow{\tilde{e}} C$ with $\tilde{e}^{2}=0$ such that $(0, d, \tilde{e})$ is an endomorphism of triangles.
Counterexample. Let $\mathcal{C}=\underline{\mathbf{Z} / 64-\bmod }$; cf. [1]. Let $(X \xrightarrow{d} X):=(\mathbf{Z} / 8 \xrightarrow{2} \mathbf{Z} / 8)$. Suppose given the following endomorphism

of triangles, in which $a, b, c, d \in \mathbf{Z} / 4$.
The middle quadrangle yields $(a+2 c 4 b+2 d)=(24)$, as morphisms from $\mathbf{Z} / 8$ to $\mathbf{Z} / 4 \oplus \mathbf{Z} / 16$. So $a+2 c \equiv_{4} 2$ and $4 b+2 d \equiv_{8} 4$. Hence $a=2-2 c$ and $d=2-2 b$. Thus $\tilde{e}=\left(\begin{array}{cc}2-2 c & 4 b \\ c & 2-2 b\end{array}\right)$.
Now the right hand side quadrangle yields $\binom{-4+4 b+4 c}{2-2 b-2 c}=\binom{0}{0}$ as morphisms from $\mathbf{Z} / 4 \oplus \mathbf{Z} / 16$ to $\mathbf{Z} / 8$. So $b+c \equiv{ }_{2} 1$.
We calculate $\tilde{e}^{2}=\left(\begin{array}{cc}0 & 8 b(b+c) \\ 2 c(b+c) & 0\end{array}\right)=\left(\begin{array}{cc}0 & 8 b \\ 2 c & 0\end{array}\right)$, which is nonzero because of $b+c \equiv 2$.

References

[1] Künzer, M., Nonisomorphic Verdier octahedra on the same base, J. Homotopy and Related Structures 4(1), p. 7-38, 2009.

