A counterexample on nilpotent endomorphisms in triangulated categories

Matthias Künzer

September 16, 2009

Abstract

We give a counterexample to an assertion on nilpotent endomorphisms of degree 3 in triangulated categories. Roughly speaking, it is in general not possible to lower the nilpotency degree by passing to a certain cone.

1 Nilpotency degree 2 in triangulated categories

Let \mathcal{C} be a Verdier triangulated category.

Suppose given $X \in Ob \mathcal{C}$ and $d \in End_{\mathcal{C}} X$ such that $d^2 = 0$. Let $X \xrightarrow{d} X \xrightarrow{f} C \xrightarrow{g} X^{+1}$ be a (distinguished) triangle. M. BREUNING made use of the following endomorphism of triangles.

$$\begin{array}{cccc} X & \stackrel{d}{\longrightarrow} X & \stackrel{f}{\longrightarrow} C & \stackrel{g}{\longrightarrow} X^{+1} \\ & & & & & & & & \\ \downarrow 0 & & & & & & & & \\ \downarrow 0 & & & & & & & & & \\ \chi & \stackrel{d}{\longrightarrow} X & \stackrel{f}{\longrightarrow} C & \stackrel{g}{\longrightarrow} X^{+1} \end{array}$$

So the pair (0, d) can be extended to an endomorphism of triangles (0, d, e) such that $e = e^1 = 0$.

2 Nilpotency degree 3 in abelian categories

Let \mathcal{A} be an abelian category.

Suppose given $X \in Ob \mathcal{A}$ and $d \in End_{\mathcal{A}} X$ such that $d^3 = 0$. Let f be a cokernel of d. We obtain an endomorphism of sequences.

$$\begin{array}{ccc} X & \stackrel{d^2}{\longrightarrow} X & \stackrel{f}{\longrightarrow} C \\ \downarrow_0 & & \downarrow_d & & \downarrow_e \\ X & \stackrel{d^2}{\longrightarrow} X & \stackrel{f}{\longrightarrow} C \end{array}$$

Now $fe^2 = d^2 f = 0$, whence $e^2 = 0$. So the pair (0, d) can be (uniquely) extended to an endomorphism of sequences (0, d, e) such that $e^2 = 0$.

3 Nilpotency degree 3 in triangulated categories

Let \mathcal{C} be a Verdier triangulated category.

Suppose given $X \in Ob \mathcal{C}$ and $d \in End_{\mathcal{C}} X$ such that $d^3 = 0$. Let $X \xrightarrow{d} X \xrightarrow{f} C \xrightarrow{g} X^{+1}$ be a triangle. There exists $C \xrightarrow{e} C$ fitting into an endomorphism of triangles as follows.

$$\begin{array}{cccc} X & \stackrel{d^2}{\longrightarrow} X & \stackrel{f}{\longrightarrow} C & \stackrel{g}{\longrightarrow} X^{+1} \\ & & & & & & \\ \downarrow^0 & & & & & & \\ Y & \stackrel{d^2}{\longrightarrow} X & \stackrel{f}{\longrightarrow} C & \stackrel{g}{\longrightarrow} X^{+1} \end{array}$$

Now, eg = 0, whence e = bf for some $C \xrightarrow{b} X$. Hence $e^3 = bfe^2 = bd^2f = 0$.

Motivated by §1 and §2, we consider the following

Assertion. There exists an endomorphism $C \xrightarrow{\tilde{e}} C$ with $\tilde{e}^2 = 0$ such that $(0, d, \tilde{e})$ is an endomorphism of triangles.

Counterexample. Let $\mathcal{C} = \mathbb{Z}/64 \operatorname{-mod}$; cf. [1]. Let $(X \xrightarrow{d} X) := (\mathbb{Z}/8 \xrightarrow{2} \mathbb{Z}/8)$. Suppose given the following endomorphism

of triangles, in which $a, b, c, d \in \mathbb{Z}/4$.

The middle quadrangle yields $(a+2c \ 4b+2d) = (24)$, as morphisms from $\mathbb{Z}/8$ to $\mathbb{Z}/4 \oplus \mathbb{Z}/16$. So $a + 2c \equiv_4 2$ and $4b + 2d \equiv_8 4$. Hence a = 2 - 2c and d = 2 - 2b. Thus $\tilde{e} = \begin{pmatrix} 2-2c \ 4b \\ c \ 2-2b \end{pmatrix}$.

Now the right hand side quadrangle yields $\binom{-4+4b+4c}{2-2b-2c} = \binom{0}{0}$ as morphisms from $\mathbf{Z}/4 \oplus \mathbf{Z}/16$ to $\mathbf{Z}/8$. So $b + c \equiv_2 1$.

We calculate $\tilde{e}^2 = \begin{pmatrix} 0 & 8b(b+c) \\ 2c(b+c) & 0 \end{pmatrix} = \begin{pmatrix} 0 & 8b \\ 2c & 0 \end{pmatrix}$, which is nonzero because of $b + c \equiv_2 1$.

References

 KÜNZER, M., Nonisomorphic Verdier octahedra on the same base, J. Homotopy and Related Structures 4(1), p. 7–38, 2009.